Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике

устных вычислений постоянно совершенствовались, необходимо установить правильное соотношение в применении устных и письменных приёмов вычислений, а именно: вычислять письменно только тогда, когда устно вычислять трудно.

Упражнения в устных вычислениях должны пронизывать весь урок. Их можно соединять с проверкой домашних заданий, закреплением изученного материала, предлагать при опросе. Особенно хорошо, если наряду с этим, специально отводить 5–7 минут на уроке для устного счёта. Материал для этого можно подобрать из учебника или специальных сборников. Устные упражнения должны соответствовать теме и цели урока и помогать усвоению изучаемого на данном уроке или ранее пройденного материала. В зависимости от этого учитель определяет место устного счета на уроке. Если устные упражнения предназначаются для повторения материала, формированию вычислительных навыков и готовят к изучению нового материала, то лучше их провести в начале урока до изучения нового материала. Если устные упражнения имеют цель закрепить изученное на данном уроке, то надо провести устный счет после изучения нового материала. Не следует проводить его в конце урока, так как дети уже утомлены, а устный счет требует большого внимания, памяти и мышления. Количество упражнений должно быть таким, чтобы их выполнение не переутомляло детей и не превышало отведенного на это времени урока.

При подборе упражнений для урока следует учитывать, что подготовительные упражнения и первые упражнения для закрепления, как правило, должны формироваться проще и прямолинейнее. Здесь ненужно стремиться к особенному разнообразию в формулировках и приёмах работы. Упражнения для отработки знаний и навыков и, особенно, для применения их в различных условиях, наоборот должны быть однообразнее. Формулировки заданий, по возможности должны быть рассчитаны на то, чтобы они легко воспринимались на слух. Для этого они должны быть чёткими и лаконичными, сформулированы легко и определённо, не допускать различного толкования. В случаях, когда задания всё-таки трудны для усвоения на слух, необходимо прибегать к записям или рисункам на доске. Устный счет на уроках математики способствует развитию и формированию прочных вычислительных навыков и умений, он также играет немаловажную роль в привитии и повышении у детей познавательного интереса к урокам математики как одного из важнейших мотивов учебно-познавательной деятельности, развития логического мышления, развития личностных качеств ребенка.

Рассмотрим часто встречающиеся случаи умножения и деления, в которых особенно плодотворно применение устного счета.


2.1.1 Дроби

1. Умножение целого числа на смешанное. Умножение целого числа на смешанное число может быть выполнено по правилу умножения числа на сумму, так как смешанное число есть сумма целого числа и дроби. Поясним это на числовом примере:

1) .

Но при умножении целого числа на смешанное число можно обратить смешанное число в неправильную дробь, затем умножить целое число на числитель неправильной дроби, полученное произведение сделать числителем искомого произведения, знаменатель же произведения оставить знаменатель множителя:

.

Как видим, первый способ проще и дает возможность быстрее производить умножение.

2) .

Преимущество первого способа перед вторым в данном примере очевидно. Но могут быть случаи, когда проще и быстрее можно решить пример вторым способом:

3).

Таким образом, при умножении целого числа на смешанное число надо внимательно рассмотреть пример и применить тот способ, который в данном случае быстрее ведет к цели.

2. Деление смешанного числа на целое. Смешанное число можно рассматривать как сумму двух чисел. Следовательно, деление смешанного числа на целое есть деление суммы двух чисел на число. Чтобы разделить сумму чисел на число, достаточно разделить на это число каждое из слагаемых, и сложить полученные результаты.

Мы знаем, что все основные законы арифметических действий, установленные для натуральных чисел, сохраняют свою силу и для дробных чисел:

1) 348: 4 = (348 + ): 4 = 348: 4 + : 4 = 87 + = 87.

Как видим, этот способ гораздо легче (он дает возможность быстрее производить вычисления), чем обычный способ деления смешанного числа на целое с образованием смешанного числа в неправильную дробь.

2) 252: 12 = (252 + ): 12 = 252: 12 + : 12 = 21 + = 21.

3. Умножение и деление целого числа на дробь, которая отличается от единицы на одну долю:

а) умножение

1) ;

2) ;

б) деление

3) .

Рассмотрим пример деления целого числа на дробь, причем дробь отличается от единицы на две и более долей:

1) .

Как мы видим, данный способ дает возможность быстрее умножать и делить целое число на дробь, чем обычный способ, а поэтому следует разобранный способ использовать при умножении или делении целого числа на дробь.


2.1.2 Проценты

Устное нахождение процентов числа и числа по данным его процентам

Устное нахождение 5%, 25%; 12,5% числа и т.п., а также числа по данным его процентам основано на умножении и делении на дроби 0,05; 0,25; 0,125 и т.п.

а) Нахождение процента от числа.

1) Найти 25% от 468.

. Но можно заменить 25% и обыкновенной дробью. Этот пример можно решить так: .

2) Найти 12,5% от 728.

Можно 12,5% заменить обыкновенной дробью: .

б) Нахождение числа по данным его процентам.

Найти число, если 5% его равны 492.

.

Как видим, способ замены процентов обыкновенной дробью иногда дает возможность быстрее производить вычисления, чем умножением на десятичную дробь.


