Влияние дикоросов Дальнего Востока на продуктивность пчелосемей
Введение
Проблема сопротивляемости (резистентности) медоносных пчёл имеет большую научную и практическую значимость, обусловленную ведущей ролью её в защите пчел от болезнетворных организмов, а также их продуктивности. Решение этой проблемы возможно наряду с применением химиотерапевтических средств биологически активных веществ (биостимуляторов) растительного происхождения. В пчеловодстве с успехом применяются биологически активные вещества хвои, чеснока, а также лекарственных растений, используемых в медицине с глубокой древности. Дальний Восток обладает уникальными растениями: элеутерококк колючий, лимонник китайский, аралия маньчжурская, женьшень, оказывающими стимулирующее действие на организм. Однако их действие на пчёл изучено недостаточно, отсутствует комплексный методический подход к изучению этих препаратов на биологические, физиологические и производственные показатели жизнедеятельности пчелосемей. В связи с этим мы посчитали необходимым восполнить существующий пробел, провести исследования на предмет возможного повышения естественной сопротивляемости организма пчел и, как следствие, улучшение сохранности пчёл в период зимовки и их продуктивности с использованием биостимуляторов растительного происхождения. Рост производственных и биологических показателей позитивно влияют на экономическую эффективность пчеловодства.
Цель и задачи исследований
Целью моих исследований являлась научная работа по изучению воздействия дикорастущих растений (лимонника китайского, элеутерококка колючего) на организм пчелы, и как следствие, повышение биологических и производственных показателей жизнедеятельности пчелосемей. Для достижения цели были поставлены следующие задачи:
Изучить воздействие на естественную сопротивляемость организма пчел лимонника китайского и элеутерококка колючего.
Изучить влияние лимонника китайского, элеутерококка колючего, на биологические и производственные показатели жизнедеятельности пчелосемей.
1. Обзор литературы
Первыми исследованиями по иммунитету беспозвоночных были опыты И.И. Мечникова над медузами и морскими звёздами, выполненные им в Мессине в 1882 году. Именно эти работы привели к созданию фагоцитарной теории, нашедшей широкое подтверждение в последующем.
В дальнейшем изучение иммунитета насекомых складывалось в направлении изыскания способов защиты полезных для человека членистоногих: медоносной пчелы, тутового шелкопряда, муравьёв и разработки мер борьбы с насекомыми-вредителями: вощинной молью, мухами, комарами, блохами, капустной белянкой и целым рядом других видов.
Вопросам изучения иммунитета медоносной пчелы посвящены исследования ряда авторов: Полтева В.И. (1965), Mohrig W., Messner B. (1980), Гробова О.Ф. (1971, 1972, 1973, 1980), Жеребкина М.В. (1977), Егоровой А.И. (1980), Скрипник Е.И., Артеменко Л.П. (1980), Руденко Е.В. (1986, 1987), Зюмана Б.В. (1995) и других.
Однако эти исследования касались изучения отдельных факторов: инстинктов, защитных веществ гнезда и механизмов защиты: фагоцитоза и антителообразования. Вопросы иммуностимуляции защитных механизмов медоносной пчелы, за редким исключением, не рассматривались.
В настоящее время появились лекарственные препараты из дикорастущих растений Дальнего Востока, действие на организм животных которых изучено и продолжает изучаться, они имеют большое значение для ветеринарной медицины, успешно применяются с другими синтетическими препаратами, а иногда занимают первое место при лечении некоторых заболеваний, так как растения оказывают незначительные побочные действия на организм животных или совсем не вызывают при правильном их применении.
Первые исследования экстракта элеутерококка на лабораторных животных показали, что он повышает выносливость организма при различного рода нагрузках (Головачева, 1961; Брехман и др., 1963).
У многих видов сельскохозяйственных животных и пчёл, установлено повышение резистентности и продуктивности после применения аралии маньчжурской (Ляпустина, 1972; Зориков, 1973 и др.).
Установлено влияние спиртового экстракта корня женьшеня на аденому легких у мышей и на память мышей.
Казаневич В.В. (1971) установил влияние настойки аралии маньчжурской на физиологическую работоспособность животных. Линденбратен В.Д. (1962) установил влияние препаратов женьшеня на термоустойчивость белых мышей.
Каплан Э.Я., (1968) установила профилактическое действие элеутерококка при черепно-мозговой травме у животных. Трифонов А.Е. (1971) – влияние на кровоснабжение сердца белой мыши при кормлении экстрактом элеутерококка.
Воздействие на организм пчелы биологически активных веществ растительного происхождения изучал Мельник В.Н. (1993), действие биологически активных веществ хвои – Латынин А.Н. (1994), чеснока – Кривошей С.В. (1995), а также Клочко Р.Т., (1993). Влияние биологически активных веществ на организм пчелы, содержащихся в конопле изучали Сурина Л.Н. и Столбов Н.М., (1981).
По данным Супрунова Н.И. и Кривда В.И., (1962) жидкий экстракт корневищ элеутерококка на 20%-ном этиловом спирте в соотношении 1:1 повышает жизнедеятельность пчёл, увеличивает продуктивность пчелиной семьи.
Дардымовым И.В. (1978) к механизму биологического действия, был изучен механизм действия глюкозидов на неспецифические процессы адаптации организма к чрезвычайным нагрузкам. Установлено инсулиноподобное действие глюкозидов элеутерококка и женьшеня.
Брехман И.И. (1968) сообщает об эффективном применении 2%-ной концентрации элеутерококка на сахарном сиропе. В результате опыта, применение элеутерококка даёт быстрое наращивание пчёл (мушности).
Брехман И.И. (1978) рассмотрел влияние деятельности человека на иммунитет пчел. Приведены сведения, что новое лекарственное растение из семейства аралиевых – элеутерококк колючий повышает устойчивость пчёл при инвазионных заболеваниях. Кроме того в природе происходят антропогенные изменения, что плохо отражается на жизни пчёл. Появились новые болезни, широко распространился аскосфероз.
Клочко Р.Т. (2000) доказал, что для стимулирования яйцекладки матки нужно добавлять в мёд аралию маньчжурскую в соотношении 1:1, при этом необходимо учитывать, что в мёде содержится до 20% воды.
Быхавцева Т.Л., Ратимов Б.Н. (1966) установили – элеутерококк колючий применяют в качестве стимулятора животных и птицы, его препараты повышают резистентность организма, адаптацию к новым условиям содержания, сохранность молодняка птицы. Он обладает тонизирующим и стимулирующим действием, нормализует обмен веществ, повышает сопротивляемость организма.
Рабинович М.И. (1989) – аралия маньчжурская увеличивает резистентность животных к самым разнообразным вредным воздействиям физической, химической и биологической природы: охлаждению, перегреванию, перегрузке. Способность настойки аралии повышать физическую работоспособность в своей основе отличается от стимуляции, вызываемой препаратами типа фенамина и пиридрола.
Юргенс М.А., Кириллов О.И. (1986) в своих исследованиях установили, что в осенний период у коз ослабевает естественная резистентность организма. Тяжело проходит перевод животных с пастбищного содержания на стойловое. Для этого использовали средства стимуляции естественной резистентности – элеутерококк и дибазол, что обеспечивало лучшую адаптацию организма к действию низких температур.
Супрунов Н.И., Кривда В.И. (1972) в качестве стимулирующего препарата применяли жидкий экстракт корневищ элеутерококка колючего, который готовился методом реперколяции (т.е. выпаривание спирта) на 20%-ном этиловом спирте в соотношении 1:1. Оказалось, что экстракт элеутерококка способствует выращиванию пчелиных семей большей силы, поднимает их жизнедеятельность и увеличивает продуктивность.
Стоилов Н.В. (1986) Приведено влияние некоторых биостимуляторов на пчёл. Скармливал пчёлам сироп содержащий 40 МЕ/л гибберреллиновой кислоты, и на 28,69% повышал количество расплода, на 25,04% – пчёл и на 10,44% воска. При весенней побудительной подкормке пчёл с добавлением 200 МЕ/л витамина В 12 количество расплода увеличивалось на 20–30%, а при добавлении кобальта в той же дозе – на 18–29% и мёда – на 31–55%. Кобальт рекомендуют давать в виде сульфата в количестве 38 или хлорида в количестве 24 мг/л сиропа. Добавление 1 мг/л марганца увеличивает расплод на 15,4%, а медосборы – на 11,5% и улучшает экстерьерные признаки пчёл. Улучшает зимовку пчёл добавление 725 мг сульфата магния и 500 мг сульфата калия или морской соли на литр сиропа при осенней подкормке. Физиологию пчёл и их продуктивность улучшает 0,005 мг/л ионизированного серебра. Добавление 2 мл/л лимонника китайского повышает яйцекладку матки на 30–35%, а фолликулина в той же дозе – на 38–45% и получение мёда и воска – на 20–30%. В качестве биостимуляторов используют сок репчатого лука, отвар почек сосны и ели, плюща, женьшеня, элеутерококка и препараты из многих других растений. Приведена рецептура их применения.
