:

:
:
:

N2 " " "", . . ( N 17).

: ! , , , . , , . , , , ( . ), , , .

:

11- :

1, 2 3 , , ..

4 5 . (.).

6- (-).

7- - ( ).

8- - .

9- - .

10- - ; .

11- - .

G(V,X)

. 1

1 G, G ( ) :

) V X, G(V,X);

) ;

) ;

) .

) G .

- . 1

) V={0,1,2,3,4,5,6,7,8,9}

X={{0,1},{0,2},{0,3},{1,2},{1,4},{1,5},{1,6},{1,7},{2,3},{2,5},{3,8},{3,9},{4,5},{4,6},{5,3},{5,6},{5,8},{6,9},{7,8},{7,9},{8,9}}

.

) 0={1,2,3};

1={0,2,4,5,6,7};

2={0,1,3,5};

3={0,2,5,8,9};

4={1,5,6};

5={1,2,3,4,6,8};

6={1,4,5,9};

7={1,8,9};

8={1,3,5,7,9};

9={3,6,7,8};

) . )

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1
9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

) , .. .

0 1 2 3 4 5 6 7 8 9
0 ¥ 8 3 5 ¥ ¥ ¥ ¥ ¥ ¥
1 ¥ 1 ¥ 2 2 4 5 ¥ ¥
2 ¥ 2 ¥ 5 ¥ ¥ ¥ ¥
3 ¥ ¥ 1 ¥ ¥ 1 6
4 ¥ 4 2 ¥ ¥ ¥
5 ¥ 2 ¥ 1 ¥
6 ¥ ¥ ¥ 2
7 ¥ 1 1
8 ¥ 6
9 ¥

) G.

0 1 2 3 4 5 6 7 8 9
0 ¥ 1 1 1 ¥ ¥ ¥ ¥ ¥ ¥
1 -1 ¥ 1 ¥ 1 1 1 1 ¥ ¥
2 -1 -1 ¥ 1 ¥ 1 ¥ ¥ ¥ ¥
3 -1 ¥ -1 ¥ ¥ -1 ¥ ¥ 1 1
4 ¥ -1 ¥ ¥ ¥ 1 1 ¥ ¥ ¥
5 ¥ -1 -1 1 -1 ¥ 1 ¥ 1 ¥
6 ¥ -1 ¥ ¥ -1 -1 ¥ ¥ ¥ 1
7 ¥ -1 ¥ ¥ ¥ ¥ ¥ ¥ 1 1
8 ¥ ¥ ¥ -1 ¥ -1 ¥ -1 ¥ 1
9 ¥ ¥ ¥ -1 ¥ ¥ -1 -1 -1 ¥

2 D(G), R(G), Z(G) G ; , G.

D(G)=2

R(G)=2

Z(G)=10

G(V,X) .

3 G, :

) " ";

) " ".

- a.

)

)


4 G. , a.

- 14.

: 000011000001111111.

5 a G.

- 8.

6 - , {G , a , w}. .

( ):

1-

2-

3-

4-

5-

6-

7-

:

, {6,9},{7,9},{3,9}, w, , {8,9}, 8, , , 8. - , w , .

12.

: {{0,1},{0,2},{0,3}}. 16

: {{6,9}, {7,9}, {3,9}, {3,8}, {5,8}, {7,8}}. 12.

7 ( ) G.

) G . , G , .

) G . , G , .

G:

(3,6,4,5,3,6,4,3,4,4)

) , , 4 7.

: 0,3,2,0,1,2,5,1,4,5,6,1,7,4,6,9,7,8,9,3,8,5,3.

( ):

) ) {3,0}, ( - ). {3,0} , , {0,7} {4,3} .

: 0,3,2,0,1,2,5,1,4,5,6,1,7,4,6,9,7,8,9,3,8,5,3,0.

( ):

8

) G . , G , .

) G . , G , .

) ( ):

) ( ):


9 ( ) x1, x2,...xn. xixj Vij . , () . , , . .

