. . .
.
-
, . , , .
. , , . . , . 3. [1,2], . . [3], . . [4,5]. [6] . .
1.
.
1.1. R, + . + , :
≤ Þ |||| ≤ ||y|| , Î ,
Î e > 0 Î + , ≤ |||| ≤ (1+e) ||||.
+ , (2) e = 0, . .
(2') Î Î + , ≤ ||y|| = ||||.
+ (, +) Î (Â), . [1,2].
1.2. , , , , : X , f Î X* X , ||f|| = 1. aÎ (0,1] K(f,α):={xÎX: f(x) ≥ a||||}.
R, aÎ, ||a|| = 1, (, a) :
K(a, α) = {x Î X : (a, x) ≥ a ||x||}.
dim H > 1, Î , ||a|| = 1, (, a) , a = [5].
1.3. , l1 [5]. , [4].
. K(f, a) , n > l1 aÎ (0,1]:
a = 1 f = (f1, f2,..., fn) +1 1; 2n , , ;
a = 0,5 (j- ) f = (f1, f2,..., fn) 1, ; 2n , ,
Kj = { = (x1,x2,...,xn) : xj ≥ }. (1)
1.4. (, +) Î (Â). Î || Î , x ≤ ||x|| = ||y||. x.
X+ = ½ x + ½|X|, X− = −½ x + ½|X| .
+ − ( ) x. Î ||, .. x ≤ |||| = ||x||, x+ = ( + x)/2, x− = ( x)/2, |x| = x+ + x−. , |x| ≥ x,
x = x+ − x−, |x| = x+ + x−, ||x+ - x−|| = ||x+ + x−||, ||x|| = |||x|||.
1.5. + (, +) Î (Â) , x Î Î +, +, . .
d(x, E+) = inf{|| x|| : a Î E+} = ||x x||.
().
1.6. [5].
(, +) Î (Â) Î +. x+ Î + + , f Î *+, ||f|| = 1, , f(x+) = 0, f(x-) = ||x-||. d(x, +) = ||x-||.
1.7. E R +. x, Î + - ( x ), ||x + λ|| = ||x λ|| λ ≥ 0.
2. ||, +, -
, K(f,a), a = 0,5 f , , :
K1 = {x = (x1, x2, ..., xn) : x1 ≥ |x2| + + |xn|}.
(1) . , , X = .
||, +, - x = (x1, ..., xn) Î. , [6].
2.1. x1 = 0. , , . . = (1, , yn) : y1 ≥ , y ≥ , ||y|| = ||x||. :
, 1 ≥ X. , , 1 ≤ X. 1 = X, = 0, yk = 0 .
,
,
.
2.2. x1 > 0. , Î ||, :
, X≤1≤X + 1, .. 1 1 = X + λ1, 0 ≤ λ ≤ 1. 1 , : -|yk xk|) ≥ ≥ 1(l λ) = , , |k| = |xk + (yk xk)| ≥ ≥ |xk| |yk xk|. :
|xk| = |yk| + |yk − xk| ().
, k k yk , :
(xk − yk) > 0 yk > 0, 0 < yk < xk ;
(xk − yk) < 0 yk < 0, xk < yk < 0;
( yk) = 0 yk = 0, k = k = 0.
, k () k = λkk, 0 ≤ λk ≤ 1.
, :
.
, x1 > 0 :
, 0 ≤ λ, λk ≤ 1};
, 0 ≤ λ, λk ≤ 1};
, 0 ≤ λ, λk ≤ 1}.
2.3. x1 < 0. , Î ||, :
2.2 , X ≤ 1 ≤ X 1. y1 = + λ|x1|, 0 ≤ λ ≤ 1. 1 ,
.
:
|xk| = |yk| + |yk + xk| ().
, yk (xk + yk) . , k = λkxk , 0≤λk≤1. == .
, 1 < 0 :
, 0 ≤ λ, λk ≤ 1};
, 0 ≤ λ, λk ≤ 1};
, 0 ≤ λ, λk ≤ 1}.
2.4. . = (x1, ..., xn) Kj (1) :
, 0 ≤ λ, λk ≤ 1};
, 0 ≤ λ, λk ≤ 1};
, 0 ≤ λ, λk ≤ 1};
.3.
x 1, .. 1 ≥ X. d(x, K1) = 0, .
1, .. -1 ≥ X. d(x, K1) = ||||, .
1 = 0 1. , d(x, K1) = ||||, +. 2.2.13 [5], f Î *1 , ||f|| = 1, f(x+) = 0, f(x-) = ||x-||,
x+ x- = x, ||x+ + x-|| = ||x||.
f=(1, sgn x2, ...,sgn xn). Î1 f()=a1 , . . f . , . x+ x, 2.1, 2.2.14 [5]. ,
,
.
, ||x|| = || (, x2, ... , n)|| = X, , f(x-) = =||x-||. , 2.2.14 [5] , ,
d(x, K1) = || x-|| = =X, x+ .
3.4. X > 1 > 0. λ = 0 2.2, :
) .
, x+ x- = x, || x+ + x-|| = ||x||.
3.3, :
,
.
, , 2.2, , .
, d(x, K1) = ||x-|| = , a x+ x .
3.5. 1 < 0 1 > X. λ = 0 2.3,
)
x+ x- = x ||x+ + x-|| = ||x||, f(x+) = 0, f(x-) = ||x-||, f 3.3.
, d(x, K1) = ||x-|| = , a x+ x .
, Kj.
3.6. 2.3 [6] ,
4. ()
x 1. d(x, K1) = ||x|| = 0. = (a1, ..., n) Î (x), Î 1 || x|| = 0, , = x M(x) = {x}.
1. x1 ≤ X
d(x, 1) = ||x||. a = (a1, ..., n) Î (x), a1 = A ||a x|| = ||x||, |1 x1| + = x1 + +. , 1 = - ≥ =A.
, ≥ ≥ ≥ .
| xk k| + |k| = |xk| , k (xk k) , . . k = ak xk, 0 ≤ ak ≤ 1 . 1 : 1 = .
,
0≤ak≤1,}.
4.3. x1 = 0 1. = (a1, ..., an) Î (x). () , a1 ≥ || x|| = = + |a1| = . : 1 = ≥ ≥ = + + ≥ . + + = .
|xk −ak| + |ak| = |xk| (),
,
0≤ak≤1, }.
4.4. x1 > 0 x K1. = (a1, ..., n) Î (x), ||a x|| = ||x|| = d(x, 1) = x1
a Î K1 , 1 ≥ . a1 ≤ |1 x1| + x1 = - ≤ ≤ a1 ,
, (k xk) xk , . . k = akxk, 0 ≤ ak ≤ 1 . (*), 1 + = .
, 1 : 1 =.
, 1 > 0,
0≤ak≤ 1, }.
4.5. x1 < 0 1, .. x1 < .
= (a1, ..., n) Î (x), ||a-x|| = ||x|| = d(x, 1) =x1
a1= - ≥. ≥ + ≥ . , (ak xk) (xk) k, . . k = ak xk, 0 ≤ ak ≤ 1 . a1= =. , (4.4) .
5. M(x)∩K1
, .
x 1. () = {x}, + = {( + x1(1 + λ), x2(1 + λ2), ..., xn(1 + λn)), 0 ≤ λ, λk ≤ 1, = x1(1 λ)}. λk = 1 λ = 0 + = {x}, .. () ∩ + = {x} () Ì +.
x 1. Î (x)∩+, , 4.2 2.2, :
(+ x1(1 λ), x2(1 λ2), ... , xn(1 λn)).
, ) λk Î[0,1]. , λk, , , Î + , Î (). . (x) ∩ + = X+ .
5.3. x1 = 0 x . 4.3 2.1, () ∩ + = +.
5.4. x1 > 0 x . () ∩ + , :
(+ x1(1 + λ), x2(1 + λ2), ..., xn(1 + λn)),
, λk , λ = 0. , ..
(x)∩+=.
5.5. x1 < 0 1. () ∩ + , :
(+ x1(1 - λ), x2(1 - λ2), ..., xn(1 - λn)),
, ], . . (x) ∩ + = ().
. 3. . .: - , 1977.
. 3. . .: - , 1978.
. . . .: . 1962.
. ., . . . . . 1999. 1.
. . . : , 1999.
. . l1. . . 2003. . 5, 3.
|