Полуэктова Е.В., Митрованов Б.Г. и др. (2000) Установлено, что применение настойки аралии маньчжурской в мае-июне оказывало благоприятное действие на приём личинок пчёлами, повышая его на 6–13 и 4,5–11,4% соответственно по сравнению с контролем. В июле-августе влияния биостимулятора на получение маток не оказывало. В мае-июне повышалась яйцепродуктивность опытных плодных маток на 10,8–15,5% по сравнению с контрольными.
Смирнов Л.А. (1972) Применял 20%-ную настойку биоженьшеня в дозе 0,02–0,05 мл на 1 кг живой массы (новорождённым и беременным, выпаивают). Биологически активное вещество позволяет значительно повысить резистентность организма животных, что способствует получению здорового потомства, обеспечивает нормальный дальнейший рост и развитие молодняка.
Садов А.В. (1981) Применял средство для опрыскивания пчёл, содержащее настой дикого табака из 30–50 г.; 500–550 мл молоко коровье цельное; 40%-ный раствор формальдегида; сахарный сироп при соотношении сахара к воде 2:1. Используют при лечении и профилактике варроатоза. Опрыскивают рамки с пчёлами и расплодом из гидропульта между пчелорамками. Эффективность способа 100%.
Сурина Л.Н., Столбов Н.М. (1991) Использование свежесобранной конопли обеспечивает наибольший эффект при обработке пчёл, больных варроатозом. Для лечения используют пары конопли. Для введения паров в улей им натирают внутренние стенки улья из расчёта 10–12 г. на пчелиную семью (листьями или корневищем).
2. Физико-географическая характеристика района
Благовещенский район – занимает южный стык Амурско-Зейской и Зейско-Буреинской равнины. Граничит на севере со Свободненским, на северо-востоке с Серышевским, на востоке с Белогорским, Ивановским, Тамбовским районами. На юге – граница города Благовещенска, на западе – государственная граница площадью – 3 тыс. кв километров. Население сельской местности составляет – 18,3 тыс. человек. Центр – город Благовещенск. Поселений – 28, все сельскохозяйственные. Основан в 1933 году. В 1963–67 гг. входил в состав Ивановского района.
В Благовещенском районе находится 10 памятников природы – озеро Ротанье, урочище Мухинка, Натальинские островные сосняки, зелёная зона города Благовещенска, Благовещенский заказник; Марковское, Сергеевское, Натальинское, Новопетровское и Худинское охотничьи хозяйства. Благовещенский лесхоз – выращено 4 тыс. га хвойных лесов, в Призейском лесничестве – ореховая роща.
Река Зея рассекает территорию района на большую, северо-западную высокую аллювиальную равнину и меньшую – юго-восточную высокую пойму рек Зеи и Амура.
В долине реки Зеи – болота, кустарники и сенокосные угодья.
Реки – Амур с притоками Гуран, Маньчжурка, Грязнушка, Симониха и Зея с притоками Безымянка и Прядчинка.
Благовещенский район в геоморфологическом отношении имеет сложное строение. В его пределах развиты формы речного, озёрного и денудационного происхождения. Возраст района – кайнозойский. В четвертичный период Амуро-Зейская впадина претерпела поднятие. Аккумуляция неоднократно сменялась глубинной и боковой эрозией, в результате чего левобережье рек Зеи и Амура представляет собой область развития комплекса террас. В.В. Никольская выделяет в бассейне Амура два уровня поймы и три уровня надпойменных террас, которые отличаются как по высотному положению и морфологии мезорельефа, так и по направлению почвенно-биологического развития. Ю.Ф. Чемеков выделяет пять уровней террас и указывает, что мнение исследователей о количестве террас расходятся; наибольшее их количество (восемь) насчитывает А.И. Юдин. На территории района выделяют пойменные, высокопойменные равнины и равнины первой, второй и третьей надпойменных террас Амура. Низкая пойма тянется узкой полосой вдоль русла реки Амура и его притоков. Поверхность низкой поймы плоская или полого-волнистая. Рельеф пойм характеризуется наличием береговых валов и грив. Поймы ежегодно заливаются паводками. Сложена низкая пойма аллювиальными отложениями-песками, супесями, глинами, местами – торфяниками.
Высокая пойма, образует обширные равнины. Она затопляется в периоды больших наводнений. Рельеф её полого-волнистый, расчленён старицами и озерами. Рельеф высоких террас возник в результате древних и современных процессов эрозии и аккумуляции. Значительное количество ложбин начинается на второй надпойменной террасе, продолжаясь на первой. Первая надпойменная терраса сложена тяжелыми суглинками и глинами.
Вторая надпойменная терраса пересечена редкой сетью долин притоков основных рек. Уклоны местности незначительны.
Третья надпойменная терраса сложена преимущественно песками, а сверху перекрыта суглинками и глинами разной мощности. Выделяют делювиальные шлейфы склонов северной экспозиции в бассейне рек Будунды, Белой, Томи.
Гидрографическпая сеть развита достаточно хорошо. Крупными реками являются Амур и Зея. Все крупные и большинство средних и малых рек являются транзитными, большая часть площади их водосборов находится за пределами района. Гидрологический режим характеризуется слабыми весенними и сильными летними паводками, возникающими после интенсивных муссонных дождей. В результате чего образуется большое количество старичных озер. Старицы часто встречаются и на значительном расстоянии от современных русел рек. Во время паводков старицы соединяются временно действующими протоками. При катастрофических паводках водой заполняется почти вся пойма. Скорость течения рек на равнинах небольшая (1,0–1,2 км/час).
Речная сеть наиболее развита в предгорьях и на третьей надпойменной террасе. Малой расчлененности рельефа соответствует небольшая заболоченность. Массивы болот приурочены к долинам рек. Больше всего заболочены поймы средних и малых рек. Влияние болот на режим рек, вследствие малой регулирующей способности распространённых здесь болот, невелико. Исключение составляют только реки Будунда и Белая.
Климатические условия
Климат Благовещенского района формируется под воздействием океанических континентальных факторов. Он определяется как континентальный с муссонными чертами. В теплый период сюда проникает летний тихоокеанский муссон Восточной Азии. Зимой находится под воздействием Сибирского антициклона. Воздушные массы антициклона содержат мало влаги, поэтому зимы малоснежные, ясные и морозные. Продолжительность зимнего периода колеблется от 140 дней на юге (Благовещенск) до 155 на севере. Температура вегетационного периода 14,70. Высота снежного покрова в среднем 22 см., сумма среднесуточных температур выше 100 – 200. Теплый период характеризуется значительным количеством осадков, выпадает (84–88% годовой нормы), высокими температурами воздуха и весенне-летними сухими периодами.
Средняя температура января – 27,40С, июля + 20,40С. Годовое количество осадков – 570 мм.
Континентальность климата возрастает в направлении с востока на запад и северо-запад. Малоснежная, длительная и холодная зима способствует глубокому промерзанию почв, распространению длительной сезонной, а в северных районах также и многолетней мерзлоты. Продолжительнее всего мерзлота сохраняется на мезотрофных сфагновых болотах на глубине 27–35 см в конце июля и начале августа. Мерзлота оказывает существенное влияние на болотообразовательный процесс. Низкие температуры почв задерживают развитие растений на болотах, уменьшают прирост органической массы, а следовательно и торфа. С другой стороны, в условиях пониженной температуры торфяных почв подавляется микробиологическая деятельность, уменьшается степень минерализации органических остатков. В сухие весенне-летние периоды мерзлота служит дополнительным источником влаги и, сводит к нулю значение весеннего, сухого периода, тормозящего торфонакопление.
Значительное количество осадков выпадает в июле-августе, что способствует длительному переувлажнению почв, особенно на почвообразующих породах тяжелого механического состава. Это приводит к заболачиванию не только отрицательных элементов рельефа, но также выровненных плакорных участков и пологих водоразделов.
