Расчет и проектирование привода лебедки

alt="Расчет и проектирование привода лебедки" width="61" height="30" align="BOTTOM" border="0" />зуба.

Определяем число зубьев шестерни и колеса по формулам [1,c.37]:


;

;


;

; .

Уточняем фактическое передаточное число

;

;

Отклонения передаточного числа от номинального нет.


Определяем делительные диаметры шестерни и колеса по формуле (3.11):



; мм;

; мм.

Проверяем межосевое расстояние

; мм.

Определяем остальные геометрические параметры шестерни и колеса по формулам (2.10)

; ;

; ; ;

мм;

; мм;

; мм;

; мм;

; мм; принимаем b2=80мм;

; мм;

; мм

; мм;

; мм;

; мм.

Проверяем соблюдение условия (т.к. Ψba<0,4)


;


; ;

0,315>0,056

Значит, условие выполняется.

Определяем окружные скорости колес



; м/с;

;

; м/с;

Принимаем для расчетов м/с.

Определяем силы в зацеплении

- окружная

; ; Н;

- радиальная

; ; Н;

- осевого усилия нет.

Принимаем 9-ую степень точности изготовления колес [1,табл.4.5].

Принимаем коэффициенты динамической нагрузки: KHV=1,2 (Н≤350HB); КFV=1,02 [1,табл. 4.13]. Принимаем коэффициенты формы зуба некорригированного зацепления: для шестерни z1 = 16, YF1 = 4,4; а для колеса z2 = 72, YF2 = 3,61. Проверяем зубья колеса по контактным напряжениям и по напряжениям изгиба:

Расчетное контактное напряжение:

;

;

Определяем ∆σН

;

; недогрузки, что допускается.

Расчетные напряжения изгиба в основании ножки зубьев колеса и шестерни:

;

;

;

;

Прочность зубьев на изгиб обеспечивается

Все вычисленные параметры заносим в табл.3.


Параметры закрытой шевронной передачи Таблица 3

Параметр Шестерня Колесо
mn,мм 4
z 16 72
βє 45є
ha,мм 4
hf,мм 5
h,мм 10
с, мм 0,5
d,мм 90,5 409,5
dа,мм 98,5 422,5
df,мм 80,5 399,6
b, мм 80 62
ω, рад 18,2 4
аW,мм 250
v, м/с 0,8
Т, Нм 388 1964
Ft, Н 9593
Fr, Н 4938

4. Расчет валов редуктора


По кинематической схеме привода составляем схему усилий, действующих на валы редуктора. Для этого мысленно расцепим шестерню и колесо редуктора. По закону равенства действия и противодействия:

Fa1= Fa2= Fa1;

Ft1= Ft2= Ft1;

Fr1= Fr2= Fr1;

Ft3= Ft4= Ft2;

Fr3= Fr4= Fr2.

Схема усилий приведена на рис.3.

Так как на валу промежуточного вала находится 3 зубчатых колеса, этот вал будет определяющим для внутренней ширины корпуса редуктора и расчет валов начнем с него.


4.1 Расчет промежуточного вала


Исходные данные выбираем из табл.1,3 с округлением до целых чисел:

Схема усилий действующих на валы редуктора

Fa1= Fa2= Fa1=251Нм;

Ft1= Ft2 =Ft1= 2906Нм;

Fr1= Fr2= Fr1= 1086Нм;

Ft3= Ft4= Ft2=9592Нм;

Fr3= Fr4= Fr2=4938Нм;

Нм;

Нм.

Рис.4 Схема усилий, действующих на валы редуктора


d1=53мм;

d2=267мм;

d3=90,5мм;

Т1=81Н;

Т2=388Н;

Т2=388Н;

b1=54мм;

b2=50мм;

b3=82мм;


Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4]

σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.

Определяем диаметр выходного конца вала под подшипником из расчёта на чистое кручение


где [τк]=(10…20)Мпа [1,c.161]

Принимаем [τк]=30Мпа.

; мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа40:

мм.

Намечаем приближенную конструкцию промежуточного вала редуктора (рис.4), уменьшая диаметр ступеней вала на 5…6мм


Рис.5 Приближенная конструкция промежуточного вала


dв=52мм;

Lст1=в1=54мм;

Lст3=в3=82мм;

х=8мм;

W=50мм;

r=2,5мм;

f=1,2мм;

dст= dв-3f=48мм;

dп≥ dст-3r=40мм;

l=2Lст1+Lст3+4х+W=326мм.

Так как осевые силы от двух косозубых колес взаимно компенсируются, их можно не учитывать в расчетах, поэтому предварительно назначаем предварительно подшипники шариковые радиальнные однорядные средней серии по мм подшипник №308, у которого Dп=90мм; Вп=23мм [1,c.394, табл.П3].

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Изгибающий момент от осевой силы Fа будет:

mа=[FaЧd/2]:

mа=251·267Ч10-3/2;

mа=33,5НЧм2.

Определяем реакции в подшипниках в вертикальной плоскости.

1еmFу=0

-RКу·0,272-Ft1·0,0,06+Ft3·0,06+ mа –Ft1·0,212=0

RКy=(4938·0,06-1086·0,212-1086·0,0,06)/ 0,272;

RКy==60Н

Учитывая симметричность нагрузок:

RFy =60Н

Назначаем характерные точки 1, 2, 3, 4 и 5 и определяем в них изгибающие моменты:

М1у=0;

М2у(слева)=-RFy·0,06;

М2у(слева)=-3,5

М2у(справа)= М2у -mа;

М2у=-37;

М3у=-Fr3·0,076;

М3у=-412,5Нм2;

М4у(слева)= М2у(справа) =-37;

М4у(справа)= М2у(слева)=-3,5;

М4у=0;

Строим эпюру изгибающих моментов Му, Нм (рис.6)

Определяем реакции в подшипниках в горизонтальной плоскости.

1еmFх=0

RКх·0,272-Fr1·0,0,06- mа+Fr3·0,06+ mа -Fr1·0,212=0

RКх=(-4938·0,06+1086·0,212+1086·0,06)/ 0,272;

RКх==34,5Н


Рис.6 Эпюры изгибающих и крутящих моментов промежуточного вала.


Учитывая симметричность нагрузок: RFх =34,5Н

Назначаем характерные точки 1, 2, 3, 4 и 5 и определяем в них изгибающие моменты:

М1у=0;

М2у=-Т2/2;

М3у=-Fr3·0,076;

М3у=-194Нм2;

М4у=-Т2;

М4у=-388;

М4у=0;

Строим эпюру изгибающих моментов Му, Нм (рис.6)

Крутящий момент

Т1-1=0;

Т2-2=-T2/2=-194Нм2;

Т3-3(слева)=-T2/2=-194Нм2;

Т3-3(справа)=T2/2=194Нм2;

Т4-4=T2/2=194Нм2;

Т5-5=0.


В соответствии с рис.6 наиболее опасным является сечение 3-3, в котором имеются концентраторы напряжений от посадки зубчатого колеса с натягом, шпоночного паза и возникают наибольшие моменты.

Исходные данные для расчета:

М3х= 388Нм2;

М3у=412,5Нм2;

Т3-3=388Нм2;

d=52мм;

в=16мм – ширина шпонки,

t=6мм – глубина шпоночного паза,

l=45мм – длина шпонки.

При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения – по отнулевому циклу.

Определяем результирующий изгибающий момент:

Нм2.

Эквивалентный момент:

Нм2.

Определяем диаметр вала в рассчитываемом сечении при допускаемом напряжении при изгибе [σ-1]и=60МПа:

мм.

Условие соблюдается.

Определяем напряжения изгиба:

σи=Ми/W;

где W – момент сопротивлению изгибу. По [1,табл.22.1]:

мм3

σи=627000/7611=53,7Н/мм2.

