Курсовая работа: Технология производства черной меди на ОАО "Среднеуральский медеплавильный завод"
Название: Технология производства черной меди на ОАО "Среднеуральский медеплавильный завод" Раздел: Промышленность, производство Тип: курсовая работа | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ (ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ) КУРСОВАЯ РАБОТАНА ТЕМУ: «ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЧЕРНОВОЙ МЕДИ НА ОАО «СРЕДНЕУРАЛЬСКИЙ МЕДЕПЛАВИЛЬНЫЙ ЗАВОД»» Москва, 2009 Содержание 1 Общие сведения о меди 2 Области использования и потребления меди 3 Физические и химические свойства меди 4 Сырье для производства меди 5 Основные минералы меди 6 История развития ОАО "Среднеуральский медеплавильный завод" 7 Производственный комплекс ОАО «СУМЗ» 8 Организация медеплавильного цеха на ОАО «СУМЗ» 9 Интенсификация Процесса плавки медного сырья 10 Сущность процесса плавки в жидкой ванне 11 Процессы протекающие в надфурменной и подфурменной зонах печи для плавки в жидкой ванне 12 Конструкция печи Ванюкова 13 Технология процесса конвертирования медных штейнов 14 Особенности проведения 1-го и 2-го периодов конвертирования 15 Преимущества и недостатки процесса конвертирования 16 Устройство конвертера Выводы 1 Общие сведения о меди Медь (лат. Cuprum), Cu, химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546; мягкий, ковкий металл красного цвета. Природная состоит из смеси двух стабильных изотопов — 63 Cu (69,1 % ) и 65 Cu (30,9 % ). Среднее содержание меди. в земной коре (кларк) 4,7·10-3 % (по массе. Среди многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь , карбонаты и окислы. Ткип=2310ºС Тпл=1083ºС
Медь легко поддается прокатке, может вытягиваться в проволоку, обладает высокой электропроводностью (уступает только серебру), является малоактивным, электроположительным металлом. Не растворяется в соляной и серной кислоте, но легко растворяется в азотной кислоте. Медь образует многочисленные сплавы с другими металлами: бронза, латунь, мельхиор, нейзильбер. 2 Области использования и потребления меди1. Электроника и электротехника – провода, кабели, обмотка электродвигателей, фольга, электропроводимые шины (45-25%) 2. Машиностроение и транспорт – теплообменники, радиаторы, детали и узлы автомобилей, самолетов, судов, вагонов и т.д. (15-25%) 3. Строительные материалы – кровельные материалы, декоративные украшения (8-10%) 4. Химическая промышленность – соли входят в состав красок, катализаторы (3-6%) 5. Изделия бытового назначения – посуда, часы, украшения (10%) 3 Физические и химические свойства меди Цвет меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решётку с параметром а = 3,6074 При пропускании NH3 над раскалённой медью образуется Cu3 N. Медь подвергается воздействию окислов азота, а именно NO, N2 O (с образованием Cu2 O) и NO2 (с образованием CuO). Карбиды Cu2 C2 и CuC2 могут быть получены действием ацетилена на аммиачные растворы солей М. Нормальный электродный потенциал меди для реакции Cu2+ + 2e Сu равен +0,337 в, а для реакции Cu+ + е Сu равен +0,52 в. Поэтому медь вытесняется из своих солей более электроотрицательными элементами (в промышленности используется железо) и не растворяется в кислотах-неокислителях. В азотной кислоте медь растворяется с образованием Cu(NO3 )2 и окислов азота, в горячей концентрации H2 SO4 — с образованием CuSO4 и SO2 , в нагретой разбавленной H2 SO4 — при продувании через раствор воздуха. Все соли меди ядовиты Медь в двух- и одновалентном состоянии образует многочисленные весьма устойчивые комплексные соединения. Примеры комплексных соединений одновалентной меди (NH4 )2 CuBr3 ; K3 Cu(CN)4 — комплексы типа двойных солей; [Сu {SC (NH2 )}2 ]CI и другие. Примеры комплексных соединений 2-валентной меди CsCuCI3 , K2 CuCl4 — тип двойных солей. Важное промышленное значение имеют аммиачные комплексные соединения меди [Сu (NH3 )4 ] SO4 , [Сu (NH3 )2 ] SO4 . 4 Сырье для производства медиОсновное сырье для производства меди – руда. Медь может производится из вторичного сырья (отходы металлообработки, металлолом, брак) Руда состоит из минералов, различают минералы: - ценные (в их состав входят извлекаемые металлы) - пустой породы По минералогическому составу медные руды делятся на: - сульфидные - окисленные - смешанные - самородные По количеству сульфидов: - сплошные - полностью состоят из сульфидов - вкрапленные – сульфиды присутствуют в виде вкраплений По количеству ценных компонентов: - монометаллические - полиметаллические (комплексные) 5 Основные минералы медиСульфидные: - ковелин CuS, - халькопирит CuFeS2, - халькозинCu2S, - бормит Cu5FeS4, - кубанит CuFe2S3 Окисленные: - малахитCuCO3 Cu(OH)2, - куприт Cu2O, - азурит CuCO3 Cu(OH)2, - тенорит CuO Кроме медносодержащих минералов в руде может содержаться: - cфалерит ZnS - пирротин Fe7S8 - пирит FeS2 - галинит PbS В руде рисутствуют минералы пустой породы, в основном оксиды (SiO2, CaO, Al2O3, MgO), силикаты, карбонаты, алюмосиликаты. Содержание меди в рудах: 0,5-1,5 меди, 0,8-1,5 в основном – руды с таким содержанием в металлообработку сразу отправлять нельзя. Применяют обогащение. Метод флотации – получают медный концентрат с содержанием меди 10-30 %, максимальное количество меди в концентрате до 50%. В России основными предприятиями по производству меди являются: Норильский никель, Северный никель, Пышма, Среднеуральский медеплавильный завод. 6 История развития ОАО "Среднеуральский медеплавильный завод"Правительственное постановление о строительстве на Урале крупного медеплавильного предприятия на базе Дегтярского месторождения медистых перитов — медно-серно-цинково-колчеданных руд, — расположенного в 15 км. к югу от Ревды было принято в августе 1931 года. Работы по возведению и техническому оснащению производств, прокладке коммуникационных и транспортных сетей, строительству жилья для работников завода заняли без малого девять лет. 25 июня 1940 года были получены первые тонны черновой меди. Этот день считается днем рождения СРЕДНЕУРАЛЬСКОГО МЕДЕПЛАВИЛЬНОГО ЗАВОДА. В последующие десятилетия завод рос, наращивал свой технический потенциал, увеличивал объемы выпуска продукции и прочно вошел в число лидеров отрасли. Тяжелые испытания пришлись на 1990-е годы, когда из-за недостатка медьсодержащего сырья резко сократилось производство черновой меди, хронические неплатежи за переработку и полученную продукцию привели к большой задолженности по заработной плате и, как следствие, к недовольству коллектива. Критическая ситуация была разрешена лишь благодаря совместным усилиям руководства СУМЗа и АО «Уралэлектромедь». С приходом на пост генерального директора А.А. Козицына завод начал работать достаточно стабильно, постоянно увеличивая объемы производства. В настоящее время, согласно оценкам экспертов, ОАО «СУМЗ» входит в первую двадцатку наиболее динамично развивающихся компаний России, с 2000 года входит в составУГМК. СУМЗ является градообразующим предприятием. Он является основным плательщиком в муниципальный бюджет. Обеспечивает половину жилого массива города теплом и горячей водой. Завод содержит стоматологическую клинику, профилакторий, базу отдыха для детей, большой спортивный комплекс и Дворец культуры. 7 Производственный комплекс ОАО «СУМЗ»СУМЗ представляет собой крупный химико-металлургический комплекс, включающий в себя пять основных производств: — обогатительную фабрику, которая после реконструкции достигла мощности по переработке 1 миллиона тонн шлаков в год; — медеплавильный цех, производящий свыше 100 тысяч тонн черновой меди из собственного и привозного сырья. Попутно из концентратов и флюсов в готовую продукцию извлекаются золото и серебро; — сернокислотный цех, вырабатывающий около 500 тысяч тонн серной кислоты в год. Здесь также извлекается сера из обжиговых и конверторных газов и газов печи Ванюкова; — суперфосфатный цех, производящий фосфорные удобрения с использованием собственной серной кислоты. После частичной реконструкции оборудования в цехе освоен выпуск триполифосфата натрия — составляющего сырья для технических и бытовых моющих средств; — цех ксантогенатов — крупный производитель бутилового ксантогената калия, флотореагента для обогатительных фабрик. Цех может выпускать до 8,5 тысячи тонн этого продукта, которым обеспечивает большинство горно-обогатительных комбинатов Уральского региона, Башкортостана и Казахстана. Предприятие поставляет свою продукцию на переработку на российские заводы, а также на экспорт. Основным потребителем черновой меди производства ОАО "СУМЗ" является АО "Уралэлектромедь". Потребителями прочей продукции являются предприятия Урала, Центральных и Восточных районов России. Основным видом экспортной продукции является рафинированная медь. Динамика объемов производства продукции ОАО "СУМЗ", т
Завод является носителем передовых технологий в комплексной переработке техногенных отходов. На предприятии действует самая современная система экологического мониторинга. Перспективные планы ОАО «СУМЗ» предусматривают продолжение работ по реконструкции и модернизации оборудования завода с целью увеличения объемов производства, повышения качества продукции, комплексного использования сырья, сокращения вредного воздействия на окружающую среду, утилизации отходов производства. В настоящее время на предприятии развертывается реконструкция всего основного производства 8 Организация медеплавильного цеха на ОАО «СУМЗ» До 1995 года медеплавильный цех завода перерабатывал медные концентраты по схеме обжига в печах "кипящего" слоя, отражательной плавки огарка и конвертирования. Отражательная плавка характеризуется низкой удельной производительностью, высоким расходом огнеупорных материалов, низким тепловым КПД, высоким удельным расходом углеродистого топлива и большим количеством газов с низким содержанием сернистого ангидрида (1,0-2,5%), обезвреживание которых связано со значительными капитальными и эксплуатационными затратами. Такие ценные сопутствующие компоненты, как сера, свинец, цинк, кадмий, германий, рений и др. при отражательной плавке полностью теряются.. Отражательная плавка, основанная на внешних источниках теплоты, — процесс несовершенный. Основными причинами острой необходимости замены отражательной плавки стали высокие требования к предотвращению загрязнения окружающей среды выбросами оксидов серы. В условиях отражательной плавки, характеризующейся образованием огромных количеств очень бедных по SO2 газов, их обезвреживание требует больших капитальных затрат и обходится дорого в эксплуатации. В связи с этим, а также в связи с необходимостью активного использования теплотворной способности сульфидов и ряда других рассмотренных выше факторов были разработаны и освоены новые способы плавки медного сырья. В 1987 году на заводе было начато строительство комплекса плавки медесодержащего сырья в жидкой ванне (печь Ванюкова). В 1995 году комплекс был пущен в эксплуатацию. 9 Интенсификация процесса плавки медного сырьяЦелью плавки любого типа является перевод всей перерабатываемой шихты в расплавленное и газообразное состояние с получением штейна или чернового металла, возгонов и шлака и их разделением. Значительные различия физико-химических свойств химических соединений, составляющих шихту и, в первую очередь, температуры их плавления приводят к постепенному формированию расплава. Сначала образуется первичный расплав из наиболее легкоплавких компонентов, а затем происходит растворение в них более тугоплавких веществ. Следовательно, процессы штейно- и шлакообразования протекают в две стадии: расплавление легкоплавких составляющих шихты и растворение более тугоплавких веществ в этих расплавах. Из числа присутствующих в сульфидных шихтах химических соединений наиболее легкоплавкими являются сульфиды (за исключением ZnS). При этом их эвтектические смеси по сравнению с отдельными сульфидами имеют еще меньшие температуры плавления. Поэтому процессы штейнообразования начинаются раньше процессов шлакообразования и идут с большими скоростями. Шлакообразование начинается позднее и происходит медленнее потому, что для большинства оксидов шихты температура плавления выше, чем температура в печи. При ограниченных температурах в плавильных агрегатах особо важное значение приобретают процессы растворения тугоплавких оксидов в первичных шлаковых расплавах. Процессы растворения являются диффузионными и поэтому протекают значительно медленнее процессов расплавления легкоплавких компонентов. Образование шлаков в металлургических печах начинается, как правило, с получения оксидно-сульфидных эвтектик или более сложных многокомпонентных легкоплавких композиций. В дальнейшем в них растворяются более тугоплавкие оксиды и, в первую очередь, кремнезем, вводимый обычно в шихту в виде кварцевого флюса. На скорость растворения кремнезема в фаялитовом расплаве наибольшее влияние оказывает