В «Справочнике по водным ресурсам» приводятся следующие показатели статей водного баланса:
Часть низменности (т.е. пойма рр. Амура и Зеи, 1-я и 2-я надпойменные террасы) – осадки 600 мм, сток 54 мм, испарение 546 мм.
Высокая равнина (3-я надпойменная терраса) – осадки – 714 мм, сток 175 мм, испарение 539 мм.
Растительность и почвенный покров
На растительность и почвы Благовещенского района решающее влияние оказывают климат, рельеф, почвообразующие породы и гидрографическая сеть.
Преобладают бурые лесные оподзоленные почвы, в долине – пойменные и пойменно-луговые. Принадлежит к зоне широколиственных лесов; на водоразделах – дубовые остепнённые, на высоких террасах – дубово-черноберёзовые.
Пашни составляют – 72,9 тыс. га, сенокосы и пастбища – 24 тыс. га, леса и кустарники – 30% площади.
Растительный и почвенный покров выделенных зон имеет незначительные различия. Так, лесистость лесостепи не превышает 10%, а севернее лесная растительность становится ведущей и там уже не встречается лугово-степных фитоценозов.
Лесообразующими породами на юге являются дуб монгольский, береза черная и плосколистная, а местами осина. В подлеске обычно лещина разнолистная. Севернее лесостепи леса образованы лиственницей даурской и берёзой плосколистной. По песчаным отложениям растет сосна обыкновенная. Главной лесообразующей породой является лиственница. Она входит в состав насаждений из дуба и берёзы черной и образует чистые леса.
В этих районах распространены и лесные болота, повышается роль сфагновых мхов в растительном покрове болот. Из травяных болот наиболее распространены вейниковые, осоковые разнотравно-осоковые эвтрофные болота.
Экстразональные фитоландшафты составляют степные формации из лёгких супесчаных почв.
Интразональными фитоландшафтами являются болота, сырые луга, колки берёзы и осины.
Болота лесостепи представлены травяными эвтрофными и кустарничково-травяными мезотрофными типами. Во всех болотных фитоценозах отмечается обилие осок. Обычными здесь видами являются осока Мейера, топяная, придатковая, Шмидта и многие другие. Видовое разнообразие растительности болот лесостепи отражает специфику условий и генезиса. Повсюду отмечается большое фитоценотическое разнообразие болот: тростниковые, осоковые, вейниковые, хвощево-вахтовые, камышово-манниковые, разнотравно-осоковые, сфагново-осоковые болота.
Развитию болотообразования в лесостепи способствует целый комплекс факторов, следствием чего является значительная заболоченность площади, развитие своеобразных марей, влажных и заболоченных лугов, сочетания которых с лугово-степными участками и колками леса первые исследователи называли дальневосточными прериями, влажной лесостепью.
3 Биология пчёл
3.1 Систематика пчёл
Пчелы относятся к:
Тип: членистоногие;
Класс: насекомые;
Отряд: перепончатокрылые;
Подотряд: жалоносные;
Семейство: пчелиные;
Род: пчелы;
Подрод: апис;
Вид: медоносная пчела;
Порода: среднерусская.
3.2 Состав пчелиной семьи
Пчелиная семья – сложный организм, состоящий из десятков тысяч рабочих пчел, нескольких сот трутней и матки, связанных в единое целое обменом веществ. Благодаря такому сообществу пчелиная семья может собирать большое количество меда и цветочной пыльцы, защищать от врагов, поддерживать оптимальную температуру и влажность в улье, размножатся. Каждая пчелиная семья имеет свои индивидуальные особенности: специфический запах. агрессивность, способность к сбору меда, прополисованию гнезд, зимостойкость, ройливость, которые сохраняются лишь до тех пор, пока в ней живет одна и та же матка. После замены старой матки новой изменяются и свойства пчелиной семьи, на смену прежнему поколению появляется новое поколение пчел с другими наследственными свойствами.
Единство пчелиной семьи поддерживается комплексом взаимосвязей
между ее членами. К ним относятся трофические и тактильные контакты (обмен кормов и феромонами), сигнальные звуки, движения. Пчелиная семья нормально живет и размножается только в полном составе. Каждая особь пчелиной семьи выполняет определенную функцию, направленную на поддержание жизни всей семьи (Миньков С.Г. «Справочник пчеловода». Алма – Ата, 1983 г. – 147 с).
