Реферат: Продольные и поперечные волны
Название: Продольные и поперечные волны Раздел: Рефераты по физике Тип: реферат |
РЕФЕРАТ на тему: "ПРОДОЛЬНЫЕ И ПОПЕРЕЧНЫЕ ВОЛНЫ" учениця 11 класу Мельник Анжела ПРОДОЛЬНЫЕ И ПОПЕРЕЧНЫЕ ВОЛНЫ В физике мы имеем дело с волнами различной природы: механическими, электромагнитными и т.д. Несмотря на отличия, эти волны имеют много общих черт. Волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называются продольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называются поперечными. Если взаимосвязь между частицами среды осуществляется силами упругости, возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими. К ним относятся звуковые, ультразвуковые, сейсмические и др. волны. На первой анимации изображён процесс распространения продольной упругой волны в решётке, состоящей из шариков, соединённых упругими пружинками. Каждый шарик колеблется по гармоническому закону в продольном направлении, совпадающем с направлением распространения волны. Амплитуда каждого шарика одинакова и равна A, а фаза колебаний линейно растёт с увеличением номера шарика на т.е x0 =Asin(t); x1 =Asin(t+); x2 =Asin(t+2); x3 =Asin(t+3); ит.д. где -частота волны, t - время, - изменение фазы от шарика к шарику В поперечной волне колебания происходят в направлении, перпендикулярном направлению распространения волны. Как и в случае продольных волн амплитуды колебаний всех шариков одинаковы, а фаза линейно изменяется от шарика к шарику y0 =Bsin(t);y1 =Bsin(t+); y2 =Bsin(t+2); y3 =Bsin(t+3);и т.д. В общем виде уравнение распространения волны может быть записано в виде: z =Acos(tkxгде z - координата, по которой происходит движение частиц, x - координата оси, вдоль которой распространяется волна, k - волновое число, равное / v, v - скорость распространения волны. Зная частоту волны и скорость её распространения, мы можем найти сдвиг фаз между соседними шариками (частицами): / v)a, где a - расстояние между шариками в решётке. На следующей анимации изображено наложение продольной и поперечной волн равной амплитуды, сдвинутых по фазе на 90 градусов. В результате каждая масса совершает круговые движения. Уравнение движения каждого шарика может быть описано уравнением: x=Acos(t+ ); y=Asin(t+ ) У волн, наблюдаемых на поверхности жидкости, так называемых поверхностных волн, взаимосвязь между соседними элементами поверхности жидкости при передаче колебаний осуществляется не силами упругости, а силами поверхностного натяжения и тяжести. Колебания масс в сетке моделируют движение молекул в волне на поверхности жидкости. В случае малой амплитуды волны каждая масса движется по окружности, радиус которой убывает с расстоянием от поверхности. Массы внизу сетки находятся в покое . Волны на поверхности жидкости не являются ни продольными, ни поперечными. Как мы можем видеть на анимации, красный шарик, моделирующий молекулу поверхности жидкости, движется по круговой траектории. Таким образом, волна на поверхности жидкости представляет собой суперпозицию продольного и поперечного движения молекул. ИНТЕРФЕРЕНЦИЯ И ДИФРАКЦИЯ ВОЛН НА ПОВЕРХНОСТИ ЖИДКОСТИ Интерференция двух линейных волн Рассмотрим волну, возникающую на поверхности жидкости под воздействием колебаний длинного цилиндрического стержня: z =Acos(t где A - амплитуда колебаний цилиндра, = 2f, f - частота колебаний, t - время. Если волна распространяется без затухания, то любая точка поверхности жидкости будет колебаться с той же амплитудой, что и стержень, но фаза колебаний будет изменяться пропорционально расстоянию от него: z =Acos(tkx где k = / v, v - скорость распространения волны. В общем случае, волна будет затухать из-за внутреннего трения жидкости и амплитуда колебаний A будет уменьшаться с расстоянием. Далее рассмотрим случай интерференции волн от двух стержней, вибрирующих с одинаковой частотой. Предположим, что расстояние между стержнями - d. Амплитуда колебаний поверхности жидкости в любой точке с координатой x может быть найдена как сумма двух волн: z = Acos(t - kx) + Acos(t + k(x - d)) Волновое число k входит в вышеуказанную формулу с разными знаками, что соответствует противоположному направлению распространению волн от двух стержней. Эта формула может быть также переписана в виде: z = 2Acos(t - kd/2)cos(kx - kd/2) Полученное выражение описывает интерференцию двух линейных волн, распространяющихся в противоположных направлениях (стоячая волна). Мы можем видеть из этого выражения, что существуют точки на поверхности жидкости, где волны интерферируют в противофазе и колебания в этих точках отсутствуют (так называемые узлы), и имеются точки, где волны накладываются, усиливая друг друга, и в этих точках колебания происходят с удвоенной амплитудой 2A (пучности). Узлы возникают в точках, для которых верно равенство cos(kx - kd/2)=0, то есть в точках x= /2 (1/2+n)+d/2, где n - целое число, а - длина волны. Это означает, расстояние между соседними узлами равно половине длины волны. То же самое утверждение справедливо и для расстояния между максимумами интерференционной картины. Так пучности появляются в точках для которых cos(kx -kd/2) равняется +1 или -1, то есть в точках x= n /2+d/2. Зная частоту колебаний стержней и измеряя расстояние между узлами или пучностями (при помощи, например, микроскопа), мы можем найти скорость распространения волн на поверхности жидкости и затем, зная эти данные, мы можем вычислить многие важные параметры среды, в которой распространяется волна. Анимация показывает интерференцию двух волн на поверхности жидкости, возбуждаемых вибрирующими стержнями. Волны распространяются в противоположных направлениях и интерферируют с образованием стоячей волны. Красный шарик расположен в пучности стоячей волны и колеблется с максимальной амплитудой. Параллелепипед расположен в узле интерференционной картины и амплитуда его колебаний равна нулю (он совершает лишь вращательные движения, следуя наклону волны). Круговые волны на поверхности жидкости Наблюдение волн на поверхности жидкости позволяет изучить и визуально представить многие волновые явления, общие для разных типов волн: интерференцию, дифракцию, отражение волн и т.д. Рассмотрим круговую волну на поверхности жидкости, создаваемую точечным источником, в качестве которого мы возьмём маленький шарик на поверхности жидкости, колеблющейся в вертикальном направлении с малой амплитудой. Так как шарик имеет конечные размеры, то каждая его точка, соприкасающаяся с жидкостью, является, по существу, точечным источником волн, наложение которых и даёт действительную волну. Однако на расстоянии, много большем диаметра шарика, этим можно пренебречь и образующиеся волны рассматривать как круговые, т.е. состоящий из концентрических окружностей. При этом сам шарик принимают за точечный источник волн. Отметим, что плоскую волну всегда можно представить как сферическую, но с бесконечно большим радиусом, т.е. считать центр плоской волны находящимся в бесконечности. Интерференция волн от двух точечных источников Рассмотрим теперь два маленьких шарика, колеблющихся на поверхности жидкости. Каждый из шариков возбуждает волну. Налагаясь, эти волны дают интерференционную картину, показанную на анимации. Рассмотрим уравнение, описывающее интерференционную картину. Если пренебречь затуханием, то волна от каждого шарика может быть записана следующим образом: s1 =A1 cos(t -kr1 ); s2 =A2 cos(t - kr2 ); где A1 и A2 - амплитуды волн, r1 и r2 - расстояния соответственно от первого и второго шарика, k= / v, v - скорость распространения волн. Так как разность =r2 -r1 много меньше, чем каждое из расстояний r1 и r2 , мы можем положить A= A1 = A2 . В этом приближении наложение волн s1 и s2 описывается следующим выражением: s = s1 + s2 = 2Acos[ k(r2 - r1 )/2 ] cos[t - k(r1 + r2 )/2 ] Из этого выражения видно, что в точках, для которых r2 -r1 = (1/2+n) , поверхность жидкости не колеблется. Эти узловые точки (линии) отчётливо видны на анимации. Интерференция круговой волны в жидкостис её отражением от стенки Рассмотрим точечный источник волн на поверхности жидкости (колеблющийся шарик) и полностью отражающую стенку, установленную в на некотором расстоянии от него. Если расстояние от источника до стенки кратно целому числу полуволн, то исходная круговая волна будет интерферировать с волной, отражённой от стенки, создавая в волновой ванне интерференционную картину, как показано на анимации. Согласно принципу Гюйгенса, отражённая волна совпадает с той, которая бы возбуждалась фиктивным точечным источником, расположенным по другую сторону стенки симметрично реальному источнику круговых волн. При этом если расстояние от источника до стенки кратно целому числу полуволн, то справа от источника на оси соединяющей фиктивный и реальный источник разность фаз будет кратна целому числу волн и круговая волна накладывается в фазе с волной, отражённой от стенки, увеличивая высоту гребней в интерференционной картине. На следующей анимации также изображена картина интерференции круговой волны на поверхности жидкости с её отражением от стенки. В этом случае расстояние между точечным источником и стенкой кратно целому числу полуволн плюс четверть волны (или, иначе говоря, равно нечётному числу четверть волн). При этом справа от источника круговая волна накладывается в противофазе с волной, отражённой от стенки. В результате мы видим, что в широкой полосе справа от источника колебания жидкости отсутствуют. Дифракция круговой волны на узкой щели На следующей анимации приведена модель дифракции круговой волны на узкой щели в стенке, установленной в кювете с жидкостью. Слева от стенки мы видим появление отражённой волны, а справа от стенки возникает новая круговая волна с меньшей амплитудой, что соответствует принципу Гюйгенса-Френеля. Согласно этому принципу, первоначально введённому голландским учёным Х.Гюйгенсом (Ch.Huygens, 1678), каждый элемент поверхности, которой достигла в данный момент волна, является центром элементарных волн, огибающая которых будет волновой поверхностью в следующий момент времени; при этом обратные элементарные волны во внимание не принимаются. Французский физик О.Ж.Френель (A.J.Fresnel, 1815) дополнил принцип Гюйгенса, введя представление о когерентности элементарных волн и интерференции волн, что позволило рассматривать на основе принципа Гюйгенса-Френеля многие дифракционные явления. Согласно этому принципу, волновое возмущение за непроницаемой стенкой со щелью, как показано на анимации, можно рассматривать как результат интерференции вторичных волн, образующихся в пространстве щели. Если щель узкая и удалена на значительное расстояние от источника, то за стенкой будет распространяться круговая волна, центром которой является щель. Так как большая часть волны от источника гасится на стенке, амплитуда прошедшей волны буде много меньше падающей. ОТРАЖЕНИЕ УДАРНЫХ ВОЛН Волны с большой амплитудой, возникающие при детонации взрывчатых веществ, электрическом искровом разряде, и т.д., и называемые ударными волнами, распространяются по иным законам, чем волны с малыми амплитудами, которые мы рассматривали до сих пор. В ударной волне возникает, образно выражаясь, очень крутая гора с примыкающей к её задней стороне пологой, слегка волнистой долиной. Эти волны с аномально большой амплитудой имеют большую скорость, чем нормальные звуковые волны. Вследствие большой плотности воздуха в гребнях волн их можно фотографировать как теневые картины. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ Рассмотрим плоскую электромагнитную волну, распространяющуюся вдоль оси абсцисс. Уравнение такой волны может быть записано в виде: Ex = 0, Ey = E0 cos(t - kx), Ez = 0; Hx = 0, Hy = 0, Hz = H0 cos(t - kx); Здесь k=u - волновое число, u - скорость волны. Рассмотренная волна изображена схематически в виде анимации. Как видно, вдоль оси абсцисс, по которой волна распространяется, не происходит колебаний векторов поля (Ex = Hx = 0). Это означает, что электромагнитная волна является поперечной. Этим она принципиально отличается от упругих волн, у которых практически всегда имеется продольная составляющая. Другой принцип распространения электромагнитной волны состоит в том, что вектора напряженности электрического и магнитного поляE иH колеблются в фазе, т.е. они достигают максимума и минимума в одних и тех же точках пространства. АКУСТИЧЕСКИЕ ВОЛНЫ Ощущение звука возникает благодаря механическим колебаниям барабанной перепонки уха. Эти колебания возбуждаются акустической волной, распространяющейся от источника звука к уху. Любой колеблющийся предмет может возбуждать акустическую волну, но ухо способно воспринимать лишь колебания в частотном диапазоне 20 Гц - 20кГц. Звуковые волны, лежащие выше этого частотного диапазона (ультразвук) и ниже него (инфразвук) могут регистрироваться лишь специальными приборами. Рассмотрим процесс генерации звука громкоговорителем. Переменный ток, протекая по катушке громкоговорителя, возбуждает колебания диффузора. В результате, воздух, расположенный вблизи диффузора, оказывается попеременно то сжатым, то разреженным. Области с избыточным давлением распространяются в пространстве в виде акустических волн. Когда такая волна достигает уха, она возбуждает колебания барабанной перепонки и мы слышим звук. Так как колебания молекул воздуха происходят в направлении распространения волны, акустическая волна в воздухе представляет собой типичный пример продольной волны. Если размер источника звука много меньше длины волны, то будет возбуждаться сферическая волна, а источник звука может быть рассмотрен как точечный источник. В ином случае, когда размер источника много больше, чем длина волны, будет возбуждаться плоская звуковая волна. Скорость акустической волны зависит от свойств среды, в которой она распространяется. Формула для скорости звуковых волн была предложена Лапласом (1749-1827): где - адиабатическая постоянная, R - универсальная газовая константа, T - температура газа, - молекулярный вес газа. Эта формула была выведена в предположении, что распространение звука - адиабатический процесс. Из этой формулы следует в частности, что скорость звука в воздухе при температуре T=273 K равняется 330 м/с, что находится в хорошем соответствии с экспериментальными результатами. |