Механизмы и системы управления автомобиля Москвич-2140
height="49" align="BOTTOM" border="0" />;Поперечная тяга проверяется на сжатие и продольную устойчивость. Напряжение сжатия определяется по формуле:
;(2.18)
где: F - сечение поперечной тяги.
Принимаем:
Подставив значения в уравнение (2.19) получим:
;
Критическое напряжение при продольном изгибе определяется по формуле:
; (2.19)
где: L - длина тяги по центрам шарниров;
E – модуль упругости первого рода
- экваториальный момент инерции сечения тяги.
Принимаем: L=498,5мм;E= 200 ГПа.
Значение эквивалентного момента инерции определяется по формуле:
; (2.20)
Принимаем: м;м.
Подставив значения, получим:
;
Подставив значения в формулу (2.20) получим:
;
Запас устойчивости определяется по формуле:
(2.21)
где .
Подставив значения, получим:
.
2.4 Расчет гидроусилителя, определение производительности и мощности на привод насоса гидроусилителя
Расчет гидроусилителя рулевого управления начинается с определения момента сопротивления повороту управляемых колес на сухом асфальте при полностью нагруженном автомобиле и сводится к последующему определению: размеров исполнительного цилиндра, распределителя, диаметра трубопроводов, производительности гидронасоса и мощности, затрачиваемой на его привод.
Величину усилия , прикладываемого водителем к ободу рулевого колеса, выбирают из условия, чтобы усилие не превышало 60Н для легковых автомобилей.
Рабочий объем силового цилиндра определяется исходя из работы, совершаемой усилителем.
Рисунок 6 – Расчетная схема гидроусилителя
Усилие сопротивления на поршне определяется по формуле:
, (2.22)
где - радиус сектора;
- момент на валу сошки, определяемый по формуле:
, (2.23)
где - момент сопротивления на колесе;
- КПД рулевого привода.
.
Подставляя найденное значение в формулу (2.22), получим:
.
Рабочая площадь поршня определяется по формуле:
, (2.24)
где - минимальное усилие на рулевом колесе;
- угол наклона винтовой линии;
- радиус винта.
Так как усилитель интегрированный, то объем цилиндра определяется по формуле:
, (2.25)
где =50 мм - ход поршня, равный ходу гайки по винту.
Диаметр цилиндра определяем исходя из того, что поршень выполнен заодно с гайкой и его перемешение происходит по винту. Используем формулу:
, (2.26)
D - Диаметр цилиндра, определим, исходя из того что поршень выполнен заодно с гайкой и перемещение его происходит по винту.
Площадь сечения винта м2
. Принимаем D=40мм
Номинальная производительность насоса определяется по формуле:
, (2.27)
где - максимальная скорость поворота рулевого колеса;
- максимальный угол поворота управляемых колес из одного крайнего положения в другое, град;
- объемный КПД насоса;
- утечки.
.
Мощность, затрачиваемая на привод насоса, определяется по формуле:
, (2.28)
где - расчетное давление жидкости.
.
Диаметр трубопроводов определяется по формуле:
, (2.29)
где - скорость движения жидкости в трубопроводах:
для нагнетательной магистрали ;
для сливной магистрали ;
для всасывающей магистрали .
Подставляя данные значения в формулу (2.29), получим:
для нагнетательной магистрали
;
для сливной магистрали
;
для всасывающей магистрали
.
3. Тормозное управление
3.1 Определение усилия на педали тормоза
Усилие на тормозной педали определяется по формуле:
(3.1)
где ηн – КПД привода, принимаем ;
iп = 3 – передаточное число педального привода;
= 22 мм - диаметр главного цилиндра;
- давление в тормозной системе;
, (3.2)
где - радиус рабочего цилиндра.
Тормозные моменты соответственно на передней и задней оси определяются по формулам:
(3.3)
где Rz1,2 – нормальные реакции, действующие соответственно на передней и задней оси, Н;
φ – коэффициент сцепления.
Величины нормальных реакций при торможении определяются по формулам:
(3.4)
где ma – масса автомобиля, Н;
a, b, hg – координаты центра массы автомобиля, м;
L – база автомобиля, м.
Таким образом, получаем:
(H);
(Н);
(Нм);
(Нм).
Для передних тормозных механизмов (дисковые тормозные механизмы) тормозной момент Мт и коэффициент эффективности Кэ определяются зависимостями:
(3.5)
(3.6)
где - коэффициент трения (расчетный =0,35 )
rср = 0,105 м – средний радиус приложения силы Р к накладке.
