Контрольная работа: Расчет деревянных конструкций здания

Название: Расчет деревянных конструкций здания
Раздел: Рефераты по строительству
Тип: контрольная работа

Содержание

1. Исходные данные

2. Определение действующих нагрузок

2.1 Определение нагрузок на ограждающую панель

2.2 Определение нагрузок на клеедеревянную балку покрытия

2.3 Определение нагрузок на колонну

3. Расчёт и конструирование клеефанерной ограждающей панели

3.1 Расчётные характеристики материалов

3.2 Геометрические характеристики

3.3 Проверка панели на прочность

4. Расчет и конструирование клеедеревянной балки покрытия

4.1 Конструировнаие

4.2 Расчет клеедеревянных балок покрытий

5. Расчёт колонны

5.1 Исходные данные

5.2 Определение нагрузок и усилий

5.3 Расчет крепления колонны к фундаментус анкеров

6. Обеспечение пространственной устойчивости здания

7. Мероприятия по обеспечению долговечности деревянных конструкций

Список литературы


1. Исходные данные

Проектируемое здание – промышленное отапливаемое, однопролётное. Пролёт здания 15 м, шаг колонн 6 м, высота 8,5 м, тепловой режим – холодный. Длина здания 30 м. Снеговая нагрузка для Новосибирска 1,5 кПа, ветровая нагрузка 0,45 кПа.


2. Определение действующих нагрузок

2.1 Определение нагрузок на ограждающую панель

Место строительства г. Новосибирск.

Нагрузки на 1 м2 горизонтальной проекции панели

Наименование нагрузки Нормативная нагрузка, кН/м2

Коэффициент перегрузки

γf

Расчетная нагрузка, кН/м2
Постоянная
Три слоя рубероида на битумной мастике 0,090 1,3 0,117
Фанерные полки (0,009 + 0,006)*700/100*1,5 0,16 1,1 0,18
Рёбра (0,046*0,169*5,98*4+ 0,046*0,144*0,43*15)*500/100*6 0,19 1,1 0,21
Постоянная 0,44 0,51
Снеговая 1,5 1,6 2,4
Полная 1,94 2,91

Коэффициент надежности для снеговой нагрузки γf = 1,6 определяемый в зависимости от отношения нормативного собственного веса покрытия к нормативному весу снегового покрова: gn / S0 = 0,44 / 1,5 = 0,3 < 0,8.

кН м,

кН,

где расчётный пролёт плиты l = 5,98 – 0,06 = 5,92 м.


2.2 Определение нагрузок на клеедеревянную балку покрытия

Исходные данные: балка двускатная многослойная клееная; расчетный пролет l =15 м; поскольку кровля рулонная принимаем уклон i =0,1.

Сбор нагрузок:

Наименование нагрузки

Норм. нагрузка,

кН/м

Коэффициент

надежности

Расч.нагрузка,

кН/м

Постоянная

Утепленная плита покрытия

1,45 х 6

2,42 2,966
Собственная масса (0,25*1,2*5) 1,5 1,1 1,65
Итого: 3,92 4,62
Временная
Снеговая нагрузка 3,15 1,4 4,41

Нагрузка на 1 м.п. балки: нормативная: qn =7,07 кН / м; расчетная: q =9,03кН / м.


3. Расчёт и конструирование клеефанерной ограждающей панели

3.1 Расчётные характеристики материалов

Плиты утепленные, под рулонную кровлю; обшивки из берёзовой фанеры марки ФСФ сорта В/ВВ (расчетное сопротивление растяжению Rф.р.=14МПа; расчетное сопротивление скалыванию Rф.ск.=0,8МПа; модуль упругости Еф=9000МПа); фанера соединяется с деревянным каркасом клеем марки ФР-12; ребра из сосновых досок II сорта (сечением 46 х 169 мм, расчетное сопротивление изгибу Rдр.и.=13МПа; модуль упругости Едр=10000МПа); толщина фанеры для верхней обшивки принята равной δс = 9 мм, нижней δр = 6 мм.

Принимаем размеры плит: ширина bп = 1470 мм; высота = 184 мм; длина = 5980 мм.

Количество продольных ребер определяется из условия продавливания верхней обшивки панели монтажной нагрузкой P = 1,2 кН.

Принято два наружных и два внутренних продольных ребра. Поперечные рёбра из таких же досок расположены через 1,5 м по длине панели в местах стыковки фанерных обшивок.

3.2 Геометрические характеристики

а = b0 + bp = 42,9 + 4,6 = 47,5 см; l = 592 > 6 а = 6*47,5 = 285 см.

Приведённая ширина полки, см:

bврасч = 0,9 bв = 0,9*147 = 132,3;

bнрасч = 0,9 bн = 0,9*149 = 134,1.


Геометрические характеристики панели приводим к фанере.

Расчётная схема дощато-фанерной панели

Приведенная площадь сечения:

Fпр = Fф + FеЕ/Еф, Fпр = 134,4*0,6 + 132,3*0,9 + 4,6*4*16,9*1000/900 = 80,5 + 119,1 + 345,1 = 545 см2.

Статический момент площади сечения относительно нижней грани плиты:

Расстояние от нижней грани плиты до центра тяжести сечения:

; h – y0 = 8,7 см.

Приведённый момент инерции:

,


Моменты сопротивления, см3:

см3,

см3.

3.3 Проверка панели на прочность

Прочность нижней полки на растяжение:

МПа

Устойчивость верхней полки по формуле:

МПа,

где при , .

Проверка верхней полки на местный изгиб по формуле:


Проверка скалывающих напряжений по клеевому слою между шпонами фанерной обшивки в зоне приклейки продольных ребер каркаса:

Приведенный статический момент:

Расчетная ширина клеевого соединения:

Касательные напряжения:

Проверка панели на прогиб от нормативной нагрузки:

, где

1/200 - предельный прогиб в панелях покрытий.

Следовательно, клееефанерная плита имеетпрогибы от нормативных нагрузок, не превышающие допускаемых, и ее несущая способность по отношению к расчетным нагрузкам имеет дополнительные запасы несущей способности.

Вывод: по расчёту принимаем плиту размером в плане 5980*1470 мм с четырьмя продольными рёбрами сечением 46*169 мм. Листы фанеры длиной 1525 мм состыковываем на «ус» в трёх местах по длине плиты. Поперечные рёбра в торцах плиты и под стыками фанеры. Верхняя полка толщиной – 9 мм, нижняя – 6 мм.


4. Расчет и конструирование клеедеревянной балки покрытия

4.1 Конструировнаие

Поперечное сечение балки проетируем прямоугольным. Высоту балки в середине пролета назначаем равной

Балку составляем из досок толщиной в заготовке 50мм, а в деле после двухсторонней острожки - 45мм. В середине пролета балку собираем из 34 слоев досок, что обеспечивает балке высоту h = 34*4,5 = 153 см.

Высота балки на опоре при заданном уклоне кровли должна быть

Принимаем 17 досок, что составляет 17*4,5=76,5см=0,5h

Максимальная ширина сечения балки принимается равной 16,5см.

Назначаем ширину досок в заготовке 160 мм, а в деле, после острожки боковых поверхностей склеенной балки b = 150мм.


4.2 Расчет клеедеревянных балок покрытий

Расчёт производится в большинстве случаев на изгиб как одноролетных шарнирно опертых балок на равномерно распределенную нагрузку от собственного веса элементов покрытия и веса снега.

Расстояние от оси опоры двускатной балки до наиболее напряженного сечения при работе на изгиб:

Изгибающий момент в опасном сечении:

Высота балки в расчетном сечении:


Момент сопротивления сечения:

,

где - коэффициент условий работы балки вычотой 114см.

Нормальные напряжения от изгиба:

,

где =15 МПа расчетное сопротивление изгибу клееной древесины, принимаемое с учетом большей надежности балок сечением более 13 см; - коэффициент условий работы учитывающий повышение несущей способности клеедеревянной балки (по мере уменьшения толщины склеиваемых досок снижается влияние пороков древесины) при толщине 42 мм и более =0,95.

Расчет клеедеревянных балок на скалывание производится на действие в сечении над опорами максимальных поперечных сил по формуле:

Момент инерции сечения балки в середине пролета:


Коэффициент учитывающий переменность сечения:

к=0,15+0,85h0/h=0.575

Относительный прогиб балки:

Требуемая площадь смятия опорной подушки

,

где - расчетное сопротивление смятию поперек волокон в опорных плоскостях конструкций.

При ширене балки b=15 cм, требуемая ширина опорной площадки равна:

см. Принимаем 20 см.


5. Расчёт колонны

5.1 Исходные данные

Высота здания 7,5м; высота колонны 5,97 м; город строительства Новосибирск.

Расчетная схема

5.2 Определение нагрузок и усилий

Характер распределения статической составляющей ветровой нагрузки в зависимости от высоты над поверхностью земли определяют по формуле:

wm = wo×k×c×B×γf,

где wo нормативное значение ветрового давления, принимаемое в зависимости от района строительства, wo = 1,5 кПа;

k — коэффициент, учитывающий изменение ветрового давления в зависимости от высоты здания;

с — аэродинамический коэффициент; c = 0,8 - для наветренной стороны, c = 0,6 - для подветренной стороны;

= 1.4; B = 4,5 м — шаг стропильных конструкций.

Определим коэффициент k на высоте до 5 м, а также в уровне конька 7.5 м для напора и отсоса при направлении действия ветровой нагрузки слева и справа.

h, м к
5,0 0.5
7,5 0.58

qн = wo×k×c×B×γn×γf = 1,5×0,5×0,8×6×1,4 = 1,764 кН/м

qо = wo×k×c×B×γn×γf = 1,5×0,58×0,6×6×1,4 = 1,535 кН/м

Нагрузка от плит покрытия на 1 м2 горизонтальной проекции кН/м2, нагрузка от балки кН/м2, снеговая нагрузка кН/м2.

Для определения массы колонны задаемся предварительными размерами ее сечения, исходя из предельной гибкости , следовательно: b ≥ l0y / (0,289∙λх) = 597/ (0,289∙100)=20,65 см; Принимаем по сортаменту с учётом острожки b = 217 мм.

см,

где l0 = 2,2*5,97=13,134 м — расчётная длина колонны в плоскости рамы.

Сечение колонны составим из 14 досок b´h =217´33 мм в виде пакета b´h = 217х462 мм. Плотность древесины кг/м3.


Площадь: см2,

Момент сопротивления: см3,

Момент инерции: см4,

Радиусы инерции: см, см,

Момент сопротивления: см3.

Поперечная рама одноэтажного здания, состоящая из двух колонн, упруго защемленных в фундаментах и шарнирно связанных с ригелем, представляет собой один раз статически неопределимую систему.

Продольное усилие в ригеле такой рамы от равномерно распределенной ветровой нагрузки:

кН,

где H - расстояние от уровня чистого пола до низа стропильных конструкций.

Максимальный изгибающий момент в колонне от ветровой нагрузки на уровне верха фундамента:

в левой колонне:

кНм,


в правой колонне:

кНм.

Нагрузка на колонну от веса стены:

Рcт = gcт∙H∙B = 0,485∙5,97∙4,5=13,03 кH

Усилие в ригеле от нагрузки стеновых панелей:

кН,

где кН∙м,

Эксцентриситет:

см.

Момент от стены:

Мcтлев =- Мcт +хст∙H = -4,51+ 0,647∙5,97 = 0,647кНм

Мcтпр = Мcт –хст∙H = 3,43–0,647∙5,97 = -0,647кНм

Собственный вес колонны:

кН


Нагрузка от плит покрытия:

кН,

где м толщина стеновых панелей, м вылет карниза.

Нагрузка от балки:

кН

Нагрузка от снега:

кН.

Расчетная сила в колонне на уровне верха фундамента:

в левой колонне:

кН,

в правой колонне:

кН.

Усилия в левой стойке

№ п/п Вид нагрузки M,кНм N,кН
1 Вес покрытия и фермы 33,47
2 Снег 36,3
3 Стена 0,647 13,03
4 Собств. вес колонны 2,99
5 Ветер 29,88

1. сочетание 1 + 3 + 4 + 2 - N = 85,79кН, M = 0,647кНм

1+3+4+5 N = 49,49кН, M = 30,53кНм

2. сочетание 1+3+4+(2+5)*0.9 N = 82,16кН, M =27,54кНм

3. сочетание (1+3+4)×0.9/1.14 + 5 N = 39,07кН, M = 30,39кНм

В плоскости рамы расчет на прочность проводят на действие максимальных продольных сжимающих сил и изгибающих моментов от расчетных нагрузок по формуле:

,

где при мм, при толщине досок 33мм, – коэффициент условий работы.

Изгибающий момент с учетом деформаций определяется по формуле:

,

где коэффициент влияние деформаций изгиба

коэффициент продольного изгиба.


,

Действующий изгибающий момент:

кНм.

Напряжения в колонне:

Расчет на устойчивость плоской формы деформирования сжато-изгибаемых элементов проводят по формуле:

,

где – для элементов, имеющих закрепление растянутой зоны из плоскости деформирования, jу – коэффициент продольного изгиба для гибкости участка элемента расчетной длиной lp из плоскости деформирования; jm – коэффициент, определяемый по формуле

, кф = 2.32

<120,


следовательно, связи в плоскости колонн не обязательны, но для надежной работы колонн связи ставим, соединив их попарно в середине высоты, тогда гибкость из плоскости <120, коэффициент продольного изгиба:

.

Определим коэффициенты и :

где – для прямолинейных элементов,

– число подкрепленных точек растянутой кромки.

.

Подставляя полученные значения в формулу, получим:

,

Следовательно устойчивость обеспечена.


5.3 Расчет крепления колонны к фундаментус анкеров

Расчетные усилия: N = 39,07кН, M = 30,39кНм

Коэффициент

,

Поправочный коэффициент:

кн = aн + x(1– aн)=1,22 + 0,93∙(1 – 1,22) = 1,015

Мд = кНм.

Эксцентриситет: е0 = м.

Напряжение сжатия в крайнем анкере

МПа.

Напряжение растяжния в крайнем анкере

МПа.

Расстояние сжатой зоны


м,

h0 = h – a = 0,462 – 0,05 = 0,412 м, где a = 50мм

м;

м;

Определим усилия в анкере

кН.

Требуется площадь анкерных болтов

где Rв.а = 185 для болтов из стали ВСт3кп2

0,85 – коэффициент, учитывающий неравномерность включения в работу анкерных болтов.

Принимаем два болта Æ20мм с А = 3,14 см2

Определим расчетом количество нагелей, крепящих металлическую пластину к колонне. Несущая способность одного нагеля Æ20мм:

Тн4 = 2.5 × d2 = 2.5 × 22 = 10кН

Количество нагелей:


nн = , принимаем нагеля Æ20мм.


6. Обеспечение пространственной устойчивости здания

Деревянное каркасное здание представляет собой сложную пространственную систему, образованную из плоских конструкций. Их расположение и соединение между собой обеспечивают надёжное восприятие внешних усилий любого направления в соответствии с условиями эксплуатации. Компонуют каркас так, чтобы усилия передавались с одной конструкции на другую и кратчайшим путём доводились до фундамента. При этом не должны нарушаться пространственная неизменяемость, устойчивость и прочность всей системы и отдельных её элементов.

В зданиях различные плоскостные конструкции (балки, арки, фермы) соединяются между собой связями, образуя пространственную жесткую систему, обеспечивающую надежное восприятие внешних сил любого направления.

Поперечную устойчивость и неизменяемость каркаса здания создают плоские несущие конструкции, способные воспринимать кроме вертикальных нагрузок также горизонтальные.

Продольную неизменяемость и устойчивость каркасов зданий и сооружений, как правило, обеспечивают постановкой в плоскости стен связевых систем, которые соединяют между собой несущие и ограждающие конструкции и образуют жесткие диски. Связевые системы воспринимают внешние в основном горизонтальные нагрузки с передачей их на фундаменты, фиксируют в проектном положении плоские несущие конструкции и предотвращают деформации их в плоскости, перпендикулярной плоскости несущей конструкции вследствие возможной потери устойчивости их сжатых частей.

Вертикальные связи между фермами размещаются так, чтобы ни одна ферма не осталась без вертикальных связей, что приводит к их расстановке через пролет между рамами, а при четном количестве пролетов приходится их устанавливать подряд в двух пролетах.

Связи в плоскости нижних поясов ферм и вертикальные связи между фермами придавая пространственную жесткость конструкции, позволяют наряду с прочими элементами каркаса распределять ветровую нагрузку, действующую на торец здания между всеми рамами.

Кроме связей между фермами в каркасе здания выделяют связи между колоннами в плоскости стены между колоннами. Они устанавливаются в крайних от торцов здания пролетах, а в зданиях, длинна которых превосходит 30 м, и в центральных пролетах.


7. Мероприятия по обеспечению долговечности деревянных конструкций

Деревянные конструкции необходимо предохранять от гниения, возгорания и увлажнения. К мерам конструкционной защиты от гниения деревянных конструкций относятся: устройство надежной гидроизоляции и пароизоляции, обеспечение свободного доступа к опорным конструкциям, гидроизляция деревянных элементов от других материалов, устройство вентиляционных продухов в стеновых панелях и плитах покрытия.

Для огнезащитной пропитки древесины применяют вещества, называемые антиперенами. Эти вещества, введенные в древесину, при опасном нагреве плавятся и разлагаются, покрывая огнезащитными пленками или газовыми оболочками, препятствующими доступу кислорода к древесине, которая при это может медленно разлагаться и тлеть, не создавая открытого пламени и не распространяя огня. Также применяются различные защитные краски и другие составы.

Для изготовления деревянных конструкций допускается использовать материалы с определенной влажностью, в зависимости от температуры и режима внутри помещения.

При эксплуатации конструкций в условиях постоянного и периодического увлажнения и невозможности устранить эти факторы с помощью конструктивных мер необходимо предусмотреть обработку древесины антисептиками.


Список литературы

1. Конструкции из дерева и пластмасс: Учеб. пособие для вузов / Г.Н. Зубарев, Ф.А. Бойтемиров, В. М. Головина и др.; Под ред. Ю. Н. Хромца. М.: Издательский центр «Академия», 2004. – 304 с., ил.

2. СНиП II-25-80. Деревянные конструкции / Госстрой СССР. — М.: Стройиздат, 1982.

3. СНиП 2.01.07-85. Нагрузки и воздействия / Госстрой СССР. — М.: ЦИТП Госстроя СССР, 1987.