Анализ производства и реализация товаров предприятия
что составляет 37,8% от объема выпуска за полгода. Одинаковое количество дней, а именно 11 (в удельном весе 9,1%) производилось полотно в интервале 1612,5-3225,0м2 и 11287,5-12900,0м2 за день. Очевидно, что выпуская ежедневно 11287,5-12900,0м2, что в среднем составляет 12626,6м2, было произведено 138892,5м2 или 19,3%, что несравнимо больше, чем 27400,0м2 (в удельном весе 3,8%), которые изготавливались такое же количество дней, но в среднем по 2490,9м2 за день или в пределах 1612,5-3225,0м2. Изготовление продукции в пределах 9675,0-11287,5м2 за день не производилась вообще. Наименьшее количество дней, а именно 8 (или 6,6%), выпуская в среднем 9172,6м2, было произведено 73381,0м2, что является достаточно высоким показателем, т.к. составляет в удельном весе 10,2%. При этом производя 10 дней продукцию в объеме до 1612,5м2 или 270,5м2 в среднем в день, было изготовлено наименьшее количество продукции – 2705,0м2 или 0,4% от выпуска продукции за полгода. Выпуская 20 дней продукцию в интервале 4837,5-6450,0м2 или в среднем 5391,7м2 за день, было изготовлено 107834,9м2 полотна, что больше чем 98101,1м2, которые были произведены в течение 24 дней, но с ежедневным выпуском в 4087,5м2.3.2 Показатели динамических процессов
3.2.1 Основные показатели динамики
Из таблицы 1 приложения А возьмем данные по выпуску продукции по месяцам и на их основе рассчитаем показатели динамических процессов. Для расчета показателей воспользуемся формулами (1.2.1.1-1.2.1.4). Полученные данные занесем в таблицу 3.2.1.1.
Таблица 3.2.1.1 – Расчетные данные для показателей динамики.
Месяц | Выпуск продукции, м2 | ∆У, м2 | Тр,% | ||
∆Уц | ∆Уб | Трц | Трб | ||
1 | 2 | 3 | 4 | 5 | 6 |
Январь | 76044,5 | - | - | - | - |
Фераль | 87216,0 | 11171,5 | 11171,5 | 114,7 | 114,7 |
Март | 93859,1 | 6643,1 | 17814,6 | 107,6 | 123,4 |
Апрель | 155311,6 | 61452,5 | 79267,1 | 165,5 | 204,2 |
Май | 178634,9 | 23323,3 | 102590,4 | 115,0 | 234,9 |
Июнь | 130040,0 | - 48594,9 | 53995,5 | 72,8 | 171,0 |
Итого | 721106,1 | 53995,5 | - | 171,0 | - |
Продолжение таблицы 3.2.1.1
Месяц | Тп, % | А1% | |
Тпц | Тпб | ||
1 | 7 | 8 | 9 |
Январь | - | - | - |
Февраль | 14,7 | 14,7 | 760,4 |
Март | 7,6 | 23,4 | 872,2 |
Апрель | 65,5 | 104,2 | 938,6 |
Май | 15,0 | 134,9 | 1553,1 |
Июнь | -27,2 | 71,0 | 1786,3 |
Итого | 71,0 | - | 760,4 |
Проведя расчеты основных показателей динамики можно сделать вывод, что производство продукции в конце полугодия по сравнению с выпуском в начале года выросло на 53995,5м2, или на 71,0%. В апреле резко возрос выпуск продукции. По сравнению с мартом он увеличился на 65,5%, а по сравнению с январем более чем в 2 раза, или на 79267,1м2, и составил 155311,6м2. В мае наблюдается самый большой объем выпуска за полгода, который составил 178634,9м2, что в 2,3 раза (или на 102590,4м2) больше чем 76044,5м2, которые были изготовлены за январь и являются наименьшим объемом выпуска. Однако в июне уже было произведено продукции меньше по сравнению с маем на 48594,9м2 (или на 27,2%), что составило 130040,0м2, хотя при этом объем выпуска по сравнению с январем увеличился на 71,0%.
В среднем на каждый процент прироста приходится 760,4м2. Наибольшее содержание одного процента прироста приходится на июнь и составляет 1786,3м2.