2.1.3 Нахождение квадратов числа

1. Таблица квадратов целых чисел от 1 до 25 включительно.

На основании того, что суммы последовательных нечетных чисел:
1 + 3 = 4; 1 + 3 + 5 = 9; 1 + 3 + 5 + 7 = 16 и т.д. – представляют собой ряд квадратов, разработаны следующие способы составления таблицы квадратов.

а) Первый способ составления таблицы квадратов чисел от 1 до 25.


Числа Квадраты чисел
целые нечетные
1 1 1
2 3 4
3 5 9
4 7 16
5 9 25
6 11 36
7 13 49
8 15 64
9 17 81
10 19 100
11 21 121
12 23 144
13 25 169
14 27 196
15 29 225
16 31 256
17 33 289
18 35 324
19 37 361
20 39 400
21 41 441
22 43 484
23 45 529
24 47 576
25 49 625

В первой колонке написан ряд последовательных целых чисел, начиная с единицы. Во второй колонке написан ряд нечетных чисел, начиная с 1. Третья колонка содержит ряд квадратов целых чисел, указанных в первой колонке.

Таблица составляется следующим образом: в первой строке пишут число 1; этот первый квадрат прибавляют к нечетному числу следующей строчки из второй колонки и получают второй квадрат 4. Прибавляя 4 к третьему нечетному числу (5) из второй колонки, получаем 32, т.е. 9. Вообще, квадрат числа есть сумма нечетного числа, которое стоит в одной с ним строке и непосредственно предшествующего квадрата. В одной и той же строке слева направо расположены: 1) целое число; 2) нечетное число, для которого это целое число служит номером в ряде нечетных чисел; 3) квадрат целого числа.

б) Второй способ составления таблицы квадратов чисел от 1 до 25.

В первой вертикальной колонке пишутся по порядку целые числа, начиная с единицы. Во второй колонке пишется ряд нечетных чисел, начиная с 3. В третьей колонке, которая должна содержать ряд, квадратов всех целых чисел, пишется сначала квадрат 1, т.е. единица. Чтобы получить каждый из следующих квадратов, прибавляют к последнему числу третьей колонки то нечетное число, которое стоит слева от него, во второй колонке. Каждое из чисел третьей колонки есть квадрат соответствующего числа первой колонки.


Числа Квадраты чисел
целые нечетные
1 3 1
2 5 4
3 7 9
4 9 16
5 11 25
6 13 36
7 15 49
8 17 64
9 19 81
10 21 100
11 23 121
12 25 144
13 27 169
14 29 196
15 31 225
16 33 256
17 35 289
18 37 324
19 39 361
20 41 400
21 43 441
22 45 484
23 47 529
24 49 576
25 51 625

Числа Квадраты чисел
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529
24 576
25 625

в) Третий способ составления таблицы квадратов чисел.

Квадраты чисел от 1 до 10 включительно определяем по таблице умножения: в первой колонке пишем числа, во второй – их квадраты. Чтобы получить квадрат следующего числа, к квадрату данного числа прибавляем сумму данного числа и следующего числа. Рассмотрим на числовых примерах.

1) квадрат числа 11 равен 100 + (10+ 11)= 121;

2) квадрат числа 12 равен 121 + (11 + 12) = 144 и т.д.

Объяснение этого способа нахождения квадрата числа следующее:

(k + 1)2 = k2 + 2k • 1 + 12 = k2 + [k + (k + 1)].

3) 752 = 5625. 762 = (75 +1)2 = 752 + [75 + (75 + 1)] = 752 +
+ (75 + 76) = 5625 + 151 = 5776. Получаем 762 = 5776.

2. Возведение в квадрат и умножение с помощью формул сокращенного умножения.

а) Вычисления по формуле .

.

б) Вычисления по формуле .

.

в) Особенно полезным оказывается применение в устных вычислениях формулы .

1) .

2) .

3. Устное возведение в квадрат смешанных чисел. Случаи возведения в степень смешанного числа по формулам сокращенного умножения.

а) Квадрат смешанного числа с дробью . Чтобы возвести в квадрат смешанное число с дробью , достаточно умножить целую часть числа на число, единицей большее, и к произведению приписать .

Дано: число k + , где k – целое. Доказать: (k + )2 = k (k + 1) + .

Доказательство: (k + )2 = k2 + 2 • k • + = k2 + k + = k (k + 1) + .

б) Квадрат смешанного числа с дробью . Чтобы возвести в квадрат смешанное число с дробью , достаточно возвести в квадрат целую часть этого числа, затем прибавить ее половину и, наконец, к полученной сумме прибавить , если целая часть – четное число. Если же целая часть – нечетное число, то к квадрату целой части прибавляется половина числа, на единицу меньшего данной целой части смешанного числа, и к сумме прибавляется .

1) Дано: число k + , где k – четное число. Доказать: (k + )2 = k2 + + .

Доказательство: (k + )2 = k2 + 2 • k • + = k2 + + .

2) Дано: число k + , где k – нечетное число. Доказать: (k + )2 = k2 + + + (в данном случае k’ на единицу меньше числа k).

Доказательство: k = k’ + 1, следовательно,

(k + )2 = k2 + + = k2 + + +