Курсовая работа: Рассеяние волн в задаче о маскировке объектов методом волнового обтекания
Название: Рассеяние волн в задаче о маскировке объектов методом волнового обтекания Раздел: Рефераты по физике Тип: курсовая работа |
КУРСОВАЯ РАБОТА На тему: "Рассеяние волн в задаче о маскировке объектов методом волнового обтекания" Минск, 2010 г. Введение У людей с давних времён есть желание замаскироваться, а то и вовсе стать невидимым для окружающих. И с недавних пор это может стать возможным с помощью метода волнового обтекания. Основной целью курсовой работы является изучение метода рассеяния волн в задаче о маскировке объектов методом волнового обтекания, рассмотрение основных характеристик и свойств маскирующих покрытий, изучение их классификации. А также, как дополнение, рассмотрение быстрого преобразования Фурье и его применения в задаче о рассеянии. Задача курсовой работы заключается в овладении методом решения задачи о рассеянии и изучении маскирующих оболочек. Под маскировкой или скрытием методом волнового обтекания следует понимать такое преобразование фронта волны маскирующей оболочкой, что он огибает скрываемый объект. В реальных условиях невозможно добиться идеальной маскировки, но принципиально возможно сведение потерь и рассеяния к пренебрежимо малым для поставленной задачи значением. А в задаче маскировки таких сравнительно небольших объектов, как тело человека, ракет, самолётов, и прочей военной техники, учитывая маловероятность отклика радаров на большое для идеальных моделей, но значительно меньшее, чем у объектов без маскирующих оболочек, рассеяние, при желании распределённое во всех направлениях, делает их скрытие очень перспективной и востребованной задачей. Учитывая характер явления, его преимущественной областью применения является военно-стратегическая. 1. Решение задачи о рассеянии 1.1 Решение задачи о рассеянии в общем случае В общем случае задача о рассеянии ставится следующим образом. На некоторый объект произвольной формы с диэлектрической проницаемостью Для вычисления рассеянных электромагнитных полей и сечения рассеяния необходимо сначала записать общее решение для поля внутри рассеивающего тела, поля рассеянных волн и падающего поля, а затем вычислить неизвестные постоянные коэффициенты (спектральные амплитуды) с помощью граничных условий. 1.2 Решение задачи о рассеянии в общем случае Решение задачи о рассеянии в общем случае заключается в нахождении сечения рассеяния. Запишем электрическое поле падающей волны следующим образом:
где
где r – расстояние от рассматриваемой точки до точки рассеяния,
Магнитное поле падающей волны вычисляется из уравнений Максвелла и имеет следующий вид:
где η= Вектор Умова-Пойтинга, который определяет поток мощности поля через единицу поверхности, записывается следующим образом:
Рассуждаем так же и для рассеянной волны. Магнитное поле рассеянной волны по определению следующее
а вектор Умова-Пойтинга рассеянной волны
Подставляя выражение (1.2.2) в (1.2.6), получаем
В сферической системе координат возьмём дифференциал телесного угла в направлении рассеяния (рис 1.2)
На расстоянии r
, от рассеивающей точки, площадь поверхности ограниченной дифференциалом телесного угла
Тогда дифференциал рассеянной мощности через площадку
Дифференциал телесного угла в сферических координатах r, θs , φs Теперь, подставляя (1.2.7) в (1.2.10) получим следующее выражение для мощности, рассеянной в элемент телесного угла:
Разделив левую и правую части выражения (1.2.11) на вектор Умова-Пойтинга для падающей волны (1.2.4), получим
Размерность последнего соотношения является размерностью площади. А интегрирование 1.2.12, в свою очередь, даёт
где
1.2 Решение задачи о рассеянии на цилиндре Решается задача о нахождении полей на таком удалении от точек рассеяния, что фронт распространения волн этих полей можно считать плоскостью. Найдём для этого сперва общее решение, характеризующее бесконечно длинный цилиндр, а затем подставим в решение граничные условия, обобщив его тем самым на цилиндр длинны L. Пусть поле падающих волн задаётся выражением:
где Падающая волна также может быть представлена в виде векторных цилиндрических волн, т.е. следующим образом:
Цилиндр высоты L, радиуса a
и проницаемости Общее решение будет состоять из выражений для рассеянного поля и поля внутри цилиндра объединённых граничными условиями. Запишем теперь выражения, определяющие рассеянное и внутренне поля с точностью до неизвестных коэффициентов
где
известны для такого приближения. Граничные условия задаются равенствами:
из которых можно путём преобразований получить следующие выражения
которые задают зависимость неизвестных коэффициентов Поле, образовавшееся после рассеяния падающего поля на цилиндре высоты L, в точках находящихся на достаточном для нашего приближения удалении определим путём интегрирования по конечной поверхности цилиндра, исключая граничные точки, используя формулу
После подстановки (1.2.4) в (1.2.9) и выполнения интегрирования по dz в интервале ( {
Итак, нами были найдены поля 1.3 Быстрое преобразование Фурье Преобразование Фурье используется при решении задачи о рассеянии с целью нахождения амплитудных коэффициентов необходимых для описания волны. Характер последних, как уже упоминалось, зависит от того в каком приближении мы рассматриваем поставленную задачу. Суть применения преобразования Фурье заключается в разбиении произвольной волны на элементарные плоские волны. Таким образом, получаем амплитудные коэффициенты, стоящие как множители перед рядом, в виде которого представляется волна. Затем можно подставить граничные условия в полученное выражение, что позволяет выразить неизвестные Быстрое преобразование Фурье (БПФ) – это реализация обычного (дискретного) преобразования Фурье (ДПФ), но с намного меньшим количеством операций n=Nlog2 N, где N – размер строки данных, в отличие от n=N2 в ДПФ. В БПФ используются исключительно N, являющиеся степенями двойки. Если N не является степенью двойки, то его дополняют нолями до ближайшей из степеней. Для осуществления БПФ можно использовать лемму Даниельсона-Ланкзоса, которая разбивает ряд ДПФ
где
где В массиве данных Существуют также и другие алгоритмы БПФ, как, например в [10], но они в отличие от леммы Даниельсона-Ланкзоса не выполняют как прямое, так и обратное преобразование Фурье. 2. Скрытие материальных объектов методом волнового обтекания 2.1 Основополагающие идеи Исторически первенство в идее и моделировании скрытия (английский термин cloaking) методом волнового обтекания принадлежит Дж. Пендри и его коллегам [3]. Они предложили принципиально новый метод маскировки, суть которого заключается в преломлении волн в маскирующей оболочке так, что они огибают скрытый в оболочке объект и на выходе из неё остаются такими же, какими в неё попадали. В результате поле выглядит так, как если бы на пути его распространения оно не встречало никаких препятствий. Траектории лучей в маскирующей оболочке Чтобы наблюдатель не заметил никаких неоднородностей необходимо выполнение и следующего условия – оптическая длинна пути каждого луча в оболочке должна быть такой же, как если бы он распространялся прямолинейно в свободном пространстве. Для достижения такого эффекта для оболочки рассчитывают определённую конфигурацию параметров – диэлектрической и магнитной проницаемостей Для расчета параметров маскирующего покрытия Пендри и его коллеги предложили использовать следующий приём: внутри некоторой области пространства (вакуума) создать включённую подобласть искривлённой метрики (в которой непосредственно и предполагается спрятать объект) при помощи преобразования координат. Например, такого как в их работе [3].
Преобразование (2.1.1) переводит шар радиуса Исходя из того, что уравнения Максвелла инвариантны преобразованиям координат [4], поле падающих волн ведёт себя в искривлённом пространстве таким же образом как и в исходном. Тензоры
Распределение параметров (2.1.2), (2.1.3) будут искривлять прямой луч также как и преобразования (2.1.1) искривляют прямую линию, пересекающую шар с радиусом r < Сами рассеянные поля находят решая задачу о рассеянии на маскирующей оболочке, где, как уже упоминалось, используется БПФ. Графики распределения нормированной амплитуды электрического поля (2.2.1, 2.3.1) строят по решению, полученному в задаче о рассеянии. В связи с тем, что преобразования метрики не затрагивают временной составляющей, фазы каждого луча в оригинальной и преобразованной системах будут равны между собой. Таким образом, для маскировки обтеканием нужно использовать анизотропные градиентные материалы с компонентами проницаемостей меньшими единицы, или – в некоторых случаях – отрицательными. Тот факт, что в анизотропной среде отсутствуют двулучепреломление и не изменяется поляризация попадающего в неё излучения объясняется равенством Можно заметить, что к скрытию путём волнового обтекания могла бы приводить и антигравитация. Антигравитация, исходящая от какого либо тела, вызывает такие преобразования метрики пространства, что геодезические линии как бы раздвигаются. Тот же принцип движения луча по искривлённой траектории объясняет и такое явление как мираж. Существенное отличие в температурах воздуха у поверхности земли и в более высоких слоях вызывает различие показателей преломления, вследствие чего свет распространяется не прямолинейно, а по кривой, и мы можем видеть объекты, расположенные за линией горизонта. 