Учебное пособие: Физико-химические методы анализа веществ
Название: Физико-химические методы анализа веществ Раздел: Рефераты по химии Тип: учебное пособие | ||||||||||||||||||||||||||||
Физико-химические методы анализа веществ Введение В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания. Химическая идентификация (качественный анализ) и измерения (количественный) анализ являются предметом специальной химической науки – аналитической химии. 1. Качественный анализ Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементарный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов и анионов, присутствующих в аналитической пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения веществ по аналитическому сигналу. Аналитическими являются те реакции, которые сопровождаются каким-нибудь внешним эффектом, позволяющим установить, что химический процесс связан с выпадением или растворением осадка, изменением окраски анализируемого раствора, выделением газообразных веществ. В аналитической работе используют химические реакции, протекающие достаточно быстро и полно. Выбирая реакции для химического анализа, руководствуются законом действующих масс и представлениями о химическом равновесии в растворах. Выполняя аналитическую реакцию, соблюдают условия, которые определяются свойствами определяемого продукта. Анализируемое вещество должно быть устойчиво в среде, в которой ведется определение и температуре. Реакция должна быть чувствительной по отношению к определяемому веществу (определение вещества даже при очень малой его концентрации). Порог чувствительности реакций характеризуют количественно при помощи обнаруживаемого минимума. Обнаруживаемый минимум – это наименьшее количество вещества, которое удается обнаружить с помощью данной реакции (при соблюдении необходимых условий) [миллионные доли грамма – микрограммы, 1мкг=10-6 г]. В качественном анализе применяют только те реакции, обнаруживаемый минимум которых не превышает 50 мкг. Помимо чувствительности большое значение имеют селективность реакции. Селективные или избирательные, реакции, дают схожий внешний эффект с несколькими ионами. Например, оксалат аммония образует белый осадок с катионами Ca2+ , Sr2+ , Ba2+ и др. Чем меньше таких ионов, тем более выражена избирательность (селективность) реакции. Специфической называют такую реакцию, которая позволяет обнаружить ион (вещество) в присутствии других ионов (веществ). Например, специфична реакция обнаружения иона аммония действием щелочи при нагревании, так как в этих условиях аммиак может выделяться только из солей аммония: NH4 Cl + NaOH = NH3 ↑ + H2 O + NaCl Обнаружение ионов с помощью специфических и селективных реакций в отдельных порциях анализируемого раствора, производимое в любой последовательности, называют дробным анализом. Для этого групповой реагент ступенчато приливают к анализируемому раствору, первыми выпадают в осадок соединения с наименьшими значениями ПР. 2. Качественное определение ионов неорганических веществ Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. В ходе реакций образуются труднорастворимые соединения, окрашенные комплексные соединения, происходит окисление или восстановление с изменением цвета раствора. Для идентификации с помощью образования труднорастворимых соединений используют как групповые, так и индивидуальные осадители. Групповыми осадителями для ионов Ag+ , Pb2+ , Hg2+ служит NaCl; для катионов Ca2+ , Sr2+ , Ba2+ - (NH4 )2 CO3 , для ионов Al3+ , Cr3+ , Fe3+ , Fe2+ , Mn2+ , Co2+ , Ni2+ , Zn2+ - (NH4 )2 S. Имеется много органических и неорганических реагентов, образующих осадки или окрашенные комплексные соединения с катионами (табл. 1).
Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии в веществе тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь, бор), бледно-голубой (свинец, мышьяк). Анионы обычно классифицируют по растворимости солей, либо по окислительно-восстановительным свойствам. Так многие анионы (SO4 2- , SO3 2- , CO3 2- , SiO3 2- , F- , PO4 3- , CrO4 2- и др.) имеют групповой реагент BaCl2 в нейтральной или слабо кислой среде, так как соли бария и этих анионов мало растворимы в воде. Групповым реагентом в растворе HNO3 на ионы Cl- , Br- , I- , SCN- , S2- , ClO- , [Fe(CN)6 ]4- и др. служит AgNO3 . Как и для катионов, имеются реагенты на те или иные анионы (табл. 2).
Классификация анионов по окислительно-восстановительным свойствам приведена в таблице 3.