интенсивность движения шлака, крупность частиц флюса и его реакционная способность. В условиях отражательной плавки (при которой наблюдается наименее интенсивное перемешивание по сравнению с другими известными пирометаллургическими процессами) около 50—60 % кварцевого флюса, несмотря на длительное пребывание в расплаве (10—15 ч), не успевает полностью раствориться в шлаке. Мелкие частицы кварца образуют тонкую взвесь, а более крупные плавают на поверхности шлаковой ванны в виде "кварцевой шубы". Эксперименты показывают, что принудительное перемешивание расплава вызывает резкое ускорение процесса растворения тугоплавких составляющих шихты. Наиболее медленным этапом плавки, даже для современных процессов, у которых время завершения других стадий мало, является коалесценция сульфидных капель и разделение штейна и шлака. Значительная часть меди находится в шлаках в виде эмульсии — мелких капель штейна. Кроме того, при восстановлении или сульфидировании металлов в шлаковом расплаве обычно образуется дополнительное количество капель металлсодержащей фазы, отстаивание которых происходит крайне медленно и не успевает завершиться за приемлемое с практической точки зрения время. Поэтому необходимо обеспечить принудительное укрупнение штейновых или металлических частиц. Можно однозначно утверждать, что именно медленное укрупнение мелкой штейновой (металлической) взвеси и ее отделение от шлака являются одним из самых медленных этапов плавки в целом Наиболее эффективным приемом ускорения коалесценции штейно-вой взвеси является перемешивание шлака с получающимся при плавлении штейном. Известно, что даже загрузка сульфидов на поверхность шлаковой ванны и однократная промывка шпака каплями штейна заметно обедняют шлак. Сочетание процессов восстановления и перемешивания шлака со штейном позволяет резко интенсифицировать укрупнение штейновых частиц и разделение фаз. Доказано, что крупность частиц при этом возрастает настолько, что для разделения штейна и шлака требуется менее 1 ч вместо 8—12 ч. Правильная организация процесса разделения фаз создает предпосылки для резкой интенсификации работы плавильных агрегатов и повышения их удельной производительности. Анализ переработки сульфидного сырья на штейн позволил выявить роль и взаимосвязь последовательных элементарных стадий физико-химических превращений и установить, что оптимизация технологии плавки требует определенного сочетания следующих условий: 1) создание условий для высокой степени использования кислоро 2) да газовой фазы в локальной зоне металлургического реактора, от 3) деленной от конечных продуктов плавления; 4) обеспечение высокой скорости массообменных процессов в сис 5) теме исходные твердые компоненты — конечные расплавы; 3) создание условий для достижения заданного приближения к равновесию между конечными продуктами плавки; 4} ускорение укрупнения диспергированного штейна или металла и обеспечение полноты разделения продуктов плавки. Результаты научных разработок позволили сформулировать основной принцип новой технологии: плавление сырья и массообмен осуществляются в турбулентно перемешиваемой ванне эмульсии штейна (металла) в шлаке. Перемешивание расплава при барботаже его технологическими газами, образующимися при, подаче дутья в расплав через боковые фурмы, обеспечивает требуемую степень турбулизации для ускорения металлургических превращений в зоне расплава выше уровня фурм. При этом обеспечивается коалесценция мелких штейновых капель и формирование составов фаз, близких к конечным. Расслаивание штейна и шлака организовано в прямоточном потоке вертикально движущихся расплавов. Это обеспечило совмещение в одном агрегате для непрерывного процесса реакционной зоны с высокой степенью турбулентности движения барботируемого расплава и зоны с ламинарным движением расплава, необходимой для организации разделения и отдельного выпуска шлака и штейна (металла). Научно обоснованная оптимизация организации физико-химических процессов и движения расплава позволила создать новую технологию — плавку в жидкой ванне Сравнительные технико-экономические показатели
10 Сущность процесса плавки в жидкой ванне Сущность технологического процесса плавки в жидкой ванне заключается в следующем. Кислородсодержащий газ вводится под избыточным давлением около 0,1 МПа в расплав через фурмы в стенах печи на уровне примерно 0,3—0,7 м ниже уровня расплава в спокойном состоянии внутри шахты печи. Общая глубина ванны расплава в печи без барботажа 2,0—2,5 м. Кислородсодержащий газ дутья, барботируя верхнюю часть расплава, энергично перемешивает его и создает газонасыщенный слой гетерогенного расплава, состоящего в основном из шлака с включениями до 10 % (вес.) сульфидов в виде капелек штейна и при недостатке тепла — угля или кокса. Высота барботируемого газонасыщенного расплава увеличивается на величину, равную 2—3-х кратному расстоянию от оси фурм до уровня расплава в спокойном состоянии. Кислородсодержащий газ взаимодействует, в первую очередь, с сульфидом железа, серой и углем и генерирует тепло, необходимое для плавления загружаемой шихты и нагрева расплава именно в зоне технологического процесса равномерно во всем верхнем слое. Благодаря интенсивному перемешиванию капельки сульфидной фазы, образуемые из загруженных частиц сырья, соударяются и сливаются, достигая гидродинамически устойчивого размера 0,5-5 мм, достаточного для выпадения их из верхнего барботируемого слоя и быстрого опускания в донную фазу. Шихта, состоящая из флотационного концентрата или кусковой руды с флюсом и, если необходимо, с кусковым углем, вводится сверху в барботируемый слой; вследствие высокой энергии перемешивания она равномерно распределяется по всему его объему. Расплавленные сульфиды шихты вследствие высокой активности серы и железа интенсивно взаимодействуют со шлаком и кислородом дутья, поддерживают низкое содержание магнетита в шлаке. Это способствует получению шлаков, бедных по цветным металлам. В условиях активного перемешивания происходит быстрое растворение кварца и других тугоплавких компонентов шихты, и поэтому во всем объеме расплава постоянно поддерживается оптимальный состав лака, обеспечивающий минимальные потери цветных металлов. Наличие в расплаве пузырьков барботирующего газа способствует быстрой и полной (в соответствии с величиной равновесного давления пара) возгонке летучих компонентов. Расположение переточного канала для вывода шлака из шахты на 1 м ниже уровня фурм привело к тому, что весь образующийся в верхнем барботируемом слое шлак постепенно движется сверху вниз, проходя свой путь в течение 1,5—3,0 ч. При этом он непрерывно промывается дождем крупных капель штейна, выпадающих из верхнего перемешиваемого слоя. Ниже фурм движущийся поток шлака уже не перемешивается и в нем можно создавать соответствующие градиенты температуры, состава и других параметров, способствующие обеднению шлака. Благодаря такой организации его движения исключена возможность проскока и быстрого выхода из печи непроработанного шлака с повышенным содержанием цветных металлов. Сульфидная донная фаза, образующаяся на дне печи из опускающихся капель, отдельно от шлака выводится из плавильного агрегата. 11 Процессы, протекающие в надфурменнои и подфурменной зонах печи для плавки в жидкой ванне В надфурменной зоне происходитплавление, окисление сульфидов, растворение тугоплавких компонентов, укрупнение мелких сульфидных частиц. При этом все процессы проходят одновременно и с высокой скоростью. Высокая скорость обеспечивается интенсивным перемешиванием расплава. Отсутствие диффузионных ограничений. Важная особенность: - невысокое содержание магнетита в шлаке в сравнение с другими автогенами процессами способствует снижению потерь меди со шлаком . - 100% использование кислорода в расплаве, что позволяет изменять состав штейна за счет изменения соотношения кислорода в дутье и количества шихты. В подфурмениой зоне происходит оседание капель штейна. Скорость движения капель штейна намного превышает скорость движения шлака вниз. Происходит промывка шлака каплями штейна. За счет этого ускоряется разделение и отстаивание шлака и штейна. Эти процессы позволяют достигнуть удельную производительность 60-80т/м в сутки. Процесс может идти как в автогенном,так и полуавтогеном режиме. Во втором случае используется топливо: уголь, природный газ, мазут. 