Матка – особь в пчелиной семье, способная воспроизводить потомство. По размерам и массе тела она превосходит всех остальных пчел. Длина ее тела в зависимости от породы и сезона года колеблется от 20 до 25 миллиметров, масса плодной матки – от 200 до 250 миллиграмм, не плодной от 150 до 200 миллиграмм. Полноценная плодная матка откладывает за сутки от 1000 до 2000 яиц, за сезон 150 – 190 тысяч штук. На откладку одного яйца матка тратит 40 – 46 секунд. Масса яйца в зависимости от возраста матки, числа пчел в семье и периода сезона колеблется от 0,128 до 0,221 миллиграмм. Молодые матки откладывают яйца большей массы, чем старые. В июне (разгар яйцекладки) масса яйца составляет 0,133 мг, в июле 0,141 мг, а августе – 0,161 мг.
Откладывать яйца матка начинает в феврале и заканчивает осенью с наступлением холодов. Наибольшее их число она откладывает в первые два года жизни. С возрастом яйцеклад сокращается, а старые матки на ряду с оплодотворенными яйцами откладывают много неоплодотворенных.
Обычно она живет в семье до 3 – 5 лет. При неблагоприятных условиях зимовки (недостаток кормовых запасов и другое) матка погибает позже основной массы пчел.
Молодая матка вылетает на спаривание через 7–10 дней после выхода из маточника. К этому времени начинают функционировать пахучие железы, расположенные под вторым, третьим и четвертым тергитами брюшка, матка выделяет пахучие вещества со специфическим запахом. Он способствует привлечению трутней во время брачных вылетов. После спаривания матка становится плодной и через 3 – 4, реже 7 дней начинает откладывать яйца.
Она откладывает яйца двоякого рода: оплодотворенные в отверстие которых попали спермии, и неоплодотворенные, которые спермии не попали.
Из оплодотворенных яиц в зависимости от состава корма и величины ячейки развиваются рабочие пчелы или матки, а из неоплодотворенных – трутни.
Если по каким-либо причинам матка в первые две недели не спарилась с трутнями, то она теряет способность к спариванию и становится неплодной.
Роль матки не ограничивается откладкой яиц. Она выделяет некоторое количество гормонов (маточное вещество), благодаря которым регулируется жизнедеятельность семьи.
Рабочие пчелы заботливо ухаживают за маткой, чистят ее, убирают за ней и кормят ее. Во время кормления пчелы передают матке около 65% корма, содержащегося в их медовых зобиках (Всилиади Г.К. «Развитие пчелиных маток и факторы, влияющие на их качество». М.: Росагропромиздат, 1991 г. – 80 с.).
Рабочие пчелы – женские особи пчелиной семьи с недоразвитыми половыми органами. Длина их тела 12–14 мм, масса однодневной пчелы колеблется от 90 до 100 мг, в одном килограмме пчел 10 – 11 тысяч особей. Число их в семье изменяется в зависимости от сезона года: весной в сильной семье насчитывается до 25 тысяч пчел, летом – 60–80 тысяч и осенью до 30 тысяч.
Температура тела пчелы зависит в значительной степени от внешней температуры, но в некоторых пределах они регулируют её. Тепло вырабатывается за счет мышечной активности. Температура тела пчелы при полете зависит от внешней температуры: при 22–26оС она достигает 35–37оС, а при 35–37оС – до 42оС. У пчелы, закончившей полет, температура на 6–15 градусов выше температуры окружающей среды. Охлаждается организм в результате снижения обмена веществ, уменьшения потребления кислорода и за счет испарения воды.
Рабочие пчелы выкармливают личинок, собирают нектар, и пыльцу, строят соты, охраняют гнездо, регулируют температуру и влажность воздуха в гнезде, поддерживают чистоту в улье, ухаживают за маткой и так далее.
Продолжительность жизни пчел зависит от времени выхода из ячейки и выполняемой работы. В нормальной семье с маткой пчелы, выведенные в марте, живут – до 35 дней, в июне – до 30 дней, выведенные в период главного медосбора – 28–30 дней, выведенные в сентябре, октябре, ноябре – 80 – 100 дней. В семьях, не имеющих расплода, пчелы могут жить до года.