Ярко выраженную сезонность можно объяснить тем, что полотно выпускаемое ООО «Полилайн» используют при укладке дорог, строительных работах и т.д., т.е. увеличение заказов в апреле и мае связано с начинающимся сезоном строительных работ у заказчиков.
3.2.2 Средние показатели динамики
Среднемесячный выпуск продукции вычислим по формуле (1.2.2.1а):
м2.
Вычислим средний абсолютный прирост на основе цепных приростов по формуле (1.2.2.2):
м2.
Вычислим средний темп роста по формуле (1.2.2.3):
.
Рассчитаем средний темп прироста по формуле (1.2.2.4):
.
Среднемесячный выпуск продукции в 1 полугодии 2010 года составил 120184,4м2. Исходя из рисунка 3.2.2.1 можно сделать вывод, что в 1 квартал продукция производилась в объемах меньших, чем средний выпуск, а во 2й квартал в больших. Ежемесячное увеличение выпуска составило 10799,1м2, т.е. объем производства увеличивался на 11,3% каждый месяц, а средний темп роста составил 1,113.
Рисунок 3.2.2.1 – Графическое отображение выпуска продукции по месяцам и среднего выпуска продукции
3.2.3 Сглаживание колеблемости в рядах динамики
Проведем сглаживание колеблемости на основе данных из таблицы 1 приложения А. Возьмем данные о суммарном выпуске продукции за 31 день в течение первого полугодия и занесем их в таблицу 1 приложения Б.
Метод укрупнения интервалов.
Проведем сглаживание колеблемости методом укрупнения интервалов, преобразуя данные, суммируя их по 10-дневкам. В результате получим таблицу 3.2.3.2.
Таблица 3.2.3.2 – Выпуск продукции за полгода по 10-дневкам.
10 дневки | Выпуск продукции, м2 |
1 | 259697,1 |
2 | 259953,1 |
3 | 201455,9 |
Полученные данные представим графически на рисунке 3.2.3.1.
Рисунок 3.2.3.1 – Выпуск продукции по 10-дневкам в 1 полугодии 2010 года
Метод скользящей средней.
Проведем сглаживание на основе таблицы 1 приложения Б методом скользящей средней на основе 10-дневок, т.е. на основе 10 уровней ряда. Воспользуемся формулой (1.2.3.1) и полученные данные занесем в таблицу 2 приложения Б. Полученные данные отобразим графически на рисунке 3.2.3.2.
Рисунок 3.2.3.2 – Графическое отображение сглаживания уровней
Аналитическое выравнивание ряда.
Проведем аналитическое выравнивание ряда на основе таблицы 1 приложения Б различными функциями.
Рассмотрим выравнивание по прямой. Т.к. количество уровней нечетное, то значения t возьмем от –15 до 15, включая 0. Заполним таблицу 1 приложения В. На основании формул (1.2.3.3а, б) рассчитаем параметры а0 и а1:
; .
В результате, используя формулу (1.2.3.2) получим уравнение:
.
На его основе заполнена графа в таблице 1 приложения В.
Полученные данные отобразим графически на рисунке 3.2.3.3.
Рисунок 3.2.3.3 – Графическое отображение выравнивания по прямой
Рассмотрим сглаживание по параболе второй степени. Для этого заполним таблицу 2 приложения В. На основании формул (1.2.3.5а, б) вычислим значения параметров:
;
Решив систему уравнений получим а0=25448,2; а2=–27,3. В результате, используя формулу (1.2.3.4) получаем уравнение параболы, на основании которого заполняется таблица:
Отобразим полученные данные графически на рисунке 3.2.3.4.
Рисунок 3.2.3.4 – Графическое отображение выравнивания по параболе
Рассмотрим выравнивание с помощью логарифмической функции. Для этого заполним таблицу 3 приложения В. На основании формул (1.2.3.7а, б) вычислим значения параметров:
; .
Используя формулу (1.2.3.6) получаем уравнение логарифмической функции, на основании которой заполняется таблица:
Для нахождения необходимо пропотенцировать полученные значения функции. Полученные данные отобразим графически на рисунке 3.2.3.5.
Рисунок 3.2.3.5 – Графическое отображение выравнивания с помощью логарифмической функции
Для выбора оптимальной функции из рассчитанных, воспользуемся формулой ошибки аппроксимации (1.2.3.8):
м2;
м2;
м2.
Полученные значения означают отклонение фактических уровней ряда, от выравненных (расчетных). Очевидно, что самым оптимальным является выравнивание по параболе, т.к. оно имеет минимальное отклонение по сравнению с остальными функциями.
На основании проведенного аналитического выравнивания различными методами и функциями можно сделать вывод об общей динамике в производстве продукции по дням. Выравнивание 3 методами показало, что наибольший выпуск наблюдается в середине месяца и последующим спадом к концу месяца. Т.к. оптимальной является параболическая функция из-за наименьшей ошибки аппроксимации, то средний выпуск ежедневно составляет 5959,6±4523,7м2.
3.2.4 Показатели сезонности
На основании данных таблицы 1 приложения Б построим сезонную волну. Т.к. ряд не содержит ярко выраженной тенденции в развитии, то индексы сезонности вычислим по формуле (1.2.4.2):
,
где вычислим по формуле (1.2.2.1а), где n=6. Полученные данные занесем в таблицу 3.2.4.1. и на ее основе отобразим графически сезонную волну на рисунке 3.2.4.1.
Таблица 3.2.4.1 – Расчетные данные для построения сезонной волны
День | Выпуск продукции, y |
|
Is,% |
1 | 22274,5 | 3 712,4 | 93,2 |
2 | 31412,6 | 5 235,4 | 131,4 |
3 | 24230,0 | 4 038,3 | 101,4 |
4 | 24510,0 | 4 085,0 | 102,5 |
5 | 36323,0 | 6 053,8 | 152,0 |
6 | 28910,0 | 4 818,3 | 120,9 |
7 | 27240,5 | 4 540,1 | 114,0 |
8 | 14842,5 | 2 473,8 | 62,1 |
9 | 29850,5 | 4 975,1 | 124,9 |
10 | 20103,5 | 3 350,6 | 84,1 |
11 | 27593,6 | 4 598,9 | 115,4 |
12 | 31389,0 | 5 231,5 | 131,3 |
13 | 26680,0 | 4 446,7 | 111,6 |
14 | 24575,0 | 4 095,8 | 102,8 |
15 | 23477,0 | 3 912,8 | 98,2 |
16 | 23259,0 | 3 876,5 | 97,3 |
17 | 22425,5 | 3 737,6 | 93,8 |
18 | 22604,0 | 3 767,3 | 94,6 |
19 | 32810,0 | 5 468,3 | 137,3 |
20 | 25140,0 | 4 190,0 | 105,2 |
21 | 24690,0 | 4 115,0 | 103,3 |
22 | 21175,0 | 3 529,2 | 88,6 |
23 | 20985,0 | 3 497,5 | 87,8 |
24 | 18375,0 | 3 062,5 | 76,9 |
25 | 15795,0 | 2 632,5 | 66,1 |
26 | 21262,4 | 3 543,7 | 88,9 |
27 | 19242,5 | 3 207,1 | 80,5 |
28 | 20405,0 | 3 400,8 | 85,4 |
29 | 19698,0 | 3 283,0 | 82,4 |
30 | 16173,0 | 3 234,6 | 81,2 |
31 | 3655,0 | 1 827,5 | 45,9 |
Итого | 721106,1 | 3 984,0 | 100,0 |
В результате проведенного исследования сезонных колебаний можно сделать вывод, минимальное значение на 45,9% сезонная волна принимает 31 числа, это очевидно, т.к. за полгода 31 число встречается лишь в марте и мае. Если не брать в расчет это значение, то за минимальное значение можно принять 62,1% 8го числа и 66,1% 25го. В течение всего периода прослеживаются резкие скачки, особенно в начале месяца. Наибольшее значение сезонная волна принимает на уровне 152,0% 5го числа. Во второй половине сезонная волна имеет тенденцию к постоянному снижению, и после 137,3% 19 числа значения сезонной волны не поднимаются выше 100,0%.
3.3 Показатели вариации
Произведем расчет показателей вариации на основании двух таблиц. Сначала рассчитаем показатели вариации на основе таблицы 2 приложения А для выпуска продукции по каждому наименованию полотна1. Заполним таблицу 1 приложения Г заранее проведя ранжировку ряда. Среднее значение рассчитаем по формуле (1.2.2.1а):
м2.
Рассчитаем размах вариации по формуле (1.3.1):
м2.
Среднее линейное отклонение рассчитаем по формуле (1.3.2а):
м2.
Дисперсию рассчитаем по формуле (1.3.3а):
Среднее квадратическое отклонение рассчитаем по формуле (1.3.4):
м2.
Рассчитаем коэффициенты вариации по формулам (1.3.5а, б):
; .
Коэффициент осцилляции рассчитаем по формуле (1.3.11):
.
Для расчета асимметрии вычислим момент третьего порядка по формуле (1.3.13а):
.
Тогда асимметрия по формуле (1.3.12) , а средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.
Для расчета эксцесса вычислим момент четвертого порядка по формуле (1.3.16а):
.
Тогда эксцесс по формуле (1.3.15) , средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.
Т.к. мода – значение признака, наиболее часто встречающееся в изучаемых явлениях, то модой будет являться ИП–215–350, т.к. оно наиболее часто выпускалось, т.е. в больших количествах. Медианой же будет являться значение, находящееся между 10 и 11 полотном в ранжированном ряду, т.е.:
м2.
На основании расчетов показателей вариации можно сделать вывод, что средний выпуск каждого из видов полотна равен 36055,3м2. Половина полотен выпускается в объеме большем 15800,0м2, а вторая половина в меньшем объеме. Наибольшее количество, а именно 133043,0м2 производят полотна ИП-215-350. Наименьший объем за полгода выпустили полотна ИП-170-600 в количестве 204,0м2 и ИП-170-450 в объеме 340,м2. Возможно, это связано с индивидуальными заказами. Разница между максимальным и минимальным значением объема производства конкретного вида продукции составляет 132839,0м2, что является значительным показателем. Средняя величина колеблемости объема производства продукции одного наименования полотна составляет по линейному отклонению 33621,3м2, а по среднему квадратному отклонению 38558,8м2, т.е. выпуск в среднем каждого полотна составляет 36055,3 ± 38558,8м2. Разница между крайними значениями объема производства больше среднего значения в 3,6 раза. Относительное линейное отклонение 93,2% характеризуют неоднородность, что подтверждает коэффициент вариации, который равен 106,9%, что больше 33%. Асимметрия и эксцесс являются несущественными, т.к. (|As|/σas=1,8)<3, а (|Ex|/σex=0,3)<3. Распределение плосковершинно (Ех=-0,27)<0, а асимметрия правосторонняя (As=0,93)>0.
Наибольший интерес представляют расчеты показателей вариации для интервального ряда. Возьмем данные ранее проведенной группировки из таблицы 3.1З.1. Заполним таблицу 2 приложения Г.
Среднее значение рассчитаем по формуле (1.2.2.1б):
м2.
Рассчитаем размах вариации по формуле (1.3.1):
м2.
Среднее линейное отклонение рассчитаем по формуле (1.3.2б):
м2.
Дисперсию рассчитаем по формуле (1.3.3б):
Среднее квадратическое отклонение рассчитаем по формуле (1.3.4):
м2.
Рассчитаем коэффициенты вариации по формулам (1.3.5а, б):
; .
Коэффициент осцилляции рассчитаем по формуле (1.3.11):
.
Для расчета асимметрии вычислим момент третьего порядка по формуле (1.3.13а):
.
Тогда асимметрия по формуле (1.3.12) , а средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.
Для расчета эксцесса вычислим момент четвертого порядка по формуле (1.3.16а):
.
Тогда эксцесс по формуле (1.3.15) , средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.
Вычислим моду по формуле (1.3.6):
м2,
где модальным будет интервал 6450,0–8062,5, т.к. он имеет наибольшую частоту (37).
Для более полной характеристики структуры рассчитаем квартили по формулам (1.3.8):
м2;
м2;
м2.
Рассчитаем квартильное отклонение по формуле (1.3.9):
м2.
Относительный показатель квартильной вариации рассчитаем по формуле (1.3.10):
.