12 Конструкция печи Ванюкова Достоинства печи Ванюкова: - возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков. - процесс характеризуется низким пылеуносом и получением возгонов, богатых по содержанию ценных компонентов - надежная и долговечная аппаратура - роцесс не требует сложной подготовки сырья и пригоден для переработки как кусковой руды, так и концентратов различного состава - по своим показателям он превосходит все известные в мировой практике процессы. Рис. 1. Печь дли плавки в расплаве 1— штейновый сифон; 2 — плавильная камера; 3 — газоход; 4 — шлаковый сифон; 5 — огнеупорная кладка; 6 - воздушно-кислородный коллектор; 7—кессоны; 8 — фурма Печь Ванюкова представляет собой прямоугольную шахту шириной 2,5, длиной 10,0 и высотой 6,0 м. В боковых продольных стенах печи на высоте 2,5 м от подины водоохлаждаемые фурмы для подачи дутья, а если необходимо, и углеродистого топлива (природного газа, мазута или пылеугля). Экспериментально установлено, что ни один из известных огнеупоров не способен длительное время противостоять воздействию нагретого до 1500—1600 К шлака при энергичном его перемешивании. Для надежного ограждения расплава потребовалось смонтировать боковые и торцевые стены шахты из массивных охлаждаемых водой медных кессонов, расположенных в зоне перемешивания шлака от уровня, около 1 м ниже оси фурм, до уровня 3,5 м выше оси фурм. Горн шахты печи ниже кессонированного пояса выполнен из огнеупорного кирпича. В торцевых стенах горна созданы два переточных канала для вывода из него шлака и штейна. Снаружи к шахте печи у переточных каналов герметично примыкают емкости, сообщающиеся через них с внутренним пространством шахты, называемые шлаковым и штейновым сифонами. В стенах этих сифонов предусмотрены щелевидные окна, положение порога которых определяется соответствующим уровнем слива шлака и штейна. 13 Технология процесса конвертирования медных штейнов Процесс конвертирования медных штейнов осуществляется с целью перевода железа из штейнов в шлаки и сульфидных соединений меди в металлическую медь. Это возможно в процессе продувки воздуха через расплавленный штейн. В результате того, что воздух в расплав штейна врывается мощной струей с большой скоростью (130—170 м/с), он раздрабливает на своем пути жидкий штейн на мелкие капли и образует в етруе дутья штейново-воздушную эмульсию. При этом в ней бурно развиваются окислительные процессы, за счет чего в зоне окисления температура поднимается до 1400—1500 С С. Эта температура в объеме ванны конвертера снижается вследствие теплопередачи в окружающее пространство. Образующиеся в результате окисления оксиды железа на первой стадии конвертирования всплывают на поверхность шгейновой ванны и шлакуются кремнеземом, присутствующим на поверхности ванны. На второй стадии окисления образующиеся оксиды меди взаимодействуют с сульфидами меди, что приводит к образованию в конвертере расплава черновой меди и газов, удаляющихся через горловину конвертера. Процесс переработки штейнов на СУМЗ осуществляют следующим образом. Штейны после плавки в печах Ванюкова выпускают в специальные штейновые ковши и заливают в предварительно разогретый конвертер. При каждой заливке порции штейна в конвертер загружают кварц, величина кусков которого не должна превышать 3,5 мм. Кварцевый флюс, содержащий не менее 80 % кварца, загружают в конвертер пушкой, вдувающей дробленый кварц в конвертер равномерным слоем по всей поверхности штейна. После заливки штейна и загрузки кварца в конвертер через фурмы подают воздух при давлении около 190 кПа. По мере накопления жидкого шлака его сливают через горловину в ковш. С этой целью отключают воздух, что необходимо для разделения шлака и штейна. После слива конвертерного шлака в конвертер загружают новую порцию штейна и флюсов и снова проводят продувку для образования шлаков. Таким образом процесс продувки ведут до тех пор, пока в конвертере не накопится достаточное количество белого матта, содержащего не менее 75 % Сu и десятые доли процента железа. Производительность конвертера на этой стадии определяется содержанием меди в штейне. Во втором периоде белый матт продувают непрерывно, без добавки флюсов и холодных присадок. Шлак, благодаря отсутствию в нем железа, практически не образуется. Содержание меди в шлаке второго периода до 30 %. Такой шлак также необходимо перерабатывать. Продувка во втором периоде продолжается 2-2.5 часа. Основной продукт черновая мед, шлак, газы. 14 Особенности проведения 1-го и 2-го периодов конвертирования Первый период Проводится селективное окисление сульфидов железа (FeS). Железо обладает большим сродством с кислородом, чем медь. Пока в расплаве присутствует железо, медь почти не окисляется. Основные реакции: 2FeS + Ю2 = 3FeO + SO2 + Q За счет кислорода воздуха дутья. Реакция проходит с выделением тепла. Для отделения оксида железа(FeO) от сульфидного расплава, необходимо FeO перевести в шлак. Для этого конвертор постояннс добавляют кварцевый флюс. FeO + SiO2 = 2FeO • SiO2 + Q — экзотерсическая В фурменной зоне конвертора возможно переокисление железа, т.к. там много кислорода. С образованием магнетита 6FeO + O2 = 2Fe3 O4 +Q tплFe2O3=1590"С Поэтому образование большого количества магнетита не желательно. Разрушается магнетит (восстановление) по реакции: 3Fe^O4 + FeS + 5SiO2 - 5(2FeOSiO2 ) + SO2 —Q-эндотермическая Эта реакция протекает интенсивно при температуре свыше 1200 С. Поэтому процесс конвертирования желательно проводить при максимально высоких температурах. Однако, для увеличения срока службы футеровки конвертора существует температурный придел 1280-1320°С. Основная цель этого периода: накопление в конверторе богатой по меди сульфидной массы. После первой заливки штейна и частичной продувки из конвертора сливают шлак. После чего заливакп следующую порцию штейна. Эти операции повторяют несколько раз (3-4 раза). До тех пор пока не накопится достаточное количество сульфидной массы. После этого проводят холостую продувку (без заливки штейна). В результате получают белый штейн или белый матт.Практически чистый сульфид меди (CuS). На практике в нем остается 4% FeS. Шлаки первого периода содержат 1,5-3% меди. Это высокое содержание, их необходимо переработать. Переработка заключается в том, что их отправляют в плавильную печь или в отдельные агрегаты. Дополнительное топливо для процесса не требуется. В процессе конвертирования происходит избыток тепла. Температура повышается на 5-7°С в минуту. Для избежания перегрева расплава в конвертор загружают холодные присадки (дробленый шлак, твердый штейн, вторичное сырье, медный концентрат). Теоретическое содержание SO2 в газах 15%, но засчет подсоса воздуха концентрация составляет 2-4%. Для обеспечения максимальной производительности в процессе работы проводят прочистку фурм. Это делают вручную или автоматически. Длительность первого периода: - при богатом штейне 6-9 часов; - при бедном штейне 16-24 часа a. Второй период Основные реакции: 2CuS + ЗО, - 2Си2 О + 2SO2 Cu2 S + 2Си2 О = 6Сы + SO2
Основной процесс - это продувка белого маттавоздухом. Процесс ведут без добавки флюсов и холодных присадок. Однако, теоретически шлака не должно получится. Практически шлак бывает, т.к. осталось 4%FeS и полностью шлак в первом периоде не удается слить. Содержание меди в шлаке второго периода до 30%. Такой шлак так же необходимо перерабатывать. Продолжительность второго периода - 2-3 часа. Основной продукт черновая медь, шлак, газы. Теоретическое содержание SO2 21%, на практике 4-6% в газах. Производительность конвертора определяется временем работы конвертора под дутьем (это время в течение которого идет продувка расплава). Обычно время работы под дутьем составляет 70-80% от общего времени. 15 Преимущества и недостатки процесса конвертирования Преимущества процесса: - конвертирование весьма эффективный процесс; - характерно высокой степенью использования кислорода; - высокая удельная производительность во время дутья; - процесс является автогенным (не требует добавки топлива). Недостатки процесса: - периодичность процесса. Время расходуется на заливку штейна, слив шлака, слив черновой меди. - Большое время затрачивается на рабочий режим; - трудно добиться во время работы герметичного соединения горловины конвертора с системой газоходов. Что приводит к поступлению в атмосферу цеха серо содержащий газов. - небольшой срок службы конвертора из-за разрушения футеровки. Срок службы 1,5-3 месяца. 16 Устройство конвертера