.

x1 x2 x3 x4 x5 x6
x1 ¥ 3 7 2 ¥ 11
x2 8 ¥ 06 ¥ 4 3
x3 6 05 ¥ 7 ¥ 2
x4 6 ¥ 13 ¥ 5 ¥
x5 3 3 3 4 ¥ 5
x6 8 6 ¥ 2 2 ¥

14

x1 x2 x3 x4 x5 x6
x1 ¥ 1 5 01 ¥ 7 2
x2 8 ¥ 01 ¥ 4 1
x3 6 00 ¥ 7 ¥ 00
x4 1 ¥ 8 ¥ 01 ¥ 5
x5 01 00 00 1 ¥ 00 3
x6 6 4 ¥ 00 00 ¥ 2
2

x2-x3:


23 å=14+0=14

x1 x2 x4 x5 x6
x1 ¥ 1 01 ¥ 7
x3 6 ¥ 7 ¥ 06
x4 1 ¥ ¥ 01 ¥
x5 01 01 1 ¥ 00
x6 6 4 00 00 ¥

23 å=14+1=15

x1 x2 x3 x4 x5 x6
x1 ¥ 1 5 01 ¥ 7
x2 7 ¥ ¥ ¥ 3 03 1
x3 6 00 ¥ 7 ¥ 00
x4 1 ¥ 8 ¥ 01 ¥
x5 01 00 05 1 ¥ 00
x6 6 4 ¥ 00 00 ¥

23. x3-x6:


23E36 å=14+0=14

x1 x2 x4 x5
x1 ¥ 1 01 ¥
x4 1 ¥ ¥ 01
x5 01 01 1 ¥
x6 6 ¥ 00 00

2336 å=14+6=20

x1 x2 x4 x5 x6
x1 ¥ 1 01 ¥ 7
x3 01 ¥ 1 ¥ ¥ 6
x4 1 ¥ ¥ 01 ¥
x5 00 01 1 ¥ 07
x6 6 4 00 00 ¥

2336. x4-x5:

23E3645 å=14+0=14

x1 x2 x4
x1 ¥ 1 01
x5 01 01 1
x6 6 ¥ 00

233645 å=14+1=15

x1 x2 x4 x5
x1 ¥ 1 01 ¥
x4 00 ¥ ¥ ¥ 1
x5 01 01 1 ¥
x6 6 ¥ 00 00

233645. x5-x1:

23364551 å=14+1=15

x2 x4
x1 1 ¥ 1
x6 ¥ 00

23364551 å=14+6=20

x1 x2 x4
x1 ¥ 1 01
x5 ¥ 01 ¥
x6 0 ¥ 00
6

: 2,3,6,4,5,1,2.

:

10 ( ) Knn x1, x2,...xn. y1, y2,...yn.. {xi,yj} vij . , ( ). .

K55 :

y1 y2 y3 y4 y5
x1 2 0 0 0 0
x2 0 7 9 8 6
x3 0 1 3 2 2
x4 0 8 7 6 4
x5 0 7 6 8 3

- , . . .

- .

y1 y2 y3 y4 y5
x1 2 0 0 0 0
x2 0 7 9 8 6
x3 0 1 3 2 2
x4 0 8 7 6 4
x5 0 7 6 8 3

- .

y1 y2 y3 y4 y5
x1 2 0 0 0 0 X
x2 0 7 9 8 6 X
x3 0 1 3 2 2
x4 0 8 7 6 4
x5 0 7 6 8 3
X X

- .

y1 y2 y3 y4 y5
x1 2 0 0 0 0
x2 0 7 9 8 6 5
x3 0 1 3 2 2 1
x4 0 8 7 6 4 2
x5 0 7 6 8 3 3
4

- .

y1 y2 y3 y4 y5
x1 3 0 0 0 0
x2 0 6 8 7 5 5
x3 0 0 2 1 1 1
x4 0 7 6 5 3 2
x5 0 6 5 7 2 3
4

. .

