Общая теория статистики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКАЯ ФИНАНСОВО – ЮРИДИЧЕСКАЯ АКАДЕМИЯ

ФИЛИАЛ

Факультет: Экономика и управление

СПЕЦИАЛЬНОСТЬ: Финансы и кредит


КОНТРОЛЬНАЯ РАБОТА

ПО СТАТИСТИКЕ


ы


2009


Задача 1.


Известны следующие данные о рабочих 3-х бригад. Сгруппируйте данный статистический материал по признакам: полу, образованию, квалификации, стажу работы. Результаты представьте в виде таблиц.


Пол Образование Тарифный разряд Стаж работы Пол Образование Тарифный разряд Стаж работы
1 Муж. Неполное среднее 4 27 11 Жен. Среднее 2 2
2 Жен. Среднее 4 10 12 Муж. Среднее 4 6
3 Жен. Среднее 6 8 13 Муж. Среднее 5 15
4 Муж. Среднее 5 24 14 Жен. Среднее 3 3
5 Муж. Неполное среднее 3 7 15 Жен. Среднее 3 3
6 Муж. Среднее 5 11 16 Муж. Среднее 4 12
7 Муж. Среднее 6 12 17 Муж. Среднее 3 3
8 Муж. Среднее 5 8 18 Муж. Среднее 4 19
9 Жен. Среднее 4 10 19 Муж. Среднее 5 25
10 Муж. Неполное среднее 6 6 20 Жен. Среднее 3 3

Таблица 1.

Тарифный разряд Количество рабочих Удельный вес %
2 1 5
3 5 25
4 6 30
5 5 25
6 3 15
Итого: 20 100

Таблица 2.

пол Количество рабочих Удельный вес %
Муж. 13 65
Жен. 17 35
Итого: 20 100

Таблица 3.

Стаж работы Количество рабочих Удельный вес %
2 1 5
3 4 20
6 2 10
7 1 5
8 2 10
10 2 10
11 1 5
12 2 10
15 1 5
19 1 5
24 1 5
25 1 5
27 1 5
Итого: 20 100

Таблица 4.

Образование Количество рабочих Удельный вес %
Среднее 17 85
Неполное Среднее 3 15
Итого: 20 100

Задача 2.


По двум предприятиям, вырабатывающим один и тот же вид продукции, известны данные за отчётный месяц. Необходимо рассчитать а) среднее число на одно предприятие, б) среднюю выработку на одного рабочего, в) среднюю себестоимость единицы продукции.


Предприятие Число рабочих Выработка на одного рабочего шт. Себестоимость единицы продукции, руб
1 120 500 624
2 170 800 570

а = = = 145


среднее число рабочих на 1 предприятие.



средняя выработка на 1 рабочего.



средняя себестоимость единицы продукции.


Задача 3.


Имеются следующие данные о численности населения и коэффициентах смертности, связанных с самоубийствами, по двум группам населения в одной из областей РФ.


Возрастные группы 1 группа 2 группа Стандартизованная структура населения, %

Численность населения, тыс.чел.

Коэффициент смертности,

%

Численность населения, тыс.чел.

Коэффициент смертности,

%


15-19 94,0 0,22 90,5 0,10 9,2
20-24 108,2 0,31 106,3 0,07 10,7
25-29 131,9 0,39 132,9 0,02 13,3
30-39 267,1 0,19 280,8 0,05 27,4
40-49 183,3 0,45 201,8 0,09 19,3
50-59 180,2 0,53 219,1 0,10 20,1

Определите:

1) среднюю смертность в каждой группе

2) стандартизованные коэффициенты смертности. Проанализируйте результаты.


==

=

= средняя смертность в 1 группе.

=

= средняя смертность во 2 группе.


- стандартизованный коэффициент смертности в 1 группе.



-стандартизованный коэффициент смертности во 2 группе.


Задача 4.


Ежегодная сумма амортизации машины составляет 800 тыс. руб. Срок эксплуатации машины 15 лет. Стоимость капитального ремонта и модернизации машины за весь срок службы 1600 тыс. руб. Предполагаемая стоимость машины после полного физического износа (ликвидационная стоимость) 300 тыс. руб. Определите первоначальную стоимость машины и годовую норму амортизации.


А= ,


где А- сумма амортизации, ПС- первоначальная стоимость, ЛС- ликвидационная стоимость, Змодерн..- затраты на модернизацию.


ПС= А*Т – ЛС +Змодерн.

На= ,


где На- годовая норма амортизации.


ПС= 800 тыс.руб.*15 - 300 тыс.руб. + 1.600 тыс.руб. = 13.300тыс.руб.

На= = 0,0601 0,0601*100% = 6,01%


13.300тыс.руб. – первоначальная стоимость машины

6,01% - норма амортизации.


Задача 5.


Предприятие с сезонным производством начало работать в апреле и закончило в октябре. Определить среднесписочную численность работающих на предприятии за год, если известно, что среднесписочная численность по месяцам составляет апрель – 600, май – 1100, июнь – 1370, июль – 1690, август – 1450, сентябрь – 760, октябрь – 542.


=человек среднесписочная численность рабочих этого предприятия.


Задача 6.


Распределение рабочих машиностроительного предприятия по заработной плате характеризуется данными. Определите моду и медиану заработной платы. Сделайте выводы.


Таблица 5.

Группы рабочих по заработной плате Число рабочих, процент к итогу Накопленная частота
4500 – 4600 10,3 10,3
4600 – 4700 16,6 26,9
4700 – 4800 28,5 55,4
4800 – 4900 22,4 77,8
4900 – 5000 14,6 92,4
5000 – 5100 7,6 100
Итого: 100 -

Мо= Хмо+h

Me= Xme+h

N=

N= =50,5


Модальным будет интервал 4700 – 4800 - по наибольшему признаку.


Mo= 4700+100=4766 – мода

Ме=4700+100=4783 – медиана

Так как мода – это величина признака, которая встречается в изучаемой совокупности чаще, чем другие величины данного признака, то можно сделать вывод, что наиболее распространенной зарплатой будет 4766 руб., а т.к. медиана – это значение признака, приходящееся на середину ранжированной совокупности, то половина работников получает порядка 4783 руб.


Литература


1. Минашкин В.Г., Шмойлова Р.А., Садовникова Н.А., Моисейкина Л.Г., Рыбакова Е.С. Теория статистики/ Московская финансово – промышленная академия, М., - 2004. – 198с.

2. Ниворжкина Л.И. Теория статистики: (с задачами и примерами по региональной экономике)/ Л.И. Ниворожкина, Т.В. Чернова. – Ростов и/Д : "Мини Тайп", "Феникс", 2005. – 220с.

3. Практикум по теории статистики Учеб. Пособие/ Под ред.Р.А. Шмойловой, - М: Финансы и статистика, 2003. – 416с.:ил.