Реферат: Реакции замещения гидроксильной группы
Название: Реакции замещения гидроксильной группы Раздел: Рефераты по химии Тип: реферат |
Реакции замещения гидроксильной группы Многие важные реакции спиртов осуществляются путем атаки a-атома углерода (электрофильного центра) нуклеофилом. В результате происходит разрыв связи С-О и замещение гидроксильной группы. Но гидроксид-анион является настолько сильным нуклеофилом, что вытеснение его из молекулы спирта невозможно. Nu- + R-OH ® реакция не пойдет Чтобы осуществить нуклеофильное замещение гидроксильной группы в спиртах, последние необходимо модифицировать таким образом, чтобы гидроксильная группа превратилась в хорошую уходящую группу. Одним из способов такой модификации является перевод атома кислорода гидроксильной группы в оксониевую форму. Протонирование спиртов превращает плохую уходящую группу (ОН- ) в хорошую уходящую группу (Н2 О). Протонирование приводит и к увеличению положительного заряда на атоме углерода связанном с гидроксильной группой, т.к. ОН2 + сильнее оттягивает электроны, чем ОН. Все это делает возможным прохождение с протонированными спиртами реакций SN 2. Следует только иметь в виду, что вторичные спирты часто, а третичные при этом всегда превращаются в алкены. 1.1. Получение алкилгалогенидов из спиртов и галогеноводородов Одной из наиболее важных реакций в повседневной практике органического синтеза является замещение гидроксильной группы на галоген. Существует несколько методов замены гидроксильной группы спирта на галоген. А. Реакции с галогеноводородамиОдин из самых старых методов основан на реакции спиртов с галогеноводородами. Условия протекания реакции зависят от строения спирта и природы галогеноводородной кислоты. Наибольшей активностью обладают спирты аллильного и бензильного типов, а также третичные спирты. Они реагируют с большей скоростью, чем вторичные, а последние превосходят первичные спирты. С увеличением длины углеводородного радикала реакционная способность спиртов каждого типа понижается. Реакционная способность галогеноводородных кислот, действующих как катализатор и источник нуклеофила, падает в последовательности HI > HBr > HCl >> HF, что связано с уменьшением силы кислоты и уменьшением нуклеофильности при переходе от иодид-иона к хлорид-иону. Иодо- и бромоводородная кислоты легко взаимодействуют со всеми спиртами. Но иодоводородная кислота способна также восстанавливать как исходные спирты, так и образующиеся иодопроизводные в углеводороды, что ограничивает ее применение. Скорость реакции с HF слишком мала для прямого превращения спиртов в алкилфториды. Для получения третичных алкилгалогенидов обычно достаточно насытить третичный спирт газообразным галогеноводородом при 0-10о С или обработать водной соляной, бромистоводородной или йодистоводородной кислотой в течение короткого промежутка времени при 0-20о С. Первичные спирты реагируют, в основном, по механизму SN 2, а третичные - SN 1. Третичные спирты реагируют с концентрированными HCl, HBr и HI очень быстро. При смешивании третичного спирта с концентрированной соляной кислотой при обычной температуре через несколько минут образуется, нерастворимый в воде, трет-бутилхлорид. Водорастворимые низкомолекулярные первичные и вторичные спирты в этих условиях не реагируют. (44) -метил-2-пропанол 2-метил-2-хлорпропан (трет-бутилхлорид) Реакция проходит по механизму SN 1: (М 4) Водонерастворимые третичные спирты превращают в галогенуглеводороды пропусканием газообразных галогеноводородов через их растворы в эфире или тетрагидрофуране (ТГФ). Для получения первичных и вторичных алкилбромидов и алкилиодидов обычно требуется нагревание смеси спирта и концентрированной бромистоводородной или йодистоводородной кислоты в течение нескольких часов или пропускание сухого галогенводорода в спирт. (45) Первичные спирты реагируют по механизму SN 2: (М 5) Во вторичных спиртах замещение гидроксильной группы происходит по обоим механизмам, что приводит к образованию основного и перегруппировочного продуктов. Так при реакции 3-пентанола с HBr наряду с 3-бромпентаном образуется некоторое количество 2-бромпентана: (46) 80% 20% Упр.9. Опишите механизм реакции: (47) Ответ: (М 6) Это реакция кислотно катализируемого замещения спиртов. Она проходит по механизму SN 1, характерному для