Реферат: Пружні хвилі

Название: Пружні хвилі
Раздел: Рефераты по физике
Тип: реферат

РЕФЕРАТ

на тему:” Пружні хвилі


План

1. Хвильові процеси. Подовжні і поперечні хвилі

2. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

3. Одномірне хвильове рівняння. Швидкість поширення хвиль

4. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

5. Хвильові процеси. Подовжні і поперечні хвилі

6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

7. Одномірне хвильове рівняння. Швидкість поширення хвиль

8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль.


1. Хвильові процеси. Подовжні і поперечні хвилі

Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.

Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвильнезалежно від їхньої природи є перенос енергії без переносу речовини.

Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.

Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.

Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.

Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок відджерела коливань для будь-якого фіксованого моменту часу t.

Приведений графік функції U ( x , t ) несхожий на графік гармонічного коливання. Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.

Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто

(1)

Рис. 1

Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.

Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.

2. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими . Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t , а його величина буде дорівнювати

Розглянемо деяку точку В, якаперебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0 , описуються функцією U (0,t) = A cos, то точка Впружногосередовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

(2)

де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела.

Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х , має вигляд

(3)

де А – амплітуда хвилі; ω – циклічна частота хвилі; – початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω ( t - x ) + φ0 ] – фаза плоскої хвилі.

В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

(4)

З врахуванням (4) рівняння (3) матиме вигляд

(5)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена k х.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

(4.6)

Диференціюємо вираз (6) за часом, одержимо

,

звідки

Отже, швидкість υпоширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю .

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

(7)

деr – відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом Рівняння (7) має місце лише для великих r , які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (3) можна одержати, що

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль , а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем .

3. Одномірне хвильове рівняння. Швидкість поширення хвиль

Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.

Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.

Рис. 2

Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука

(8)

де Е ─ модуль Юнга; ─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі х .

В граничному випадку при , рівняння (8) запишеться так

(9)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона

(10)

Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так

(11)

Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо

(12)

де m ─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m = ρ SΔx . (13)

Рис.3

З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так

(14)

Розглянувши граничний випадок при якому, з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням

(15)

Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

(16)

Знайдемо другі частинні похідні за часом t і координатою х від рівняння (16)

(17)

Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо

(18)

Але оскільки , то хвильове рівняння (15) буде мати інший вигляд

(19)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

(20)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G

(21)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

(22)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (15) і (19) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

(23)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

4. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

. (24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі і швидкість деформації у всіх

його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

де - кінетична енергія виділеного об’єму; - потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

, (25)

де ρ - густина середовища виділеного об’єму.

Першу похідну за часом від (24) підставимо в (25), одержимо

(26)

де ─ хвильове число.

У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

Рис. 4

(27)

де k – коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює ; ─ величина деформації виділеного об’єму пружного середовища.

З урахуванням цих позначень (27) матиме вигляд

. (28)

Помножимо й поділимо (28) на Δх2 , одержимо

(29)

В граничному випадку при Δх=0 одержуємо

(30)

Підставимо у формулу (30) значення модуля Юнга , і швидкість деформації , одержимо

(31)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (26) і потенціальної енергії (31)

(32)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює , то одержимо середнє значення повної енергії буде дорівнювати

(33)

де Δ V = SΔx ─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища

. (34)

Нехай через площадку S(рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δtпереноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

, (35)

де ─ вектор густини потоку енергії; ─ середня густина перенесеної хвилями енергії; ─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

5. Хвильові процеси. Подовжні і поперечні хвилі

Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.

Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвильнезалежно від їхньої природи є перенос енергії без переносу речовини.

Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.

Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.

Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.

Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок відджерела коливань для будь-якого фіксованого моменту часу t.

Приведений графік функції U ( x , t ) несхожий на графік гармонічного коливання. Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.

Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто

(1)

Рис. 1

Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.

Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.

6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими . Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t , а його величина буде дорівнювати

Розглянемо деяку точку В, якаперебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0 , описуються функцією U (0,t) = A cos, то точка Впружногосередовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

(2)

де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела.

Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х , має вигляд

(3)

де А – амплітуда хвилі; ω – циклічна частота хвилі; – початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω ( t - x ) + φ0 ] – фаза плоскої хвилі.

В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

(4)

З врахуванням (4) рівняння (3) матиме вигляд

(5)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена k х.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

(4.6)

Диференціюємо вираз (6) за часом, одержимо

,

звідки

Отже, швидкість υпоширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю .

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

(7)

деr – відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом Рівняння (7) має місце лише для великих r , які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (3) можна одержати, що

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль , а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем .

7. Одномірне хвильове рівняння. Швидкість поширення хвиль

Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.

Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.

Рис. 2

Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука

(8)

де Е ─ модуль Юнга; ─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі х .

В граничному випадку при , рівняння (8) запишеться так

(9)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона

(10)

Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так

(11)

Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо

(12)

де m ─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m = ρ SΔx . (13)

Рис.3

З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так

(14)

Розглянувши граничний випадок при якому, з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням

(15)

Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

(16)

Знайдемо другі частинні похідні за часом t і координатою х від рівняння (16)

(17)

Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо

(18)

Але оскільки , то хвильове рівняння (15) буде мати інший вигляд

(19)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

(20)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G

(21)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

(22)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (15) і (19) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

(23)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

. (24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі і швидкість деформації у всіх його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

де - кінетична енергія виділеного об’єму; - потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

, (25)

де ρ - густина середовища виділеного об’єму.

Першу похідну за часом від (24) підставимо в (25), одержимо

(26)

де ─ хвильове число.

У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

Рис. 4

(27)

де k – коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює ; ─ величина деформації виділеного об’єму пружного середовища.

З урахуванням цих позначень (27) матиме вигляд

. (28)

Помножимо й поділимо (28) на Δх2 , одержимо

(29)

В граничному випадку при Δх=0 одержуємо

(30)

Підставимо у формулу (30) значення модуля Юнга , і швидкість деформації , одержимо

(31)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (26) і потенціальної енергії (31)

(32)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює , то одержимо середнє значення повної енергії буде дорівнювати

(33)

де Δ V = SΔx ─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища

. (34)

Нехай через площадку S(рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δtпереноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

, (35)

де ─ вектор густини потоку енергії; ─ середня густина перенесеної хвилями енергії; ─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

Вектор потоку енергії вперше одержав і розглянув видатний російський фізик Умов. На честь цього фізика він був названий вектором Умова.