Ортогональные полиномы и кривые распределения вероятностей
полиномы и кривые распределения вероятностей" width="117" height="68" />,где и - некоторые постоянные, используем найденные выше свойства функции для определения этих постоянных через данные значения .
Выражения для будет иметь вид:
.
Выражения для коэффициентов будут следующими:
.
Вводя для сокращения обозначение
через , запишем выражение для в таком виде:
.
Для выражение будет иметь вид
.
Что касается величин и , то они равны соответственно
и .
Теперь перейдем к определению коэффициентов в выражении
.
Для получим выражение
.
Это выражение весьма упростится, если мы будем считать отклонениями данных значений аргумента от его средней арифметической так, что . Тогда , а выражение для будет иметь вид
.
Также упростятся выражения для
и .
Функция станет равной , функции определяются путем последовательных подстановок выражений в формулы
.
При помощи этих формул можно вычислить какой угодно член ряда Чебышева
.
Оценка результатов интерполирования производится при помощи среднего квадратического отклонения данных значений интерполируемой функции от вычисленных по найденному уравнению параболы.
Обозначим сумму квадратов отклонений через . Тогда можно написать
.
будет равняться
,
а выражать рекуррентно через по формуле
.
Итак,
, , ,
, , , ,
, , , , .
Мы видим, что в зависимости от нашей весовой функции в разложении мы получим разные системы ортогональных полиномов.
§ 2. Обобщение Грамма - Шарлье.
Пусть по методу Пирсона найден вид кривой распределения вероятностей на соответствующем интервале. Теперь, для представления в удобном для практического использования виде, запишем полученную кривую в несколько иной форме. Для этого используем обобщение Грамма – Шарлье, которое основывается на применении ортогональных полиномов Чебышева и состоит в том, что кривая распределения вероятностей представима в виде следующего разложения:
(4)
где - есть к–ая производная функции . Здесь полагаем, что
.
Таким образом, мы получаем кривую распределения вероятностей теперь уже в виде .
Производные функции мы можем представить в виде [3]
,
тогда можем записать
где функции должны удовлетворять следующему свойству:
если (5)
А коэффициенты получаются из равенства (4) с помощью домножения на любой из ортогональных полиномов и, интегрирования полученного равенства:
=
=
Отсюда следует, что
.
На практике в этом разложении мы используем только четыре первых члена, и коэффициенты перед ними есть:
Коэффициенты имеют четкий статистический смысл, а именно: коэффициент , выраженный через , отвечает за асимметрию закона распределения, и коэффициент выраженный через - за эксцесс или дефект кривой распределения.
Свойство (5) есть свойство ортогональности полиномов, т. е. по определению является системой ортогональных полиномов, которая получена по способу Чебышева в предыдущем параграфе [3], [5].
§ 3. Весовые функции и системы ортогональных полиномов.
В общей теории ортогональных полиномов известно, что система ортогональных полиномов называется классической, если она ортогональна относительно весовой функции, которая является решением дифференциального уравнения Пирсона [2], [6]. То есть, здесь прослеживается связь между теорией классических ортогональных полиномов и задачами математической статистики (нахождением закона распределения вероятностей).
Полиномы Чебышева - Эрмита.
Пусть многочлен (2) не имеет корней, тогда уравнение Пирсона (1) после переноса начала координат запишется в виде
,
тогда решение этого уравнения запишется в виде
(6).
Линейным преобразованием независимого переменного
эта функция приводится с точностью до постоянного множителя к весовой функции многочленов Чебышева – Эрмита, которая имеет вид
.
Поскольку умножение весовой функции на постоянную практически не изменяет ортогональные многочлены, то в формуле (6), как и в аналогичных нижеследующих формулах, не нарушая общности, можно полагать . В данном случае ортогональные многочлены с весом (6) выражаются через ортогональные многочлены Чебышева – Эрмита по формуле
.
В этом случае условие ортогональности запишется в виде:
если
Полиномы Чебышева - Лагерра.
Пусть теперь многочлен (2) имеет один корень. Тогда уравнение (1) представимо в виде
.
Тогда его решение запишется в виде
.
Многочлены, ортогональные с таким весом, можно рассматривать как обобщение многочленов Чебышева – Лагерра, ортогональных с весом
.
Причем и здесь можно выразить эти многочлены через многочлены Чебышева – Лагерра , а условие ортогональности будет:
если
Полиномы Якоби.
Предположим, что многочлен (2) имеет два различных действительных нуля. Тогда , и уравнение Пирсона (1) представимо в виде
,
где и - некоторые постоянные и . Тогда решение уравнения (1)
представимо в виде
и определяет некоторую систему ортогональных многочленов, которая линейным преобразованием независимого переменного и умножением на постоянную сводится к системе многочленов Якоби . Так как весовая функция многочленов Якоби имеет вид
.
И соответственно условие ортогональности будет иметь вид:
если
Многочлены Чебышева I рода являются частным случаем многочленов Якоби, так как весовая функция, относительно которой ортогональны эти многочлены, имеет вид:
и получается при подстановке в весовую функцию многочленов Якоби параметров .
Многочлены Чебышева II рода так же являются частным случаем многочленов Якоби, так как весовая функция многочленов Чебышева II рода имеет вид
и получается при подстановке в весовую функцию многочленов Якоби параметров .
Следует так же отметить, что многочлены Лежандра являются частным случаем многочленов Якоби, так как весовая функция многочленов Лежандра
и есть частный случай весовой функции многочленов Якоби при .
Глава 3. Примеры нахождения кривых распределения вероятностей и программное обеспечение.
В этой главе рассматриваются примеры нахождения кривых распределения по методу кривых Пирсона с использованием теоретических исследований, рассмотренных в первой и второй главах дипломной работы. Было написано программное обеспечение, с помощью которого были получены и проинтерпретированы численные результаты.
§ 1. Примеры нахождения кривых распределения вероятностей.
Рассмотрение примеров заключалось в том, что было рассмотрено пятьдесят случайных выборок, а далее были рассмотрены примеры выборок с заданным законом распределения. Согласно рассмотренному ниже алгоритму были произведены соответствующие вычисления, и по каждой выборке была построена кривая распределения вероятностей. При проведении испытаний было получено, что кривая распределения сорока семи из пятидесяти рассмотренных выборок есть кривая Пирсона первого типа, которая определяется следующей формулой:
.
Здесь нужно отметить разнообразие кривых Пирсона, делающее их применение очень гибким. Это означает, что кривые распределения вероятностей первого типа при различных значениях параметров и могут иметь различную форму.
Ниже рассмотрено несколько примеров наиболее часто встретившихся форм кривой распределения I типа.
Пример 1.
Рассмотрим выборку:
|