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0
x2 0 6 8 7 5
x3 0 0 2 1 1
x4 0 7 6 5 3
x5 0 6 5 7 2

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0 X
x2 0 6 8 7 5 X
x3 0 0 2 1 1
x4 0 7 6 5 3
x5 0 6 5 7 2
X X

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0 6
x2 0 6 8 7 5 7
x3 0 0 2 1 1 1
x4 0 7 6 5 3 2
x5 0 6 5 7 2 3
4 5

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0 6
x2 0 6 8 7 5 7
x3 0 0 2 1 1 1
x4 0 7 6 5 3 2
x5 0 6 5 7 2 3
4 5

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0 6
x2 0 6 8 7 5 7
x3 0 0 2 1 1 1
x4 0 7 6 5 3 2
x5 0 6 5 7 2 3
4 5

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0 X
x2 0 6 8 7 5
x3 0 0 2 1 1 X
x4 0 7 6 5 3 X
x5 0 6 5 7 2
X X X

:

y1 y2 y3 y4 y5
x1 3 0 0 0 0
x2 0 6 8 7 5 1
x3 0 0 2 1 1
x4 0 7 6 5 3
x5 0 6 5 7 2 2
3

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0
x2 0 4 6 5 3 1
x3 2 0 2 1 1
x4 2 7 6 5 3
x5 0 4 3 5 0 2
3

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0
x2 0 4 6 5 3
x3 2 0 2 1 1
x4 2 7 6 5 3
x5 0 4 3 5 0

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0 X
x2 0 4 6 5 3 X
x3 2 0 2 1 1 X
x4 2 7 6 5 3
x5 0 4 3 5 0 X
X X X X

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0
x2 0 4 6 5 3
x3 2 0 2 1 1
x4 2 7 6 5 3 1
x5 0 4 3 5 0

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0
x2 0 4 6 5 3
x3 2 0 2 1 1
x4 0 5 4 3 1 1
x5 0 4 3 5 0

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0
x2 0 4 6 5 3
x3 2 0 2 1 1
x4 0 5 4 3 1 1
x5 0 4 3 5 0

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0 X
x2 0 4 6 5 3 X
x3 2 0 2 1 1 X
x4 0 5 4 3 1
x5 0 4 3 5 0 X
X X X X

:

y1 y2 y3 y4 y5
x1 5 0 0 0 0
x2 0 4 6 5 3 3
x3 2 0 2 1 1
x4 0 5 4 3 1 1
x5 0 4 3 5 0
2

:

y1 y2 y3 y4 y5
x1 6 0 0 0 0
x2 0 3 5 4 2 3
x3 3 0 2 1 1
x4 0 4 3 2 0 1
x5 1 4 3 5 0
2

:

y1 y2 y3 y4 y5
x1 6 0 0 0 0
x2 0 3 5 4 2 3
x3 3 0 2 1 1
x4 0 4 3 2 0 1
x5 1 4 3 5 0
2

:

y1 y2 y3 y4 y5
x1 6 0 0 0 0 X
x2 0 3 5 4 2 X
x3 3 0 2 1 1 X
x4 0 4 3 2 0
x5 1 4 3 5 0 X
X X X X

:

y1 y2 y3 y4 y5
x1 6 0 0 0 0
x2 0 3 5 4 2 4
x3 3 0 2 1 1
x4 0 4 3 2 0 1
x5 1 4 3 5 0 5
2 3

:

y1 y2 y3 y4 y5
x1 6 0 0 0 0
x2 0 1 3 2 2 4
x3 3 0 2 1 1
x4 0 2 1 0 0 1
x5 1 4 3 5 0 5
2 3

:

= 12.

11 10, ( xi yj).

(). - xi , - yj. å=0

1 2 3 4 5
1 2 01 03 02 02
2 06 7 9 8 6
3 01 1 3 2 2
4 04 8 7 6 4
5 03 7 6 8 3

x2 - y1:


21 å=0+8=8

2 3 4 5
1 00 02 01 00
3 01 2 1 1 1
4 4 3 2 02 4
5 4 3 5 03 3

21 å=0+6=6

1 2 3 4 5
1 2 01 03 02 00
2 ¥ 1 3 2 01 6
3 01 1 3 2 2
4 04 8 7 6 4
5 03 7 6 8 3

21:

x4 - y1:

2141 å=6+4=10

2 3 4 5
1 00 02 01 00
2 1 3 2 01
3 01 2 1 1 1
5 4 3 5 03 3

2141 å=6+4=10

1 2 3 4 5
1 2 01 03 02 00
2 ¥ 1 3 2 01
3 01 1 3 2 2
4 ¥ 4 3 2 02 4
5 03 7 6 8 3

21:

x5 - y5:

2155 å=8+2=10

2 3 4
1 00 01 00
3 01 2 1
4 2 1 01 2

2155 å=8+3=11

2 3 4 5
1 00 02 01 00
3 01 2 1 1
4 4 3 2 02
5 1 01 2 ¥ 3

2155:

x3 - y2:

215532 å=10+0=10

3 4
1 01 00
4 1 01

: x1 - y3 x4 - y4. .

:

:

1. .. :-.: , 1991.-320.:.

2. . : . ./ . .. .-.: , 1960.-400 .

3. ., . : ./ . .. .-.: , 1965.-458 .

4. .. .-.: . , 1972.-551 .

5. .. ( ):-.:, 1976.-96.

6. .., .. :-.: , 1966.- 524 .

7. .. : . ./ . .. .-.: , 1973.- 312 .

8. .., .. ( ).-.: , 1964.-348 .

9. . : . ./ . .. , .. .-.: , 1981.- .1.-712 .

10. . : . ./ . .. , .. .-.: , 1981.- .1.-712 .

11. .., .. .-.: , 1983.- 216 .

12. . .: ./ . .. .-.: , 1975.- .2.- 431 .

13. .., .., .. . .-.: , 1978.- 175.

14. . : . . ./ . .. .- .: , 1984.- 224 .

15. . : . ./ . .. , .. .-.: , 1973.- 469 .

16. .., .., .. .- .:- , , 1986.- 326 .

17. . : . ./ . .. .- .: , 1974.-419 .

18. ., - . . : . ./ . .. . -.:- , 1972.- 240 .

19. ., - . : . ./ . .. .- .: , 1984.- 496 .

20. .., .. . ,- .:- , 1963.- 775 .



, :
. . , . . , . . , . ...
X = {x1,x2,x3}, Y = {y1,y2,y3,y4}, = [0,1]. R=XRY , , :
X={x1,x2} Y={y1,y2,y3}, :
:
:
1. G (, ) X={x1, x2, ., xn} xi={x|I=k|, x|I=l ...
X = {x1, x2, x3, x4, x5, x6},
q3 = {q1 (x1/y3), q5 (x2/y2), q2 (x3/y3), q4 (x4/y2)}
:
:
060800 " " ...
, : x - ; y1 - ; y2 - ; y3 - ; 4 ...
. X1, X2, X3, X4, Y1, Y2, Y3, Y4 .
: ,
:
I. . 1) . 2) . 3) , . 4 ...
: x3 - x2 - 8x + 6 = (x - 3)(x2 + 2x - 2), .. (x - 3)(x2 + 2x - 2) = 0. , x1 = 3 - , ...
x + y = 8, : x1 = 3, y1 = 5; x2 = 5, y2 = 3.
:
:
" " , ...
x = (x1, x2, ... ,xn) y = (y1, y2 , ... ,yn) x + y = (x1 + y1, x2 + y2, ... , x n + yn).
x2 = 7/4 x3 + 7/4 x4 -1/4, x1 = 1/4 x3 -3/4 x4 - x5 + 5/4 - , .
:
:
k-
... : " k- "
|X|k, X\Y3 , .. H1 H2 .
Guv xy, VBuv{x, y}=, , 2), , Gxy , VBuv{x, y}, , tuv ...
:
:
1. . 1.1 1.2 1.3 2 ...
2.0 x1 + 1.0 x2 - 0.1 x3 + 1.0 x4 = 2.7
sinx = x - + = x - 0.1667 x3 + 0.0083 x5.
:
:
, , , ( ...
. . -: , , . . . 4 : ...
5. f(x)=a0*xn+ a1*xn-1+.+ an-1*x+an, - - - Ґ1,1,...ЄZ, x1=x2(mod m) => f(x1)=f(x2)(mod m). 6. - mod m - - - ...
a(x1,y1,z1) b(x2,y2,z2) c(x3,y3,z3)
:
: