Курсовая работа: Методы упрочнения стаканов цилиндров двигателей внутреннего сгорания
Название: Методы упрочнения стаканов цилиндров двигателей внутреннего сгорания Раздел: Промышленность, производство Тип: курсовая работа | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Курсовая работа по дисциплине: «Материаловедение и технология материалов» На тему: «Методы упрочнения стаканов цилиндров двигателей внутреннего сгорания» Одесса 2010 Оглавление 1.1 Введение1.2 Сталь №11.3 Химический состав в % 1.4 Режим термообработки 1.5 Выбор температуры нагрева и охлаждающей среды, вид отпуска 1.6 Изменение в структуре при нагреве и охлаждении 1.7 Сталь при работе в условиях до 600 °C1.8 Свойства стали1.9 Методы изучения механических свойств1.10 Вывод1.11 Список литературы 1.1 Вступление Назначение гильз, требования к гильзам цилиндров. Стенки цилиндра двигателя образуют совместно с поршнем, кольцами и поверхностью камеры сгорания пространство переменного объема, в котором совершаются все рабочие процессы двигателя внутреннего сгорания. Стенка цилиндра должна быть тщательно обработана и образовывает с поршневыми кольцами пару скольжения. Цилиндры и гильзы цилиндров нагружаются силами давления газов, боковой нагрузкой от поршня и температурной нагрузкой. Переменная по величине и направлению боковая нагрузка вызывает изгиб и вибрацию цилиндра и ослабляет его крепление к картеру. Стенки цилиндра под действием возникающих при движении поршня сил трения подвергаются, кроме того, износу. Гильзы цилиндров должны быть прочными, жесткими, износостойкими, обеспечивать, возможно, меньшие потери на трение поршня о поверхность цилиндра. Внешняя и внутренняя поверхность гильз должна обладать антикоррозионной устойчивостью. Конструкция гильз должна также обеспечивать надежность уплотнений в местах стыков гильз с головкой и блоком цилиндров. Гильзы цилиндров могут, являются как самостоятельной конструкционной единицей двигателя («мокрые» и гильзы двигателей воздушного охлаждения), так и являться элементом ремонтной технологии, предусмотренной заводом изготовителем (например: «сухие» гильзы для двигателей, где цилиндры выполнены заодно с блок-картером). По конструкции гильзы цилиндра современных автомобильных и тракторных двигателей можно разделить на три основные группы: 1. «Мокрые» гильзы цилиндров. 2. «Сухие» гильзы цилиндров. 3. Гильзы для двигателей с воздушным охлаждением. «Мокрые» гильзы. Конструкцией двигателя с водяным охлаждением предусмотрена полость в картере двигателя, так называемая «рубашка охлаждения». Гильза, соприкасающаяся свой поверхностью с охлаждающей жидкостью находящейся в «рубашке охлаждения» называется «Мокрой». «Мокрые» гильзы цилиндров обеспечивают лучший отвод тепла, но картер двигателя с такими гильзами обладает меньшей жесткостью. Большое распространение эти гильзы получили на грузовых и тракторных двигателях в силу своей высокой ремонтопригодности. Как правило, выпускаемые производителями «мокрые» гильзы не требуют перед установкой, какой либо доработки. Изношенные «мокрые» гильзы в большинстве случаев не ремонтируют, а заменяют новыми без снятия двигателя с шасси. Для предотвращения прорыва газов в охлаждающую жидкость и просачивания этой жидкости в цилиндр и картер двигателя «мокрые» гильзы комплектуются уплотнительными прокладками. Внутренняя поверхность гильз тщательно обрабатывается (хонингуется)для того что бы обеспечить наличие требуемой масляной пленки для смазки поршневых колец. Двигатели с «мокрыми» гильзами устанавливаются почти на все современные коммерческие автомобили. «Сухие» гильзы.
Гильзы, не имеющие соприкосновения с охлаждающей жидкостью, называются «сухими» гильзами. Конструкцией некоторых двигателей предусмотрена заливка при изготовлении в блок картер гильз изготовленных из износостойкого материала, создавая тем самым оптимальные условия для работы цилиндропоршневой группы. Например, некоторые модели двигатели HONDA, Lend Rover,Volkswagen , AUDI,VOLVO и многих других производителей имеют алюминиевый блок цилиндров (для уменьшения веса силового агрегата) и залитые в него «сухие» гильзы (для увеличения ресурса и повышения ремонтопригодности). Не «загильзованный» блок цилиндров современного двигателя имеет несколько, предусмотренных технологией, расточек с последующей установкой в него ремонтных поршней. Установка «сухих» гильз позволяет не менять блок двигателя даже после износа цилиндра расточенного в последний ремонтный размер. Производители гильз выпускают так называемые, заготовки гильз, то есть гильзы имеющие запас по длине и внешнему диаметру, которые после токарной обработки запрессовываются с натягом в блок цилиндров. Такие гильзы как правило не имеют обработки внутренней поверхности. Они растачиваются и хонингуются только после установки гильзы в блок цилиндров. Поверхность блока цилиндров под установку тоже повергается тщательной обработке: расточке и в некоторых случаях хонингованию. Гильза с упором устанавливается в блок под давлением, с натягом (в среднем 0,03-0,04 мм), для гильз, не имеющих упора натяг больше. Наружная поверхность «сухих» ремонтных гильз, как правило, подвергается шлифовке, для увеличения плотности прилегания к блоку цилиндров. Некоторые японские производители, например ISUZU, изготавливают двигатели с тонкостенными стальными гильзами, имеющими покрытие из пористого хрома железом. Такие гильзы не подвергаются механической обработке и устанавливаются в блок цилиндров без натяга, с небольшим усилием и удерживаются в блоке за счет прижатия широкого бурта гильзы головкой блока. Блок картер с сухими гильзами имеет повышенную жесткость по сравнению с блоком, с установленными «мокрыми» гильзами. Гильзы цилиндров для двигателей с воздушным охлаждением. В двигателях воздушного охлаждения конструкция оребрения и необходимость создания охлаждающих воздушных потоков не позволяют применять блок-картерный тип отливки. В этих двигателях применяют отдельно отлитые цилиндры с воздушными ребрами, расположенными чаще всего перпендикулярно оси цилиндра. Эти гильзы цилиндра крепятся к верхней части картера короткими шпильками через опорный фланец (несущие цилиндры) или при помощи анкерных (несущих) шпилек. Гильзы цилиндров двигателей воздушного охлаждения изготавливают как из одного (монометаллические), так и из двух (биметаллические) металлов. Монометаллические цилиндры делают из чугуна, реже из стали или легких сплавов. Из биметаллических цилиндров получили распространение чугунные или стальные цилиндры с залитыми (или навитыми) алюминиевыми ребрами. Широкое распространение двигатели с воздушным охлаждением получили среди производителей тяжелой строительной техники. Ярким примером является всемирно известный производитель индустриальных двигателей немецкая фирма DEUTZ. 1.2 Сравнение сталей Характеристика материала 20Х.Общие сведения
Химический состав
Механические свойстваМеханические свойства при повышенных температурах
Механические свойства проката
Механические свойства поковок
Механические свойства в зависимости от температуры отпуска
Технологические свойства
Температура критических точек
Ударная вязкость Ударная вязкость, KCU, Дж/см2
Предел выносливости
ПрокаливаемостьЗакалка 860 С. Твердость для полос прокаливаемости HRCэ.
Физические свойства
Обоснование выбора стали Сталь для изготовления деталей соединительных муфт турбины, обеспачувающая σв =900 МПа
Данная сталь является конструкционная легированная сталь 1.3 Химсостав стали Химический состав в % материала 34ХН3М
1.4 Термообработка и механические свойства сталей
Температура критических точек материала 34ХН3М Механические свойства при Т=20oС материала 34ХН3М Физические свойства материала 34ХН3М
1.5 Выбор температуры нагрева и охлаждающей среды ,вида отпуска Закалка - термическая обработка - заключается в нагреве стали до температуры выше критической ( Выбор температуры закалки. Доэвтектоидные стали нагреваются до температуры на 30-50°C выше точки Охлаждающие среды для закалки.
Охлаждение при закалке должно обеспечивать, получение структуры мартенсита в пределах заданного сече6ния изделия (определенную закаливаемость) и не должно вызывать закалочных дефектов: трещин, деформаций, коробления и высоких растягивающих остаточных напряжений в поверхностных слоях. Наиболее желательна высокая скорость охлаждения (выше критической скорости закалки) в интервале температур Чаще для закалки используют кипящие жидкости – воду, водные растворы щелочей и солей, масла. При закалке в этих средах различают три периода: 1) пленочное кипение, когда на поверхности стали образуется «паровая рубашка»; в этот период происходит небыстрый отвод теплоты, т.е. скорость охлаждения невелика; 2) пузырьковое кипение, наступающая при полном разрушении паровой пленки, наблюдаемое при охлаждении поверхности до температуры ниже критической; быстрый отвод теплоты; 3) конвективный теплообмен, который отвечает температурам ниже температуры кипения охлаждающей жидкости; теплоотвод в этот период происходит с наименьшей скоростью. В данном случае мы используем масло. Для легированных сталей, обладающих более высокой устойчивостью переохлаждения аустенита при закалке, применяют минеральное масло (чаще нефтяное). Масло как закалочная среда имеет следующие преимущества: Небольшую скорость охлаждения в мартенситном интервале температур, что уменьшает возникновение закалочных дефектов, и постоянство закаливающей способности в широком интервале температур среды (20- 150 °C) К недостаткам следует отнести повышенную воспламеняемость (температура вспышки 165 - 300 °C), недостаточную стабильность и низкую охлаждающую способность в области температур перлитного превращения, а также повышенную стоимость. Температура масла при закалке поддерживают в пределах 60 - 90 °C , когда его вязкость оказывается минимальной. Для закалки применяют водные растворы полимеров (ПК2, ПАА, УЗСП-1), снижающие скорость охлаждения в мартенситном интервале температур. Однако нужно учитывать, что растворимость полимеров в воде меняется с изменением температуры, что влечет за собой изменение охлаждающей способности. Все ширине начинают применять охлаждения под давлением в среде азота, аргона и водорода. Отпуск:
Отпуск заключается в нагреве закаленной стали до температур ниже Наиболее интенсивно напряжения снижаются в результате выдержки при 550°C в течении 15 – 30 мин. После выдержки в течении 1,5 часа напряжения снижаются до минимального значения, которое может быть достигнуто отпуском при данной температуре. Основное влияние на свойства стали оказывают температура отпуска. Различают три вида отпуска: 1)Низкотемпературный (низкий) отпуск проводят при нагреве, до 250 °C, закаленная сталь (0,6-1,3 %С) после низкого отпуска сохраняет твердость 58 – 63 HRC, а следовательно высокую износостойкость. 2)Среднетемпературный (средний) отпуск выполняется при 350 – 500 °C и применяют главным образом для пружин и рессор, а также для штампов. Структура стали после среднего отпуска – троостит отпуска или троостомартенсит; твердость стали 40 – 50 HRC. 3)Высокотемпературный (высокий ) отпуск проводится при 500 – 680 °C. Структура стали после высокого отпуска – сорбит отпуска. Высокий отпуск создает наилучшее соотношение прочности и вязкости стали. Закалка с высоким отпуском ( по сравнению с нормализацией или отжигом) повышает временное сопротивление, предел текучести, относительно сужение и особенно ударную вязкость. Термическую обработку, состоящую из закалки и высокого отпуска, называют улучшением. Улучшению подвергают среднеуглеродистые (0,3 - 0,5 % С) конструкционные стали, к которым предъявляются высокие требования по пределу выносливости и ударной вязкости. Улучшение значительно повышают конструктивную прочность стали, уменьшая чувствительность к концентраторам напряжений, увеличивая работу развития трещин и снижая температуру порога хладноломкости. Трещиностойкость Отпуск при 550 – 600 °C в течении 1- 2 часа почти полностью снимает остаточные напряжения, возникшие при закалке. Длительность высокого отпуска составляет 1- 6 часов в зависимости от габарита изделия. 1.7 Сталь для работы до 600 °C