третичных спиртов. Важной характерной особенностью процессов с участием карбокатионов являются перегруппировки, и поэтому замещение гидроксильной группы спиртов на галоген под действием галогеноводородов без изомеризации осуществляется только для третичных и неразветвленных первичных спиртов. Перегруппировки происходят и со спиртами с разветвлением у b-атома углерода. При обработке неопентилового спирта бромоводородной кислотой образуется продукт перегруппировки: (48) 2-бром-2-метилбутан Причиной такого результата является нуклеофильная внутримолекулярная 1,2-перегруппировка (1,2-алкильныйный сдвиг): (М 7) Упр.10. При нагревании 3-метил-2-бутанола, насыщенного газообразным бромоводородом, в качестве единственного продукта реакции образуется 2-бром-2-метилбутан. Напишите эту реакцию и опишите ее механизм. Упр.11. При взаимодействии неопентилового спирта с бромоводородом в качестве единственного продукта реакции образуется 2-бром-2-метилбутан. Напишите эту реакцию и опишите ее механизм. Для получения алкилхлоридов при взаимодействии первичных спиртов с соляной кислотой используют катализатор - безводный хлорид цинка. Хлорид цинка как жесткая кислота Льюиса координируется по атому кислорода, облегчая тем самым замещение гидроксильной группы: (49) (М 8) Смесь соляной кислоты и хлорида цинка носит название реактива Лукаса. Реакционная способность спиртов по отношению к реактиву Лукаса уменьшается в ряду: C6 H5 CH2 OH > CH2 =CHCH2 OH > 3o > 2o > 1o . Различие в реакционной способности между первичными (до С6 ), вторичными и третичными спиртами при их взаимодействии с хлооводородной кислотой лежит в основе пробы Лукаса. При взаимодействии спиртов с реактивом Лукаса галогеноалканы образуются с различными скоростями. Третичные спирты реагируют очень быстро с выделением нерастворимого в воде хлоралкана. Вторичные спирты сначала растворяются, но вскоре раствор мутнеет, и через некоторое время появляются капли хлоралкана. Растворы первичных спиртов, за исключением аллилового и бензилового, в реактиве Лукаса остаются прозрачными. Б. Действием галогенидов фосфораДля превращения спиртов в алкилгалогениды применяют различные три- и пентагалогениды фосфора: PBr3 , PCl3 , POCl3 или PI3 . Последний получают из красного фосфора и йода непосредственно во время реакции: Галогениды и оксигалогениды фосфора относятся к умеренно сильным кислотам Льюиса, а их анионы являются нуклеофилами. (50) Механизм: (М 9) Образующийся HOPBr2 далее реагирует со спиртом по аналогичному механизму, и в конечном итоге все три атома галогена принимают участие в реакции. Замещение гидроксильной группы на галоген в этих реакциях происходит с инверсией конфигурации. Замещение гидроксильной группы первичных и вторичных спиртов на галоген под действием трибромида фосфора и других галогенидов и оксигалогенидов фосфора происходит с перегруппировками: (51) (85%) (15%) Упр.12. Напишите реакцию (R)-2-бутанола с трибромидом фосфора и опишите ее механизм. Поскольку замещение гидроксильной группы на галоген с помощью галогенидов фосфора часто сопровождается изомеризацией и перегруппировками, эти реагенты следует применять только в простых случаях, где перегруппировка и изомеризация невозможны. . В. Действие квазифосфониевых солейГораздо более региоселективное замещение достигается при использовании квазифосфониевых солей. При взаимодействии трифенилфосфина с галогенами образуются стабильные комплексы. Эти комплексы превращают спирты в алкилгалогениды: (52) (53) Механизм: (М 10)) Метод особенно удобен для первичных и вторичных спиртов, для которых можно ожидать изомеризации и перегруппировки. Упр.13. Напишите реакцию неопентилового спирта с комплексом трифенилфосфина с хлором и опишите ее механизм. Ответ. (54) неопентиловый спирт неопентилхлорид Упр.14. Напишите реакцию 3-метил-2-бутанола с комплексом трифенилфосфина с бромом и опишите ее механизм. Спирты можно превратить в хлориды или бромиды при взаимодействии с трифенилфосфином и тетрагалогенидами углерода: (55) Механизм этой реакции более сложен. Замещение происходит с обращением конфигурации. Упр.15. Напишите реакции: (а) 2-пентанола с трифенилфосфином и тетрабромидом углерода, (б) гераниола с трифенилфосфином и тетрахлоридом углерода, (в) транс-2-бутен-1-ола с трифенилфосфином и тетрахлоридом углерода. |