2.2 Свойства маскирующих покрытий и требования, предъявляемые к ним Первое моделирование обтекания было проведено Каммером С.А. [5] в бесконечно длинной цилиндрической оболочке кругового сечения. Картина взаимодействия линейно поляризованной волны, вектор Реальные покрытия имеют слоистую структуру, т.е. являются дискретными, что вызывает рассеяние, из-за которого траектории лучей вне оболочки перестают быть прямолинейными (рис. 2.2.1 б). Идеальные параметры, использованные при построении графика 2.2.1а можно упростить. Если вектор В маскирующем покрытии также присутствует частотная дисперсия Распределение нормированной амплитуды электрического поля вблизи цилиндрической маскирующей оболочки 2.3 Разнообразие форм маскирующих покрытий Сейчас скрытие уже теоретически осуществимо на оболочках произвольной двумерной формы, а именно в сечении трёхмерной модели. Рассмотрим их классификацию. Изначально рассматриваемый метод, как уже упоминалось, базировался на сферической оболочке (см. гл. 2 § 1). Дальнейшее развитие метода, как и следовало ожидать, привело к появлению многих других форм. Одно из простейших покрытий с формой эллиптического цилиндра рассмотрено в работе [6]. Распределение нормированной амплитуды электрического поля для различных углов падения излучения на эллиптическую оболочку: (а) 0°, (б) 90°, (в) 30°, (г) 45° Для расчета его параметров используется линейное преобразование координат эллиптического цилиндра
Направление падающего излучения для такой оболочки не безразлично из-за меньшей степени симметрии чем, например, у сферы. Из рисунка 2.3.1 видно, что поле после прохождения препятствия имеет наиболее близкую исходному структуру при нулевом угле падения излучения. Произвольный цилиндр – оболочка-цилиндр с произвольным сечением. В общем случае не существует преобразования, переводящего произвольную односвязную область в подобную ей двусвязную. В таком случае Для разбиения гладких оболочек на сектора их аппроксимируют кривыми Безье второго порядка. Эти кривые могут представлять собой любые канонические сечения (эллипсы, параболы, гиперболы), в зависимости от параметров. Для того чтобы достаточно точно аппроксимировать гладкую кривую, потребуется ломанная, состоящая из нескольких сотен отрезков, а кривых может понадобиться и две, как, например, для аппроксимации формы сердца. Параметрические уравнения кривой второго порядка по трём точкам
Кроме уже исследованной сферической формы оболочки из трёхмерных моделей появилась ещё и модель эллипсоида вращения [8]. Пока решения задачи о рассеянии на оболочках произвольной формы не найдено, что связано с трудностями моделирования таких задач. Координатное преобразование для цилиндрической оболочки квадратного сечения: для каждого сектора, выделенного на рисунке а, делается своё преобразование координат Заключение Итак, определившись с преобразованием координат для маскирующей оболочки, находим распределение её параметров В дальнейшем хотелось бы смоделировать решение для определённой оболочки, рассчитав её параметры, построить графики решений для этих оболочек. В дальней перспективе – написать программу, рассчитывающую сами поля, имея в качестве входящих значений параметры оболочки. Включить в неё функцию построения графиков решений. Подбирать оболочки и варьировать их параметры в поисках наиболее удачных. Список литературы 1. Leung Tsang, Jin Au Kong, Kung-Hau Ding «Scattering of electromagnetic waves: theories and applications», «A Wiley-lnterscience» (2000); 2. W.H. Press, S.A. Teukolsky, W.T. Vetterling, Cambridge university press, New York (2002); 3. Pendry J B, Schurig D, Smith в R Science 312 1780 (2006); 4. А.Е. Дубинов, Л.А. Мытарева «Маскировки материальных объектов методом волнового обтекания», УФН (май 2010); 5. Cummer S A et al. Phys. Rev. E 74 036621 (2006); 6. Ma H et al. Phys. Rev. A 77 013825 (2008); 7. Rahm Met al. Photon. Nanostruct. Fund. Appl. 6 87 (2008); 8. Luo Y et al. Phys. Rev. B 78 125108 (2008); 9. A VNovitsky, «Matrix approach for light scattering by bianisotropic cylindrical particles», J. Phys.: Condens. Matter 19(2007); 10. Г. Нуссбаумер, «Быстрое преобразование Фурье и алгоритмы вычисления свёрток», Москва, «Радио связь» (1985); |