На основании расчетов показателей вариации можно сделать вывод, что средний ежедневный выпуск продукции составляет 5923,6м2. В наибольшее количество дней, а именно 37, ежедневный выпуск продукции составил 6450,0-8062,5м2, а чаще всего встречающийся ежедневный выпуск продукции составляет 6505,6м2. В половину из проработанных дней выпуск составил более 60872,0м2, а в другую половину менее этой величины. При этом в 14 из дней выпуск был менее 3846,5м2, а в другую 1/4 более 7572,2м2. Размах вариации свидетельствует о том, что разница между максимальным и минимальным значением составляет 12900,0м2. Квартильное отклонение равное 1862,9м2 свидетельствует об умеренной асимметрии распределения, т.к. Q ≈ 2/3σ = 1953,0м2. Средняя величина колеблемости ежедневного выпуска продукции составляет по линейному отклонению 2326,3м2, а по среднему квадратному отклонению 2929,5м2, т.е. ежедневное производство полотна составляет 5923,6 ± 2929,5м2. Разница между крайними значениями выпуска продукции превышает среднее значение в 2,2 раза. Относительное линейное отклонение 39,3% характеризуют неоднородность, что подтверждает коэффициент вариации, который равен 49,5%, что больше 33%. Асимметрия и эксцесс являются несущественными, т.к. (|As|/σas=1,3)<3, а (|Ex|/σex=0,2)<3. Распределение плосковершинно (Ех=-0,1), а асимметрия правосторонняя (As=0,3).
3.4 Индексы
Рассчитаем индексы на основе данных таблицы 3 приложения А. Для расчета индексов цепными и базисными методами создадим таблицу 3.4.1.
Таблица 3.4.1
– Производство
продукции и
себестоимость
полотна
ИП-170-350
за 1 квартал
2010 года
Полотно | Январь | Февраль | Март | |||
Всего выпуск, м2, q0 | С/ст 1м2, руб, p0 | Всего выпуск, м2, q1 | С/ст 1м2, руб, p1 | Всего выпуск, м2, q2 | С/ст 1м2, руб, p2 | |
ИП-170-350 | 13 002,0 | 14,57444 | 850,0 | 14,67439 | 18 958,6 | 14,91322 |
На основе данной таблицы по формуле (1.4.1а, б) рассчитаем индексы себестоимости цепным методом:
;
.
Базисным методом:
;
.
На основе данной таблицы по формуле (1.4.2а, б) рассчитаем индексы объема производства цепным методом:
;
.
Базисным методом:
;
.
Рассчитаем индивидуальный индекс затрат на производство на базисной и цепной основе по формулам (1.4.3а, б):
;
;
.
В результате полученных данных можно сделать вывод, что затраты на производство ИП-170-350 в феврале по сравнению с январем снизились на 93,4%. Это произошло из-за резкого сокращения производства данного полотна на 93,5% на фоне повышения себестоимости 0,7%. Затраты на производство в марте по сравнению с февралем увеличились в 22,7 раза. Это произошло из-за резкого увеличения объемов производства данного полотна в 22,3 раза, на фоне незначительного повышения себестоимости на 1,6%. Такой резкий скачок может быть связан с заказом на данный вид полотна. Затраты же на производство в марте по сравнению с январем увеличились на 49,2% из-за увеличения объемов производства на 45,8% и себестоимости на 2,3%.
Для расчета агрегатных индексов создадим таблицу 3.4.2.
Таблица 3.4.2 – Расчетные данные для выпуска продукции за 2 месяца
Полотно | Февраль | Март | ||
Всего выпуск, м2, q0 | С/ст 1м2, руб, z0 | Всего выпуск, м2, q1 | С/ст 1м2, руб, p1 | |
А | 1 | 2 | 3 | 4 |
ИП-170-200 | 170,0 | 9,14332 | 2 040,0 | 11,22106 |
ИП-170-250 | 3 740,0 | 10,98701 | 23 120,0 | 13,11845 |
ИП-215-350 | 11 180,0 | 14,67439 | 33 283,0 | 14,91322 |
Итого | 15 090,0 | 58 443,0 |
Продолжение таблицы 3.4.2
Полотно | Z1Q1 | Z0Q1 | Z0Q0 |
А | 5 | 6 | 7 |
ИП-170-200 | 22891,0 | 18652,4 | 1554,4 |
ИП-170-250 | 303298,6 | 254019,7 | 41091,4 |
ИП-215-350 | 496356,7 | 488407,7 | 164059,7 |
Итого | 822546,2 | 761079,8 | 206705,5 |
На основе формулы (1.4.4) рассчитаем агрегатный индекс затрат на производство:
.
На основе формулы (1.4.5) рассчитаем агрегатный индекс себестоимости продукции:
.
На основе формулы (1.4.6) рассчитаем агрегатный индекс физического объема продукции:
.
Индекс переменного состава рассчитаем по