Химическая идентификация вещества базируется в основном на реакциях осаждения, комплексообразования, окисления и восстановления, нейтрализации, при которых происходит выпадение окрашенного осадка, изменение цвета раствора или выделение газообразных веществ. 3. Количественный анализ Определение содержания (концентрации, массы и т.п.) компонентов в анализируемом веществе называется количественным анализам. При количественном анализе измеряют интенсивность аналитического сигнала, т.е. находят численное значение оптической плотности раствора, расхода раствора на титрование, массы прокаленного осадка и т.п. По результатам количественного измерения сигнала рассчитывают содержание определенного компонента в пробе. Результаты определений обычно выражают в массовых долях, %. Количественный анализ проводят в определенной последовательности, в которую входит отбор и подготовка проб, проведения анализа, обработка и расчет результатов анализа. 4. Классификация методов количественного анализа Все методы количественного анализа можно разделить на две большие группы: химические и инструментальные. Это разделение условно, так как многие инструментальные методы основаны на использовании химических законов и свойств веществ. Обычно количественные методы анализа классифицируют по измеряемым физическим или химическим свойствам.
5. Гравиметрический метод Сущность метода заключается в получении труднорастворимого соединения, в которое входит определяемый компонент. Для этого навеску вещества растворяют в том или ином растворителе, обычно воде, осаждают с помощью реагента, образующего с анализируемым соединением малорастворимое соединение с низким значением ПР. Затем после фильтрования осадок высушивают, прокаливают, взвешивают. По массе вещества находят массу определяемого компонента и проводят расчет его массовой доли в анализируемой навеске. Имеются разновидности гравиметрического метода. В методе отгонки анализируемый компонент выделяют в виде газа, который взаимодействует с реактивом. По изменению массы реактива судят о содержании определяемого компонента в навеске. Например, содержание карбонатов в породе можно определить путем воздействия на анализируемый образец кислотой, в результате которого выделяется СО2 : СО3 2- + 2Н+ Û Н2 СО3 Û Н2 О + СО2 Количество выделившегося СО2 можно определить по изменению массы вещества, например СаО, с которым реагирует СО2 . Одним из основных недостатков гравиметрического метода является его трудоемкость и относительно большая продолжительность. Менее трудоемким является электрогравиметрический метод, при котором определяется металл, например медь, осаждают на катоде (платиновой сетке) Cu2+ + 2e- = Cu По разности массы катода до и после электролиза определяют массу металла в анализируемом растворе. Однако этот метод пригоден лишь для анализа металлов, на которых не выделяется водород (медь, серебро, ртуть). 6. Титриметрический анализ Сущность метода заключается в измерении объема раствора того или иного реагента, израсходованного на реакцию с анализируемым компонентом. Для этих целей используют так называемые титрованные растворы, концентрация которых (титр) известны. Титром называется масса вещества, содержащегося в 1 мл титрованного раствора (г/мл). Определение проводят способом титрования, т.е. постепенного приливания титрованного раствора к раствору анализируемого вещества, объем которого точно измерен. Титрование прекращается при достижении точки эквивалентности, т.е. достижения эквивалентности реагента титруемого раствора и анализируемого компонента. Существует несколько разновидностей титриметрического анализа: кислотно-основное титрование, осадительное титрование, комплексонометрическое титрование и окислительно-восстановительное титрование. В основе кислотно-основного титрования лежит реакция нейтрализации Н+ + ОН- Û Н2 О Метод позволяет определить концентрацию кислоты или катионов, гидролизирующихся с образованием ионов водорода, титрованием раствором щелочи или определить определить концентрацию оснований, в том числе анионов, гидролизирующихся с образованием гидроксид-ионов титрованием растворов кислот. Точка эквивалентности устанавливается при помощи кислотно-основных индикаторов, изменяющих окраску в определенном интервале рН. Например, методом кислотно-основного титрования можно определить карбонатную жесткость воды, т.е. концентрацию НСО3 - в воде путем титрования ее раствора HCl в присутствии индикатора метилового оранжевого НСО3 - + Н+ Û Н2 О + СО2 В точке эквивалентности желтая окраска индикатора переходит в бледно-розовую. Расчет производится по уравнению закона эквивалентов Сэк . НСО 3- ·V1 = Сэк .HCl ·V2 , Где V1 ,V2 – объемы анализируемого и титрованного растворов; Сэк. HCl - нормальная концентрация эквивалентов вещества HCl в титрованном растворе; Сэк.НСО3- -определяемая молярная концентрация эквивалентов ионов НСО3 - в анализируемом растворе. При осадительном титровании анализируемый раствор титруется реагентом, образующим с компонентом титрованного раствора малорастворимое соединение. Точка эквивалентности определяется с помощью индикатора, образующего с реагентом окрашенное соединение, например, красный осадок Ag2 CrO4 при взаимодействии индикатора К2 CrO4 с избытком ионов Ag+ при титровании раствора хлорида раствором нитрата серебра. 7. Комплексометрическое титрование При комплексонометрическом титровании определяемый компонент в растворе титруется раствором комплексона, чаще всего этилендиаминотетрауксусной кислоты (ЕДТА, комплексона П) или ее двунатриевой соли (комплексона III или трилона Б). Индикаторами точки эквивалентности обычно служат лиганды, образующие с анализируемым ионом окрашенное комплексное соединение. 8. Окислительно-восстановительное титрование Данный способ заключается в титровании раствора восстановителя титрованным раствором окислителя или в титровании раствора окислителя титрованным раствором восстановителя. В качестве титрованных растворов окислителей нашли применение растворы перманганата калия КМпО4 (перманганатометрия), дихромата калия К2 Сг2 07 (дихроматометрия), иода 12 (иодометрия). При перманганатометрическом титровании в кислой среде Мп (VII) (малиновая окраска) переходит в Мп (II) (бесцветный раствор). Например, перманганатометрическим титрованием можно определить содержание нитритов в растворе. 2КМпО4 + 5KNO2 + 3H2 SO4 = 2MnSO4 + K2 SO4 + 5KNO3 + 3H2 O Итак, существует большое число разновидностей количественного химического анализа, позволяющих определять разнообразные вещества в широких пределах концентраций. Среди химических методов анализа наиболее распространены титрометрические и гравиметрические методы. 9. Инструментальные методы анализа Инструментальные метода анализа обладают многими достоинствами: быстротой анализа, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Остановимся на некоторых методах, основанных на законах и принципах, рассмотренных ранее в данном курсе химии. 10. Электрохимические методы К наиболее применимым электрохимическим методам анализа относятся потенциометрический, полярографический и кондуктометрический. Потенциометрический метод базируется на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах - от концентрации ионов. Потенциалы металлических электродов определяются уравнением Нернста ; Соответственно по значению потенциала можно судить о концентрации ионов. Измерительная ячейка состоит из измерительного (индикаторного) электрода и электрода сравнения, который не чувствителен к определяемому веществу. Полярографический метод предложен чешским ученым Я. Гейеровским в 1922 г. В этом методе строят кривые напряжение-ток для ячейки, у которой два, обычно ртутных, электрода. Один электрод капающий, второй электрод неподвижный с большой площадью поверхности. В ячейку заливается анализируемый раствор. При прохождении тока анализируемый ион осаждается на капле ртути и растворяется в этой капле: Мn + + nе + Hg = M (Hg) Напряжение ячейки определяется прежде всего потенциалом капающего электрода, на котором возникает значительная концентрационная поляризация, так как он имеет небольшую площадь поверхности и соответственно высокую плотность тока. Восстановление его ионов протекает в режиме предельного тока, которое для капающего электрода имеет выражение: Inv = K1 D1/2 m2/3 t1/6 c = K2 c, где К\ и К2 - константы; D- коэффициент диффузии; т - масса капли ртути; t - время образования капли; с - концентрация анализируемого металла в растворе. Потенциал ртутного электрода определяется природой разряжающихся ионов и током, зависящим от концентрации ионов: , где Е1/2 - потенциал полуволны, определяемый природой ионов; I– ток, Iпр - предельный ток Если в растворе присутствует один разряжающийся ион, то полярографическая кривая (полярограмма) имеет одну волну, при наличии нескольких ионов - несколько волн (рис. .1). Рис.1. Полярограмма раствора, содержащего несколько катионов. По значению потенциала полуволны определяется вид ионов, а по величине предельного тока - их концентрация. Таким образом полярографический метод позволяет определять концентрацию нескольких ионов в растворе. Кондуктометрия. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты. Хроматографический анализ. Анализ основан на хроматографии, позволяющей разделять двух- и многокомпонентные смеси газов, жидкостей и растворенных веществ методами сорбции в динамических условиях. Анализ производится с помощью специальных приборов - хроматографов. Разработано несколько методов анализа, которые классифицируются по механизму процесса и природе частиц (молекулярная, ионообменная, осадительная, распределительная хроматография) и по формам применения (колоночная, капиллярная, тонкослойная и бумажная). Молекулярная хроматография основана на различной адсорбируемости молекул на адсорбентах, ионообменная хроматография - на различной способности к обмену ионов раствора. В осадительной хроматографии используется различная растворимость осадков, образуемых компонентами анализируемой смеси при взаимодействии с реактивами, нанесенными на носитель. Распределительная хроматография базируется на различном распределении веществ между двумя несмешивающимися жидкостями. Молекулярная (жидкостная адсорбционная), ионообменная и осадительная хроматография обычно проводятся в хроматографических колонках соответственно с адсорбентом, ионообменным материалом или инертным носителем с реагентом. Распределительная хроматография, как правило, выполняется на бумаге или в тонком слое адсорбента. К достоинствам хроматографического метода анализа относятся быстрота и надежность, возможность определения нескольких компонентов смеси. 11. Оптические методы анализа Эти методы основаны на измерении оптических свойств веществ и излучений, взаимодействия электромагнитного излучения с атомами или молекулами анализируемого вещества, вызывающего излучение, поглощение или отражение лучей. Они включают в себя эмиссионные, люминесцентные и абсорбционные спектральные методы. Методы, основанные на изучении спектров излучения получили название эмиссионных спектральных методов анализа. В методе эмиссионной спектроскопии проба вещества нагревается до очень высоких температур (2000 - 15000°С). Вещество, испаряясь, диссоциирует на атомы или ионы, которые дают излучение. Проходя через спектрограф, излучение разлагается на компоненты в виде спектра цветных линий. Сравнение этого спектра со справочными данными о спектрах элементов позволяет определить вид элемента, а по интенсивности спектральных линий — количество вещества. Метод дает возможности определять микро- и ультрамикро-количества вещества, анализировать несколько элементов, причем за короткое время. Разновидностью эмиссионного анализа является эмиссионная пламенная фотометрия, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени судят о виде вещества, а по интенсивности окрашивания пламени - о концентрации вещества. Анализ выполняют с помощью прибора - пламенного фотометра. Метод в основном используется для анализа щелочных, щелочноземельных металлов и магния. Методы, основанные на свечении анализируемого вещества под воздействием ультрафиолетовых (фотолюминесценция), рентгеновских (рентгенолюминесценция) и радиоактивных (радиолюминесценция) лучей называются люминесцентными. Некоторые вещества обладают люминесцентными свойствами, другие вещества могут люминесцировать после обработки специальными реактивами. Люминесцентный метод анализа характеризуется очень высокой чувствительностью (до 10-10 – 10-13 г люминесцирующих примесей). Методы, основанные на изучении спектров поглощения лучей анализируемыми веществами, получили название абсорбционно-спектральных. При прохождении света через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества. В соответствие с законом Бугера-Ламберта-Бера зависимость изменения интенсивности потока света, прошедшего через раствор, от концентрации окрашенного вещества в растворе с, выражается уравнением Ig (Io /I) = elC, где Io и I - интенсивность потока света, падающего на раствор и прошедшего через раствор; e - коэффициент поглощения света, зависящий от природы растворенного вещества (молярный коэффициент поглощения); l - толщина слоя светопоглощающего раствора. Измерив изменение интенсивности потока света, можно определить концентрацию анализируемого вещества. Определение ведут с помощью спектрофотометров и фотоколориметров. В спектрофотометрах используют монохроматическое излучение, в фотоколориметрах - видимый свет. Сравнивают полученные при измерении данные с градуированными графиками, построенными на стандартных растворах. Если измеряют поглощение лучей атомами определяемого компонента, которые получают распылением раствора анализируемого вещества в пламени горелки, то метод называют атомно-абсорбционным (атомно-абсорбционная спектроскопия). Метод позволяет анализировать вещества в очень малых количествах. Оптический метод, основанный на отражении света твердыми частицами, взвешенными в растворе, называется нефелометрическим. Анализ проводится с помощью приборов нефелометров. Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем. |