![]() Конвертер для продувки штейнов 1— фундамент; 2 — опорные ролики; 3 – бочка; 4 – опорный обод; 5 – горловина; 6 - футеровка; 7 — воздушный коллектор; 8 — фурма; 9 — зубчатое колесо; 10 — привод для вращения бочки Конвертер для переработки штейнов (рис. 74) имеет цилиндрический сварной воздух из стальных листов, футерованных магнезитовым и хромомагнезитовым кирпичом. На кожухе укреплены стальные литые ободы, которыми конвертер опирается на стальные ролики, а также зубчатый обод, связанный через редуктор с электродвигателем, с помощью которого осуществляется поворот конвертера. Эта конструкция позволяет вращать конвертер вокруг продольной оси в любую сторону на 360 "С. В верхней части кожуха предусмотрено отверстие, на которое установлена горловина для отвода газов из конвертера. Воздух в жидкую ванну штейна подается через фурмы, вставленные в фурменные отверстия в кожухе и кладке и закрепленные к кожуху по длине конвертера. Каждая из них состоит из стальной трубки, через которую воздух поступает под давлением 100—120 кПа и фасонной отливки с тремя отверстиями. Одно отверстие служит для подачи воздуха из рукава воздухопровода, второе — для крепления фурменной трубки к отверстию в кожухе и третье — для фурмования, т.е- для очистки фурменных трубок от настывающих корок штейна. Кладку конвертера выполняют из магнезиальных огнеупоров: хромомагнези-товых и периклазошпинелидных. Наиболее изнашивающиеся части кладки — фурменная зона и прилегающая к ней надфурменнаяи торцевая зоны. В кладке фурменного пояса конвертера наиболее стоек периклазошпинелидный огнеупор. Толщина футеровки бочки и днища конвертера составляют 380—460 мм, В области фурм она достигает 540 мм. Продолжительность кампании конвертеров между текущими ремонтами 3—4 мес. Выводы Основными целями программы перспективного развития предприятия являются: - повышение эффективности работы подразделений предприятия; - увеличение объема производства продукции; - повышение комплексности использования сырья; - экономия материальных и энергоресурсов; - уменьшение вредного воздействия на окружающую среду; - автоматизация и механизация технологических процессов. Сегодня СУМЗ внедряет современные технологии в комплексной переработке техногенных отходов. Так, в медеплавильном цехе был смонтирован и запущен в работу герметичный водоохлаждаемый напыльник, внедрение которого позволило снизить выбросы SO2 При плавке в жидкой ванне достигнута удельная производительность, превышающая более чем в 15 раз производительность отражательной печи при плавке сырой шихты Возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков. Основной задачей в металлургическом производстве является замена отражательной печи на печь Ванюкова с возможностью полной утилизации отходящих газов. Помимо основного использования для плавки сульфидных концентратов на штейн, плавка в жидкой ванне пригодна для более широкого применения. При внедрении процесса в жидкой ванне необходимо учитывать его возможности, пути и направления развития, которые будут осуществляться уже в недалеком будущем. К перспективным направлениям относятся прежде всего прямое получение черновой меди и глубокое обеднение шлаков, прямое получение медно-никелевого файнштейна, плавка коллективных медно-цинковых концентратов, комплексная переработка отвальных шлаков. Заслуживает внимания также использование принципов плавки в жидкой ванне для переработки окисленных никелевых и железных руд. Дальнейшее развитие процесса конвертирования медных штейнов осуществляется в основном по 2-м направлениям: усовершенствование существующего процесса и создание новых высокоинтенсивных процессов и аппаратов. С целью повышения эффективности работы горизонтальных конвертеров увеличивают их размеры, совершенствуют воздхоподводящую систему , применяют механическую продувку фурм и дутья, обогощенного кислородом, тщательно герметизируют напыльники и утилизируют тепло отходящих газов. В настоящий момент на СУЗМ предусматриваются работы по отработке технологии плавки пылей и шихты в конвертерах. Дальнейшее развитие получит применение при конвертировании природного газа и технологического кислорода. Для конвертеров разрабатывается проект напыльников новой конструкции. Список литературы1. «Плавка в жидкой ванне», Ванюков А.В., Быстров В.П., Васкевич А.Д., под ред. Ванюкова А.В. – Металлургия, 1988 г. 2. «Технология металлургического производства цветных металлов», Матвеев Ю.Н., Стрижко В.С. – Металлургия, 1986 г. 3. «Металлургия черных и цветных металлов», Челищев, Арсентьев 4. «Общая металлургия», Уткин, Тарасов 5. Интернет |