Реферат: Нелинейные и линейные модели биполярного транзистора
Название: Нелинейные и линейные модели биполярного транзистора Раздел: Рефераты по коммуникации и связи Тип: реферат | |||||
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра систем телекоммуникаций РЕФЕРАТ На тему: «Нелинейные и линейные модели биполярного транзистора » МИНСК, 2008 В зависимости от сочетания напряжений на p-n-переходах биполярный транзистор (БПТ) может работать в нормальном (активном), инверсном режимах, режимах насыщения и запирания (отсечки). Различают три схемы его включения: с общим эмиттером (ОЭ); общей базой (ОБ); общим коллектором (ОК). Наиболее распространенной нелинейной моделью БПТ является модель Эберса – Молла в схеме ОБ , приведенная на рис. 1, а для Т типа p-n-p. Она отличается сравнительной простотой и не учитывает эффект Эрли, пробой переходов, зависимость коэффициента a передачи от тока, объемные сопротивления слоев эмиттера, коллектора, базы и ряд других факторов. В модели переходы представлены диодами, их взаимодействие – генераторами токов
где по аналогии с (1.1)
UК =0 (UЭ =0). Последующей подстановкой (2) в (1) получаем известные формулы Эберса – Молла:
Описываемые (3) зависимости IЭ =f1 (UЭ , UК ) и IК =f2 (UЭ , UК ) представляют собой статические ВАХ БПТ. Они, несмотря на идеализацию, хорошо отражают особенности прибора при любых сочетаниях напряжений на переходах. В случае кремниевых Т расчеты дают бόльшую погрешность, так как у них, по сравнению с германиевыми, обратный ток существенно отличается от теплового. Известно, что тепловой ток коллектора IК0
(эмиттера IЭ0
) соответствует режиму обрыва цепи эмиттера (коллектора) и большого запирающего напряжения |UК
|>>mjT
(|UЭ
|>>mjT
) на коллекторе (эмиттере). Полагая с учетом этого в (1) и (2) IЭ
= 0, IК
=IК0
, I2
=–
В БПТ выполняется условие
Семейства (5) коллекторных характеристик IК =φ1 (UК ) с параметром IЭ и эмиттерных характеристик UЭ =φ2 (IЭ ) с параметром UК более удобны для практики, поскольку проще задать ток IЭ , а не напряжение UЭ . В активном режиме UК <0 и |UК |>>mjT , поэтому зависимости (1.13) переходят в следующие:
Реальные коллекторные характеристики БПТ, в отличие от (7), неэквидистантны: расстояние между кривыми уменьшается при больших токах IЭ
вследствие уменьшения коэффициента Усредняя нелинейное сопротивление rК коллекторного перехода и добавляя слагаемое в (7), приходим к выражению, описывающему семейство реальных коллекторных характеристик БПТ в схеме с ОБ:
Этому уравнению соответствует нелинейная модель на рис. 2, б, в которую введено объемное сопротивление rБ базы. Модель удобна для расчета усилительных каскадов в режиме большого сигнала. При необходимости в нее дополнительно вводят сопротивления слоев rЭЭ (эмиттера) и rКК (коллектора). Последние, однако, в большинстве случаев несущественны. Коллекторные характеристики IК =y1 (UК ) БПТ в схеме с ОЭ имеют следующие отличия от аналогичных в схеме с ОБ: полностью расположены в первом квадранте, поскольку |UКЭ | =|UКБ | +UЭ ; менее регулярны, имеют значительно больший и неодинаковый наклон, заметно сгущаются при значительных токах; ток IК при обрыве базы (IБ = 0) намного больше тока IК =IК0 при обрыве эмиттера (IЭ =0); входной ток IБ может иметь не только положительную, но и небольшую отрицательную величину; имеют меньшее напряжение Ub пробоя. Входные характеристики IБ =y2 (UБ ), по сравнению с аналогичными в схеме с ОБ, имеют другой масштаб токов; сдвинуты вниз на величину тока IК0 , который протекает в базе при IЭ =0; несколько более линейны; с увеличением напряжения |UКЭ |сдвигаются вправо, в сторону бόльших напряжений UБ . Подстановкой IЭ =IК +IБ из выражения (8) вытекает аналитическая зависимость для семейства коллекторных характеристик IК =y1 (UК ) БПТ в активном режиме в схеме с ОЭ:
где
Минимальное значение IК =IК0 соответствует IБ = -IК0 . Поэтому в диапазоне IБ = 0…-IК0 БПТ в схеме с ОЭ управляется отрицательным входным током. Уравнению (9) отвечает нелинейная модель БПТ в схеме с ОЭ (рис. 2). Она, как и предыдущая модель, не отражает сдвига входных характеристик вследствие эффекта Эрли, что несущественно в режиме большого сигнала. Малосигнальная Т-образная модель БПТ в схеме с ОБ (рис.3, а) вытекает из нелинейной модели (см. рис.1, б). В ней исключен генератор постоянного тока IК0 ; введено дифференциальное сопротивление rК коллекторного пере- хода; эмиттерный Д заменен дифференциальным сопротивлением rЭ
; обратная связь по напряжению отражена генератором mЭК
UК
; коэффициент
В общем случае дифференциальный коэффициент
Но эти отличия в большинстве случаев невелики, и на практике часто полагают Дифференциальное сопротивление эмиттерного перехода в активном режиме описывается выражением
из которого следует: при UЭ
=0 (IЭ
=0) Дифференциальное сопротивление (А – постоянный коэффициент, зависящий от свойств Т) обусловлено эффектом модуляции толщины базы, который тем сильнее, чем меньше |UК | и больше удельное сопротивление базы. В случае маломощных БПТ значения rК лежат в пределах от сотен до тысяч килоом. Коэффициент внутренней обратной связи по напряжению (B>0 – постоянный коэффициент, зависящий от свойств Т) характеризует влияние напряжения UК на напряжение UЭ из-за модуляции толщины базы и имеет отрицательный знак, так как увеличение |UК | уменьшает эмиттерное напряжение. Обычно параметр |mЭК | имеет малые значения порядка 10–6 …10–4 , что означает слабое смещение входныххарактеристик при изменении коллекторного напряжения. Иногда отрицательную обратную связь в БПТ отражают в модели не генератором mЭК UК, а диффузионным сопротивлением rБд базы, включенным последовательно с ее объемным сопротивлением rБ . При этом
В общем случае каждая из емкостей СК , СЭ переходов состоит из диффузионной (СКд , СЭд ) и барьерной (СКб , СЭб ) составляющих. Учитывая, что в активном режиме эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном, с допустимой погрешностью можно положить: СЭ =СЭд ; СК =СКб . Емкости СЭд и СКб определяются так же, как в Д. Коллекторная емкость СК , шунтируя большое сопротивление rК , существенно влияет на работу Т, начиная с десятков килогерц. Наоборот, емкость СЭ обычно учитывают на частотах, превышающих десятки мегагерц. Частотно-временные характеристики коэффициента a передачи, в основном определяемые динамическими свойствами коэффициента c переноса, задают комплексным коэффициентом
где tD – среднее время пролета носителей (см. подраз. 1.2). Малосигнальная Т-образная модель БПТ в схеме с ОЭ (рис.3, б) вытекает из соответствующей нелинейной модели (см. рис.2). В нее, в отличие от схемы с ОБ, входит дифференциальный коэффициент
передачи базового тока, который с учетом (11) равен
Его динамические характеристики задают присутствующим в модели комплексным коэффициентом
где В области высоких частот ( В схеме с ОБ при заданном токе IЭ
приращение выходного напряжения падает полностью на коллекторном переходе (сопротивлением rБ
пренебрегаем). В схеме с ОЭ при заданном токе IБ
приращение напряжения UК
распределяется между обоими переходами. В результате изменение тока IК
сопровождается равным изменением тока IЭ
(рис.3, а, б). Учитывая это и полагая дополнительно СК
= 0, с помощью (12) приходим к операторному уравнению
что на низких частотах соответствует
что на низких частотах соответствует Таким образом, входящие в модель БПТ в схеме с ОЭ параметры Исключительное значение для стабильности схем на БПТ имеет температурная зависимость IК0 (T), приводящая к смещению выходных и входных характеристик Т. Поведение функции IК0 (T) применительно к Д: она имеет экспоненциальный характер; температура удвоения составляет примерно 8 (5) о С для Ge (Si); у кремниевых транзисторов до температуры порядка 100 о С основную роль играет не тепловой ток, а ток термогенерации, который достаточно мал, что позволяет во многих случаях с ним не считаться. Аналогична Д и температурная зависимость UЭ (T) напряжения на эмит-терном переходе. При этом для кремниевых и германиевых Т значение температурного коэффициента e составляет примерно минус 2 мВ/град. Помимо Т-образных на практике широко используются малосигнальные П-образные модели БПТ в схеме с ОЭ: основная и гибридная (схема Джиаколетто) (рис.4, а, б). В обеих моделях используются проводимости (комплексные
Для выражения одних параметров через другие исключим сопротивление rБ
, одинаковое в обеих схемах, и составим 4 уравнения: приравняем друг к другу входные (базовые) и выходные (коллекторные) токи обеих схем при заданном входном напряжении и коротком замыкании на выходе, а затем базовые напряжения и коллекторные токи при заданном выходном напряжении и холостом ходе на входе (аналогично системе h-параметров). Тогда при дополнительном условии
где смысл параметров a, b, rЭ
, rК
, Из полученных выражений вытекает: структура проводимости Параметры основной П-образной модели нетрудно получить, учитывая сопротивление rБ на входе. Но параметры этой модели зависят от частоты, что неудобно. Поэтому основная П-образная схема применяется редко: при анализе цепей с практически постоянной рабочей частотой. В Т- и П-образных малосигнальных моделях внутренняя базовая точка Б’ недоступна для подключения измерительных приборов. Поэтому в справочной литературе часто приводят параметры Т, измеренные со стороны внешних разъемов. При этом Т рассматривается в виде четырехполюсника с произвольной структурой, который в общем случае можно описать любой из шести систем уравнений, связывающих входные и выходные токи и напряжения. На практике больше применяются системы Z-, Y- и h-параметров (рис.5):
Системы параметров равносильны, но в транзисторной технике по ряду причин используется смешанная h-система, где h11 (h21 ) – входное сопротивление (коэффициент прямой передачи тока) при коротком замыкании на выходе, а h12 (h22 ) – коэффициент обратной передачи напряжения (выходная проводимость) при холостом ходе на входе. Задавая в Т-образной модели БПТ в схеме с ОБ ток IЭ и полагая напряжение UК = 0, затем задавая напряжение UК и принимая ток IЭ = 0, устанавливаем взаимосвязь ее параметров на низких частотах с системой h-параметров:
Аналогично устанавливается связь h-параметров с параметрами Т-образной модели БПТ в схеме с ОЭ:
Малосигнальная модель БПТ в системе h-параметров во многом подобна Т-образной и совпадает с ней для идеального одномерного Т (при rБ = 0). ЛИТЕРАТУРА 1. Бытовая радиоэлектронная техника: Энциклопедический справочник/ Под ред. А.П. Ткаченко. – Мн.: Бел. Энциклопедия, 2005. – 832 с. 2. Хохлов Б. Н. Декодирующие устройства цветных телевизоров. – 3-е изд., перераб и доп. – М.: Радио и связь, 2008. – 512 с. 3. Ткаченко А.П., Хоминич А.Л. Повышение качества изображения и звукового сопровождения. Ч. 1: Тракты промежуточной частоты изображения и звукового сопровождения телевизионных приемников: Учебное пособие для студентов специальностей “Телекоммуникационные системы” “Радиотехника” и “Радиотехнические системы”: В 2-х ч.– Мн.: БГУИР, 2001.– 55 с. |