При симметричном цикле его амплитуда равна:

σа= σи =53,7Н/мм2.

Определяем напряжения кручения:

τк=Т3-3/Wк;

где Wк – момент сопротивлению кручению. По [1,табл.22.1]:

мм3

τк=338000/16557=13,2Н/мм2.

При отнулевом цикле касательных напряжений амплитуда цикла равна:

τа= τк /2=13,2/2=6,6 Н/мм2.

Согласно примечанию к табл. 0.2 [3] в расчет принимаем концентрацию напряжений от посадки зубчатого колеса, для которой по табл.0.5 [3] (интерполируя) Кσ/Кν=3,9; Кτ/Кd=2,8.

По табл. 0.3…0.4 [3]: КF=1,0 – для шлифованной посадочной поверхности; Кν=1,0 – поверхность вала не упрочняется.

Определяем коэффициенты концентрации напряжении вала:

(Кσ)D=( Кσ/Кν+ КF-1)/ Кν=(3,9+1-1)/1=3,9;

(Кτ)D=( Кτ/Кν+ КF-1)/ Кν=(2,8+1-1)/1=2,8.

Определяем пределы выносливости вала:

(σ-1)D=σ-1/(Кσ)D=370/3,9=94,9 Н/мм2;

(τ-1)D=τ-1/(Кτ)D=200/2,8=71,4 Н/мм2.

Определяем коэффициенты запаса прочности:

sσ=(σ-1)D/ σа=94,9/53,7=1,8;

sτ=(τ-1)D/ τа=71,4/6,6=10,8.

Определяем расчетный коэффициент запаса по нормальным и касательным напряжениям:

Сопротивление усталости вала в сечении 3-3 обеспечивается, расчет вала на жесткость не проводим.


4.3 Расчет ведомого вала редуктора


Исходные данные выбираем из табл.1,3 с округлением до целых чисел:

Схема усилий действующих на валы редуктора представлена на рис.3

Ft4= 9592Н;

Fr4=4938Н;

d4=267мм;

Т4=1964Н;

b4=82мм;

Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.

Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение



где [τк]=(20…25)Мпа [1,c.161]

Принимаем [τк]=20Мпа.

; мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа40:

мм.

Намечаем приближенную конструкцию ведомого вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.


Рис.7 Приближенная конструкция ведомого вала


мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр под колесо;

мм – диаметр буртика.


Учитывая, что осевых нагрузок на валу нет назначаем подшипники шариковые радиальные однорядные средней серии по мм подшипник №318, у которого Dп=190мм; Вп=43мм [1,c.394, табл.П3].

Из расчета промежуточного вала принимаем l=326мм, остальные размеры:

W=65мм;

lм=105мм (длина полумуфты МУВП на момент 2000Нм;

l1=35мм.

Определим размеры для расчетов:

l/2=163мм;

с=W/2+ l1+ lм/2=170мм – расстояние от оси полумуфты до оси подшипника.

Проводим расчет ведомого вала на изгиб с кручением.

Заменяем вал балкой на опорах в местах подшипников.

Определяем реакции в подшипниках в вертикальной плоскости.

-RЕy·0,326+Fr4·0,163=0

RЕy= 4938·0,163/ 0,326;

RЕy= RСy=2469Н

Рис.7 Эпюры изгибающих и крутящих моментов ведомого вала


Назначаем характерные точки 1,2 и 3 и определяем в них изгибающие моменты:

М1у=0;

М2у= -RСy·0,168;

М2у =-400Нм2;

М3у=0;

Строим эпюру изгибающих моментов Му, Нм2 (рис.8)

Рассматриваем горизонтальную плоскость (ось х)

1еmЕх=0;

-RСх·0,336+ Ft·a=0;

RСх=(5540·0,476+9592·0,168)/0,11;

RСх=38622Н

2еmСх=0;

-RЕх·0,336+Ft·0,168+FМ2·0,140= 0;

RЕх=(9592Ч0,0,168+5540Ч0,14)/0,336;

RЕх=7104Н

Назначаем характерные точки 1,2,3 и 4 и определяем в них изгибающие моменты:

М1х=0;

М2х= - FМ2·0,14

М2х=-7104·0,14;

М2х=994Нм;

М3х=-RСх ·0,168;

М3х=38622·0,168;

М3х=6488Нм

М4х=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

Т1-1= Т2-2= Т3-3= T1=1964Нм;

T4-4=0.


Исходные данные выбираем из табл.1,3 с округлением до целых чисел:

Схема усилий действующих на валы редуктора представлена на рис.3

Ft1= 2906Н;

Fr1=1086Н;

Fа1=250,7Н;

d1=267мм;

Т1=80,7Н;

b1=54мм;

Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.

Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение



где [τк]=(20…25)Мпа [1,c.161]

Принимаем [τк]=20Мпа.

; мм.

Диаметр выходного конца двигателя по произведенному расчету в п.1равен 38мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа40:

мм.

Намечаем приближенную конструкцию ведущего вала редуктора (рис.9), с учетом того, что уже известны межосевые расстояния между подшипниками и между шестернями.


Рис.9 Приближенная конструкция ведущего вала


dв=32мм;

Lст1=в1=54мм;

х=8мм;

W=50мм;

r=2,5мм;

f=1,2мм;

dу=35мм-ближайшее большее стандартное значение диаметра под уплотнение

dп≥ dу принимаем ближайшее большее стандартное значение диаметра под подшипник dп =40мм;

d3= dп+2r=50мм;

Примем dст =d1=50мм, облегчение прохода шестерни через диметр d1 при сборке обеспечим заданием допуска d10(-0,08/-018) на размер d1.

dст= d3+5f=63мм;

l=2Lст1+Lст3+4х+W=326мм.

lм =58мм – принимаем для муфты МУВП с диметрами отверстий 32 и 36 мм;

l1=52мм – принимаем предварительно.

Так как осевые силы от двух косозубых колес взаимно компенсируются, их можно не учитывать в расчетах, поэтому предварительно назначаем подшипники шариковые радиальные однорядные средней серии по dп =40мм подшипник №308, у которого Dп=90мм; Вп=23мм [1,c.394, табл.П3].

Производим расчет ведущего вала на изгиб с кручением.

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Определяем реакции в подшипниках в вертикальной плоскости.

1еmАу=0

RBy·0,172-Fr·0,06-Fr·0,212 =0

RBy=1086·0,384 /0,172;

RBy=2224Н

RАy = RBy=2224Н

Назначаем характерные точки 1,2,3 и 4 и определяем в них изгибающие моменты:

М1у=0;

М2у= RАy·а;

М2у=2224·0,06;

М2у =133,5Нм;

М3у= М2у =133,5Нм;

М4у=0;

Строим эпюру изгибающих моментов Му, Нм (рис.10)

Рассматриваем горизонтальную плоскость (ось х)

1еmАх=0;

FМ1·0,327-RВх·0,272-Ft·0,06-Ft·0,212=0;

RВх=(2906(0,272+0,212)-718·0,327)/0,272;

RВх»1019Н

2еmВх=0;

RАх·0,272-Ft·0,212-Ft·0,06+FМ1·0,055= 0;

RАх=(2906(0,212+0,06)-718·0,055)/0,272;

RАх»395Н


Рис.10 Эпюры изгибающих и крутящих моментов ведущего вала

Назначаем характерные точки 1,2, 3, 4, 5 и определяем в них изгибающие моменты:

М1х=0;

М2х= -RАх·0,06;

М2х=-395·0,06;

М2х=-23,7Нм;

М3х= -RБх·0,06;

М3х= -1019·0,06=-61,1Нм;

М4х=FМ1 ·0,055;

М4х=-718·0,055=-39,5Нм;

М5х=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

Т1-1=0;

Т1-1=T1/2=80,7/2=40,35Нм;

Т2-5= T1=80,7Нм.

5. Расчет и конструирование подшипниковых узлов


Предварительно выбранные подшипниками с действующими на них радиальными нагрузками приведены в табл.5.


Таблица 5. Параметры выбранных подшипников


Ведущий вал Промежуточный вал Ведомый вал
308 308 318
d, мм 40 40 80
D, мм 90 90 190
С, кН 41 41 143
Со, кН 22,4 22,4 99
RАх, Н 395 34,5 36612
RАу, Н 1019 34,5 7104
RБх, Н 2224 60 2469
RБу, Н 2224 60 2469
Fr, Н 251 267 4938

Подшипники устанавливаем по схеме «враспор». Определяем долговечность подшипников ведомого вала, имеющего наибольшую радиальную нагрузку.

Определяем эквивалентную динамическую нагрузку


Fэ=(ХVЧFrА+YЧFаА) KdЧKτ; [1,c.212];


где Kd - коэффициент безопасности;

Kd =1,3…1,5 [1,c.214, табл.9.19];

принимаем Kd =1,3;

FаА=0;

Х=1 для шариковых подшипников;

V – коэффициент вращения, при вращении внутреннего кольца V=1

Kτ – температурный коэффициент;

Kτ =1 (до 100єС) [1,c.214, табл.9.20];

Fэ=1х1х4938х1,3х1=6,4кН<C=143кН

Определяем номинальную долговечность подшипников в часах

[1,c.211];

; ч.

Долговечность обеспечена.

6. Подбор и проверочный расчет шпонок


Выбор и проверочный расчет шпоночных соединений проводим по [3]. Обозначения используемых размеров приведены на рис.11.


Рис.11 Сечение вала по шпонке


6.1 Шпонки ведущего вала


Для выходного конца быстроходного вала при d=32 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=10x8 мм2 при t=5мм (рис.11).

При длине ступицы шкива lш=58 мм выбираем длину шпонки l=50мм.

Материал шпонки – сталь 40Х нормализованная. Напряжения смятия и условия прочности определяем по формуле:


(7.1)


где Т – передаваемый момент, НЧмм; Т1=80700 НЧмм.

lр – рабочая длина шпонки, при скругленных концах lр=l-b,мм;

[s]см – допускаемое напряжение смятия.

С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([s]см=110…190 Н/мм2) вычисляем:


Условие выполняется.

Для шестерен быстроходного вала при d=50 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5,5мм, t1=3,8мм (рис.10).

При длине ступицы шестерни lш=54 мм выбираем длину шпонки l=45мм.

Материал шпонки – сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (10.1):


Проверим толщину тела шестерни между впадиной зуба и пазом для шпонки (см. рис.12). Для изготовления шестерни отдельно от вала должно соблюдаться условие:

s≥2,5m, где m – модуль зубчатой передачи.


Рис.11 Схема для проверки возможности изготовления отдельной шестерни

s=[df – (dк + 2t1)]/2=[48 – (50+2х3,3)]/2=-8,6<0,

т.е. шестерню невозможно изготовить отдельно, необходимо изготовление вала-шестерни.


6.2 Шпонки промежуточного вала


Для зубчатых колес промежуточного вала при d=48 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5мм, t1=3,3мм (рис.10).

При длине ступицы шестерни lш=54 мм выбираем длину шпонки l=45мм. Т2=388Нм=388000Нмм. С учетом того, что на промежуточном валу устанавливаются шестерни из стали 45 ([s]см=170…190 Н/мм2) вычисляем по формуле (7.1):


Для шевронной шестерни вала при d=52 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5мм, t1=3,3мм (рис.11).

При длине ступицы шестерни lш=82 мм выбираем длину шпонки l=70мм.