Данная сталь является жаропрочной высоколегированной Химический состав в % материала 15Х12ВНМФ Температура критических точек материала 15Х12ВНМФ. Механические свойства при Т=20oС материала 15Х12ВНМФ Физические свойства материала 15Х12ВНМФ Технологические свойства материала 15Х12ВНМФ . 1.8 Свойства стали для работы до 600 °C В первую очередь сталь должна обладать жаростойкостью и длительной прочностью. Жаропрочность-способность материала противостоять механическим нагрузках при высоких температурах. Многие жаропрочные стали должны обладать одновременно и достаточной жаростойкостью. ГОСТ 5632-72 предусмотрено 39 марок жаропрочных сталей и 24 марки жаростойких сплавов. Жаропрочность зависит от температуры рекристаллизации металла, предела его упругости, сопротивления материала пластическим деформациям при высоких температурах, размеры зерна, размера зерна, наличия в сплаве примесей, цикличности нагревов, предварительной пластической деформации, легирование сталей и сплавов в сочетании с термообработкой и температуры плавления. Чем выше температура плавления метала, тем выше его температура рекристаллизации. Под жаростойкими сталями и сплавами понимают стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550 °C , работающие в ненагруженном или полунагруженом состоянии. Жаростойкость характеризует сопротивление окисления при высоких температурах. Для повышения окалиностойкости сталь легирует элементами, которые благоприятным образом изменяют состав и строение. Длительная прочность - Длительная прочность является важной характеристикой материала, так как она определяет срок службы его до разрушения, т. е. его живучесть. 1.9 Методы изучения механических свойств на образцах в обоих случаях Под механическими свойствами понимают характеристики, определяющие поведения метала (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а так же способность металла не разрушаться при наличии трещин) В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материалов. При оценке механических свойств металлических материалов различают несколько групп из критериев. 1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания) 1.10 Вывод Исходя из требуемых свойств Сталь для изготовления деталей соединительных муфт турбины обеспечивающая σв = 900 МПа я выбрал сталь марки 34ХН3М. Она является конструкционно легированной сталью. Легированные стали широко применяют в тракторном и сельскохозяйственном машиностроении, в автомобильной промышленности, тяжелом и транспортном машиностроении в меньшей степени в станкостроении, инструментальной и других видах промышленности. Это стали применяют для тяжело нагруженных металлоконструкций. Благодаря ее свойствам она превосходно подходит для изготовления. Далее нам нужно было выбрать сталь изделий подобного типа при работе в условиях нагрева до 600°C. Подошла сталь 34ХН3М. Это жаропрочная сталь мартенсито - ферритного класса исходя из требуемых свойств сталь этой марки подходит также к изготовки деталей 1.11 Список литературы 1. В.Н. Журавлев, О.И. Николаева - Машиностроительные стали. Справочник; 2. Жаропрочные стали и сплавы: Справочник / Масленников С.Б. – М; 3. Дриц, М. Е. Технология конструкционных материалов и материаловедение: учебник для вузов / М. Е. Дриц. - М. : Высш.шк, 1990. – 447 с 4. попович В. Технология конструкционных метериалов и материаловедение. Кн.1,-Львов, 2002.-417с. 5. Гуляев А.П.Металоведение.-М.:Металлургия,1986.-542 6. Бирюков Б.Н.,Косс Е. В., Шевченко И.М.Методические указания к изучению курса «материаловедение».-Одесса: ОПИ,1992. |