Долгоживущие пчелы появляются осенью, то есть в период, когда в гнездах нет расплода. В это время молодые пчелы усиленно питаются пергой, что при уменьшении или отсутствии работы по выкармливанию расплода способствует накоплению в теле резервных веществ.
Пчелы-трутовки – рабочие пчелы, способны откладывать не оплодотворенные яйца. Они появляются в семьях, длительное время живущих без маток, а также во время роения. Пчела – трутовка может отложить от 19 до 35 яиц. Она откладывает яйца не на донышко ячейки, а на её стенки. По этому признаку легко отличить присутствие трутовок в улье.
Трутни – особи мужского пола, предназначенные для спаривания с молодыми матками. Длина тела трутня 15–17 мм, масса 20–250 мг. Появляются они в семье в мае – июне. Половозрелыми трутни становятся на 8–14 сутки после выхода из ячейки. В активный период рабочие пчелы ухаживают за трутнями, кормят их содержимым своих медовых зобиков. В Среднем 47% мужских особей получают корм в процессе трофических контактов с пчелами. К концу лета пчелы прекращают выкармливать трутовый расплод и препятствуют тому, чтобы трутни поедали корма. Ослабленных от голода трутней выбрасывают из улья. Изгнание из улья трутней указывает на окончание· медосбора. Трутни зимуют лишь в безматочных семьях или в семьях с неплодными матками (Буренин Н.Л., Котова Г.Н., 1977).
Таблица 1 – Продолжительность стадий развития особей пчелиной семьи
Сроки развития, дней | ||||
Стадия развития | Рабочей | |||
Матки | Трутня | |||
пчелы | ||||
Яйцо | 3 | 3 | 3 | |
Личинка | 6 | 5 | 7 | |
Предкуколка | 3 | 2 | 4 | |
Куколка | 9 | 6 | 10 | |
Общая продолжительность развития |
21 |
16 |
24 |
3.3 Гнездо пчелиной семьи
Гнездо пчёлы строят сами из воска. Оно состоит из сотов, и служит для пребывания взрослых пчел, выращивание расплода и складывания кормовых запасов. Каждый сот состоит из ячеек, расположенных на общем основании в два слоя.
Ячейки, предназначенные для вывода рабочих пчел и размещения корма, имеют диаметр 5,4 мм, глубину 11–12 мм. В трутневых ячейках пчёлы выводят трутней и хранят мёд, диаметр их 6,9 мм, глубина 14–16 мм, переходные ячейки меньше трутневых, но больше пчелиных, они, как и медовые, предназначены для складывания меда.
Сот одной стороной рамки размером 435 х 300 мм вмещает до 9100 ячеек, из них для вывода расплода при годно около 8000 ячеек. Полностью заполненный сот вмещает 3,6 – 4 кг мёда или 1,3 – 1,5 кг перги. Во время медосбора пчелы удлиняют ячейки, направляя их несколько вверх, для увеличения вместимости ячейки.
В пчелином гнезде с плодной маткой запасы корма и расплода располагаются в определенном порядке: на сотах против летка расплод, рядом с ним перга, а затем мед.
Гнездо пчелы строят из воска, который вырабатывается восковыми железами в организме рабочей пчелы. Максимально развиты восковые железы у пчел 12–18 дневного возраста, затем функции желез ослабевают. Воск, выделяясь на поверхность восковых зеркалец, застывает в виде пластинок.
Выделение воска и строительство сотов зависят от состояния матки в пчелиной семье и поступления в улей нектара и цветочной пыльцы. При прекращении медосбора или потери матки строительство сотов прекращается. Активнее всего строят пчелы, находящиеся около открытого расплода. Они выкармливают расплод, усиленно питаясь медом и пергой для образования молочка. При этом у них сильно развиваются восковые железы, и обильно выделяется воск.
Для ускорения работы по строительству сотов и получения прочного сота с ячейками рабочих пчел в пчеловодстве используют вощину. Вощина –
тонкий лист воска, на котором правильными рядами выгравированы донышки пчелиных ячеек диаметром 5,4 мм.
