Лабораторная работа: Методы анализа растворов и солей
Название: Методы анализа растворов и солей Раздел: Рефераты по химии Тип: лабораторная работа | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Исходное сырье и материалы В эксперименте использовалась соляная кислота концентрацией 36% и плотностью 1,178 г/см3 марки «х. ч.» и серпентинит Киембаевского месторождения с технологического потока ПО «Оренбургасбест», имеющий следующий химический состав (% масс): MgO – 40,62; SiO2 – 35,20; Fe2 O3 – 9,49; ППП – 13,57; Al2 O3 – 0,68; СaO – 0,57; Cr2 O3 – 0,21; NiO – 0,19; MnO – 0,10; CoO – 0,01. Химический анализ выполнен лабораторией ЦНИИ Геолнеруда. Минералогический состав представлен следующими минералами (% масс): хризотил – 60,0; лизардит – 10,0-13,0; антигорит – 2,0-3,0; немалит – 9,0; магнезит ~ 2,5; магнетит – 4-5. В ходе данного эксперимента использовался серпентинит фракцией -0,63+0,14 мм. При проведении экспериментов и анализов исходного сырья и продуктов использовались растворы, приготовленные из реактивов, приведенных в таблице 3.1. Все растворы приготавливались с использованием дистиллированной воды ГОСТ 6709 – 72. Таблица 1 – Реактивы, используемые для приготовления растворов.
Mетодика проведения эксперимента [ 1,2 ] Перед началом опыта в реактор, который представляет собой цилиндрический стакан с эллиптическим днищем (V=450 мл), вносили рассчитанное количество необожженного серпентинита, заливали рассчитанным количеством дистиллированной воды и добавляли концентрированную кислоту небольшими порциями при постоянном перемешивании стеклянной палочкой. Затем раствор герметизировали и помещали в нагретый до 90° термостат. Далее устанавливали частоту вращения мешалки такую, чтобы суспензия находилась во взвешенном состоянии (мешалка 4-х лопастная с наклонными лопастями). Через 2,5 часа эксперимент прекращали, суспензию фильтровали на вакуум-фильтре. Фильтрат переносили в бюкс, взвешивали и анализировали в нем содержание MgCl2, FeCl3 , HCI. Осадок промывали горячей дистиллированной водой (порциями по 100 мл) до отрицательной пробы на Cl- - ионы по AgNO3 (800-1000 см3 ). Промытый осадок высушивали в сушильном шкафу при температуре 110-120°С в течение 2 часов, взвешивали и анализировали на содержание в нем SiO2 , влажность и ППП. Методика проведения анализа фильтрата [3] Взвешивали бюкс, бюкс с фильтратом (10 мл), переливали в стакан и добавляли 20-30 мл дистиллированной воды и 1 мл HNO3 (конц) (для перевода Fe2+ в Fe3+ ). Нагревали до 100°С и держали 10-15 минут. По каплям добавляли NH3 (1:1), перемешивая до появления бурых оксидов Fe(OH)3 , до легкого неисчезающего запаха аммиака. Осадок отстаивался на водяной бане при 70-80°С не менее получаса. Раствор из стакана декантировали на беззольный фильтр и фильтровали в мерную колбу. Остаток раствора вместе с осадком переносили на фильтр. Стакан и палочку несколько раз промывали горячей водой (не менее 5-6 раз). Объем раствора в мерной колбе после охлаждения доводили до метки. Определение содержания MgO Из мерной колбы отбирали пипеткой 10 мл раствора и помещали в коническую колбу, приливали 10 мл аммиачно-буферного раствора, 100 мл дистиллированной воды (~70°С), добавляли индикатор кислотный хром синий и титровали 0,05 М раствором трилона Б при сильном перемешивании до голубой окраски. Расчет вели по формуле: С Mg 2+ =[ V •( N • K )•Э• VK / m • Vn •1000]•100,% (1) где V – объем трилона Б, пошедшего на титрование анализируемого раствора, мл; Э – эквивалент MgCl2 (Э=47,6052); N – нормальность трилона Б; К – поправочный коэффициент трилона Б; VК – объем мерной колбы, см3 ; Vn – объем пипетки, см3 ; m – масса навески фильтрата, г. Определение содержания Fe 3+ Осадок с фильтром смывали водой в стакан, в котором велось осаждение. Частицы осадка на фильтре растворяли 20 мл HCl (1:1). Раствор из стакана фильтровали и количественно переносили в мерную колбу на 250 мл и доводили водой до метки. Из мерной колбы пипеткой отбирали 50 мл раствора и переносили в коническую колбу. Доливали 50 мл дистиллированной воды и нейтрализовали NH3 (1:1) до pH=4÷5 по универсальной индикаторной бумаге. Раствор подогревали до 40-60°С. Добавляли 5 мл HCl (1:4) и индикатор – 5 капель 10%-го раствора сульфосалициловой кислоты, и титровали 0,05 М трилоном Б до зеленовато-желтой окраски. Расчет вели по формуле: С Fe 3+ = [ V •( N • K )•Э• VK / m • Vn •1000]•100,% (2) где V – объем трилона Б, пошедшего на титрование анализируемого раствора, мл; Э – эквивалент FeCl3 (Э=54,0677); N – нормальность трилона Б; К – поправочный коэффициент трилона Б; VК – объем мерной колбы, см3 ; Vn – объем пипетки, см3 ; m – масса навески фильтрата, г. Определение кислотности Из мерной колбы отбирали пипеткой 10 мл раствора, добавляли индикатор метил-оранжевый и титровали 0,1 М NaOH до перехода окраски из красной в оранжевую. Расчет вели по формуле: фильтрат выщелачивание серпентинит кремнезем аморфный С H + =[V•(M•K)• Э •VK /m•Vn •1000]•100,% (3) где где V – объем NaOH, пошедшего на титрование анализируемого раствора, мл; Э – эквивалент HCl (Э=36,4606); M – молярность раствора NaOH, М; К –коэффициент молярности NaOH; VК – объем мерной колбы, см3 ; Vn – объем пипетки, см3 ; m – масса навески фильтрата, г. Методика проведения анализа аморфного кремнезема [1] O пределение нерастворимого в HCl остатка ( SiO 2 ) Взвешивали навеску промытого и высушенного осадка 1 г с точностью 0,2 мг и переносили в стакан. Добавляли 150 см3 5%-ного раствора HCl и нагревали при температуре 90 - 100°С в течение 3 часов при постоянном перемешивании. Стеклянную палочку постоянно держали в стакане, который накрывали часовым стеклом. После 3-х часов и уменьшения объема раствора до 30 – 40 см3 суспензию количественно переносили в выпарную чашку и упаривали досуха (~2 часа). После этого чашку с сухим остатком накрывали часовым стеклом, через носик чашки по каплям вводили 15 см3 концентрированной HCl и оставляли на 10-15 минут на водяной бане, затем горячий раствор фильтровали через беззольный фильтр в стакан. Чашку обмывали на фильтр и осадок промывали до исчезновения реакции на Cl- ион (7 ступеней). Фильтр с осадком помещали в предварительно прокаленный и взвешенный тигель и прокаливали при 800°С в течении не менее 2-х часов. После прокаливания тигель с навеской охлаждали в эксикаторе. Осажденный осадок взвешивали с точностью 0,2 мг. Содержание нерастворимого в HCl остатка считали по формуле: Х=( m ост / m нав )•100,% (4) где Х – содержание нерастворимого в HCl остатка, %; mост – масса нерастворимого остатка после прокаливания, г; mнав – масса навески, г. ППП (потери при прокаливании) Форфоровый тигель предварительно прокаливали до постоянной массы при температуре 900°С , не менее 2-х часов, остужали в эксикаторе и взвешивали. Взвешивали с 1 г серпентинита с точностью 0,2 мг и прокаливали при 900°С в течении 3-х часов. Расчет вели по формуле: ППП=[( m т +н1 )-(mт +н2 )]/[(mт +н1 )- m т ]•100,% (5) где mт – масса тигеля, г; н1 – масса серпентинита до прокаливания, г; н2 – масса серпентинита после прокаливания, г. Результаты экспериментов и их обсуждение Результаты экспериментов приведены в таблицах 2-4. Таблица 2 – Результаты анализа фильтрата, полученного путем выщелачивания серпентинита 20-ти %-ной соляной кислотой
Таблица 3 – Результаты анализа полученного кремеземистого остатка
Для подбора оптимальных условий выщелачивания, при которых из серпентинита максимально извлекаются все ценные компоненты, необходимо изучить в отдельности действие всех факторов на процесс выщелачивания и установить их оптимальные пределы. В ходе данной работы мы исследовали влияние температуры и времени выщелачивания на степень извлечения магния и железа. Как видно из полученных данных, повышение температуры на 5°С и времени выщелачивания на 30 минут не сильно влияют на степень извлечения магния и железа, поэтому можно проводить эксперименты при следующих условиях: температура 90°С, время выщелачивания 180 минут и концентрация HCl 20%. В ходе нашего эксперимента мы достигли высоких степеней извлечения Mg2+ (97%), но не добились высоких степеней извлечения Fe3+ (max 85%). Возможно, это связано с тем, что брусит, содержащий Mg2+ , легко растворяется в HCl, а растворимость магнетита, в котором содержится железо, уменьшается в ряду H3 PO4 , H2 SO4 , HCl, HNO3 . Вследствие этого Fe3+ плохо переходит в раствор, поэтому степень извлечения его низкая. Что касается промывки полученного кремнеземистого остатка, то повышение температуры промывных вод сокращает число операций промывки и уменьшает количество промывных вод. Если говорить о кремнеземистом остатке, то ППП исходного серпентинита составляют 13,57%, а ППП полученного кремнезема составляют, в среднем, 39%. ППП для серпентинита – это потеря кристаллизационной воды из кристаллической решетки. Для исследуемого аморфного кремнезема ППП – это потеря адсорбированной в порах аморфного оксида кремния (SiO2 ) воды. Поскольку значения ППП получились очень высокими, то можно предположить, что полученный аморфный кремнезем очень крупнопористый. Исследуя таблицу 3 можно сделать вывод, что увеличение температуры и времени выщелачивания не влияет на ППП кремнеземистого остатка. Список литературы 1. Методы анализа рассолов и солей / Под ред. Ю.В. Морачевского, Е.М. Петровой. – М.: Химия, 1964. – 406 с. 2. Перельман В.И. Краткий справочник химика / В.И. Перельман. – М.: Химия, 1964.- 295 с. 3. Коростелев П.П. Приготовление растворов для химико-аналитических работ / П.П. Коростелев. – М.: Наука, 1964. – 398с. |