Ортогональные полиномы и кривые распределения вероятностей
10,0143
7,6909
0,9984
0,5348
0,0759
Следовательно, кривая распределения вероятностей будет определена на промежутке и будет иметь вид:
1
0
Рис.1
Из чего следует, что если параметры кривой распределения первого типа будут находиться в пределах , то мы будем получать форму кривой распределения, изображенную на рис.1.
Из пятидесяти рассмотренных выборок двадцать четыре имеют такую форму кривой распределения вероятностей.
Пример 2.
Рассмотрим другую выборку:
1 | 8,460199654 | 2 | Кривая распределения вероятностей первого типа. |
2 | 45,34087276 | 8 | |
3 | 18,07745451 | 5 | |
4 | 5,419406056 | 8 | Параметры кривой: |
5 | 18,67596108 | 6 | |
6 | 23,24656701 | 9 |
17,4066 |
7 | 18,95143622 | 1 |
37,6794 |
8 | 53,27426755 | 3 |
-0,3882 |
9 | 54,93095666 | 1 |
0,3243 |
10 | 24,27284002 | 2 |
0,0187 |
11 | 17,74883789 | 4 |
Кривая распределения вероятностей имеет в этом случае форму, показанную на рис. 2.
1
0
Рис.2
В этом случае параметры кривой распределения будут: . И если параметры кривой распределения другой выборки будут удовлетворять этим неравенствам, то форма кривой распределения этой выборки будет похожа на рис. 2.
Этот случай встретился нам семь раз из пятидесяти.
Пример 3
1 | 3,881268442 | 7 | Кривая распределения вероятностей первого типа. |
2 | 1,343869925 | 17 | |
3 | 3,770335495 | 11 | |
4 | 2,860628724 | 9 | Параметры кривой: |
5 | 2,043179214 | 4 | |
6 | 1,447737217 | 10 |
1,2163 |
7 | 2,43993476 | 13 |
1,4994 |
8 | 1,658227324 | 8 |
-0,7286 |
9 | 3,98119396 | 16 |
-0,6654 |
10 | 1,391261339 | 5 |
0,1632 |
Кривая распределения вероятностей имеет вид:
1
0
Рис. 3
Такой будет форма кривой распределения вероятностей, если параметры . Эта форма кривой встречается шестнадцать раз из пятидесяти.
§2. Алгоритм вычислений.
Тип кривой распределения вероятностей |
Проверка условий для |
æ Пирсона |
Исходные данные |
|
|