На отстройку нового сота с вощиной размером 435х300 мм пчелы добавляют в среднем 70 г., воска без вощины – 110–120 гр. При благоприятных условиях пчелиная семья за сезон может отстроить не менее 10 новых сотов. На выделение l кг воска расходуется 3,5 – 4 кг мёда.
Температура в гнезде пчел: в гнезде пчел не зависимо от колебаний внешней температуры сохраняется оптимальная температура с довольно высокой стабильностью, особенно в зоне расплода. Оптимальная температура в гнезде пчел поддерживается за счет энергетических затрат, которые определяются количеством потребляемого ими кислорода.
В центральной части гнезда с разновозрастным расплодом температура удерживается в пределах 34–35оС. Здесь почти не бывает ее колебаний. Такая же температура поддерживается в зоне расплода, расположенного на расстоянии 5 -7 см. от летка в диагональном направлении к центру рамки. при колебаниях внешней температуры в пределах 10оС. Температура в гнезде пчел изменяется в пределах 15–30о С.
Высокой стабильностью характеризуется температурный режим в зоне выращивания маточников. Средняя температура у маточника 34оС. При снижении внешней температуры с 23оС до 11оС. Температура вблизи маточника опускается не более чем на 0,5оС. В зоне трутового расплода она на 1–2оС ниже, чем в зоне расплода рабочих пчел. В зимний период, когда нет расплода, она колеблется в пределах 15–30оС. Зимой наименьшие энергетические затраты отмечены при температуре наружного воздуха 4–6о С.
Температура в зимовнике. Несмотря на резкие колебания температуры наружного воздуха, зимой, температура внутри зимовника не должна выходить за пределы 0–20С, допустимые колебания от -20С до + 30С. В зимовнике оптимальная без скачков температура поддерживается в течение всей зимовки за счет тепла, выделяемого самими пчелами. Пагубно сказывается на зимовке пчел повышение температуры воздуха сверх +40С. При такой высокой температуре пчелы сильно беспокоятся, что отрицательно сказывается на их зимовке. Высокая температура в зимовнике, вызывает повышенный расход корма пчелами, переполнение кишечника каловыми массами и возникновение поноса.
Очень важно, чтобы в зимовнике в течение всего периода зимовки сохранялась относительная влажность воздуха от 75 до 85%. При более высокой влажности мёд, находящийся в улье, впитывает влагу и может закиснут. При поедании разжиженного мёда у пчел возникает понос, они могут заболеть нозематозом, сильно слабеют. Ульи отсыревают, на внутренних стенках, а так же на стенах и потолке зимовника появляется плесень. При пониженной влажности воздуха мёд в сотах быстро кристаллизуется, пчёлы испытывают жажду, беспокоятся, в улье скапливается много подмора.
Режим влажности: Относительная влажность воздуха в гнезде зависит от влагосодержания и температуры воздуха окружающей среды, а также от состояния и активности пчел. При высокой внешней температуре влажность воздуха в гнезде увеличивается, и наоборот. Она колеблется от 25 до 98%. Наиболее стабильная влажность в центре гнезда и составляет 72 – 78%, у летка она около 62%.
Регуляция влажности в гнезде осуществляется дыхательной системой пчел. Количество воды, выделяемой пчелами, связанна с потреблением корма. При расходовании одного килограмма меда пчелы выделяют 0,7 литра воды (Вагин Е.А., Цветкова Р.П., 1992).
Вентиляция зимовника. Во время зимовки пчелы выделяют тепло и влагу в виде водяных паров, которые оседают внутри улья, на стенах и потолке зимовника. Чтобы отрегулировать температуру и влажность воздуха в зимовниках делают вентиляционные трубы.
Устройство вентиляции в зимовнике обеспечивает необходимый воздухообмен в помещении за счет движения воздуха через вентиляционные трубы. Это движение вызывается разностью в плотности теплого воздуха внутри помещения и холодного воздуха снаружи зимовника. Чем больше разность в температуре внутреннего и наружного воздуха, тем интенсивней его движение по трубам вентиляции.
Часто устраивают вентиляцию, состоящую из одной трубы, через которую одновременно в помещение поступает холодный свежий воздух и удаляется теплый воздух.
При определении сечения вытяжной трубы учитывают, что для одной пчелиной семьи необходимо 6 – 8 см2 площади поперечного сечения