Приводная сила на передних тормозных механизмах определяется из выражения:
, (3.7)
откуда:
(3.8)
(Н)
Для задних тормозных механизмов (барабанных с односторонним расположением опор и равными приводными силами ):
. (3.9)
где – приводная сила на задней оси;
rб – радиус барабана, м;
μ – коэффициент трения;
h – расстояние от рабочего цилиндра до опоры, м;
a – расстояние от опоры до линии действия реакции, м;
- коэффициент касательных сил;
, (3.10)
где β – угол обхвата колодки, рад.
Приводная сила на задних тормозных механизмах определяется из выражения:
, (3.11)
Откуда
. (3.12)
Таким образом, получаем
(Н)
Давление в тормозной системе передних и задних тормозных механизмов соответственно:
(МПа),
(МПа),
Давление в тормозной системе передних тормозных механизмов больше чем в задних тормозных механизмов, следовательно, принимаем
Усилие на педали тормоза составит:
(Н)
Коэффициент эффективности тормозных сил задних тормозных механизмов рассчитывается по формуле:
. (3.13)
По формуле (3.13) вычисляем значения коэффициента эффективности торможения для различных значений коэффициента трения и по данным строим график зависимости . Расчетные значения Kэ сводим в таблицу 3.1.
Таблица 3.1 – Значения коэффициента эффективности торможения для различных значений коэффициента трения
μ | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 |
Кэ | 0,2 | 0,42 | 0,66 | 0,95 | 1,33 | 1,875 |
Коэффициент эффективности тормозных сил передних тормозных механизмов
Графическая зависимость коэффициентов эффективности тормозных механизмов от величины коэффициента трения представлена на рис. 1.
Рисунок 1 - График статической характеристики
3.2 Определение показателей износостойкости тормозных механизмов
Удельная нагрузка, приходящаяся на тормозные накладки, определяется по формуле:
; (3.14)
где – суммарная площадь тормозных накладок, ,
.
Для передних тормозных механизмов:
Для задних тормозных механизмов:
Удельная работа трения определяется по формуле:
(3.15)
где - скорость автомобиля, = 60 км/ч = 16,67 м/с;
;
;
Нагрев тормозного барабана (диска) за одно торможение определяется по формуле:
; (3.16)
где – масса, приходящаяся на тормозящее колесо, кг;
Gб – масса барабана (диска), кг;
с – удельная теплоемкость чугуна, .
С - для диска;
С - для барабана;
По формулам (3.14) и (3.15) строим графики зависимостей удельной работы трения и нагрева тормозного барабана (диска) в зависимости от начальной скорости торможения.
Таблица 3.2
, м/с |
, |
, |
, С |
, С |
10 | 14 | 10 | 0,09 | 0,05 |
20 | 57 | 40 | 0,36 | 0,18 |
30 | 129 | 90 | 0,80 | 0,41 |
40 | 229 | 160 | 1,43 | 0,73 |
50 | 358 | 249 | 2,23 | 1,15 |
60 | 516 | 359 | 3,22 | 1,65 |
70 | 701 | 489 | 4,38 | 2,24 |
80 | 916 | 638 | 5,72 | 2,93 |
90 | 1160 | 808 | 7,24 | 3,71 |
100 | 1432 | 998 | 8,94 | 4,58 |
Рисунок 2 – Зависимость удельной работы трения от начальной скорости торможения:
Рисунок 3 – Зависимость температуры нагрева тормозного барабана - (а) и диска – (б) от начальной скорости торможения.
3.3 Расчет тормозного привода
Проверочный расчет гидравлического привода следует производить при давлении, соответствующем аварийному торможению P0=10МПа.
Усилие на тормозной педали определяется по формуле:
(3.17)
где ηн – КПД привода, принимаем ;
iп = 3 – передаточное число педального привода;
- диаметр главного тормозного цилиндра;
- давление в тормозной системе;
Общее силовое передаточное число привода определяется по формуле:
, (3.18)
где – сумма сил, приложенных к колодкам всех тормозных механизмов.
Силы, приложенные к колодкам тормозных механизмов, рассчитываются
по формуле:
; (3.19)
Таким образом,
.
Ход педали определяется по формуле:
(3.20)
где dрз и dрп – диаметры рабочих цилиндров задних и передних колес, мм;
δз и δп – перемещение поршней цилиндров задних и передних колес, мм;
η0 – коэффициент, учитывающий объемное расширение привода ;
S0 – свободный ход педали, принимаем 7 мм ;
A – параметр, учитывающий число тормозных механизмов, для двухосных автомобилей А=2
Принимаем: