Реферат: Рішення рівнянь із параметрами
Название: Рішення рівнянь із параметрами Раздел: Рефераты по математике Тип: реферат | ||||||||||||||
Зміст Введення Рішення рівнянь із параметрами Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями Висновок Література Введення Актуальність даної теми визначається необхідністю вміти вирішувати такі рівняння з параметрами при складанні незалежного оцінювання знань. Ціль даної роботи розповісти про рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями. Для досягнення поставленої мети необхідно вирішити наступні задачі : дати визначення поняттям рівняння з параметрами; показати принцип рішення даних рівнянь на загальних випадках; показати рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями. Для виконання поставленої мети були використані наступні методи : використання літератури різного типу, робота в групах на уроках алгебри й заняттях елективного курсу по математиці, участь проектної групи в міській конференції по даній темі в 2008 році. Об'єктом дослідницької роботи було рішення рівнянь із параметрами, зв'язаних із властивостями вище представлених функцій. Структура даної роботи містить у собі теорію, практичну частину, висновок, бібліографічний список. Рішення рівнянь із параметрами рівняння параметр функція логарифмічна Задачі з параметрами відіграють важливу роль у формуванні логічного мислення й математичної культури в школярів, але їхнє рішення викликає в них значні утруднення. Це пов'язане з тим, що кожне рівняння з параметрами являє собою цілий клас звичайних рівнянь, для кожного з яких повинне бути отримане рішення. Такі задачі пропонуються на єдиному державному іспиті й на вступних іспитах у вузи. Більшість посібників адресована абітурієнтам, однак починати знайомитися з подібними задачами потрібно набагато раніше - паралельно з відповідними розділами шкільної програми по математиці. Якщо в рівнянні деякі коефіцієнти задані не конкретними числовими значеннями, а позначені буквами, то вони називаються параметрами, а рівняння параметричним. Природно, такий невеликий клас задач багатьом не дозволяє засвоїти головне: параметр, будучи фіксованим, але невідомим числом, має як би двоїсту природу. По-перше, передбачувана популярність дозволяє «спілкуватися» з параметром як із числом, а по-друге, - ступінь волі спілкування обмежується його невідомістю. Так, ділення на вираження, що містить параметр, добування кореня парного ступеня з подібних виражень вимагають попередніх досліджень. Як правило, результати цих досліджень впливають і на рішення, і на відповідь. Основне, що потрібно засвоїти при першому знайомстві з параметром, - це необхідність обережного, навіть, якщо хочете, делікатного обігу з фіксованим, але невідомим числом. Цьому, на нашу думку, багато в чому будуть сприяти наші приклади. Необхідність акуратного обігу з параметром добре видна на тих прикладах, де заміна параметра числом робить задачу банальної. До таких задач, наприклад, ставляться: зрівняти два числа, вирішити лінійне або квадратне рівняння, нерівність і т.д. Звичайно в рівняння буквами позначають невідомі. Вирішити рівняння - значить: знайти множину значень невідомому, задовольняючому цьому рівнянню. Іноді рівняння, крім букв, що позначають невідоме (X, Y,Z), містять інші букви, називані параметрами(a, b, c). Тоді ми маємо справу не з одним, а з нескінченною множиною рівнянь. При одних значеннях параметрів рівняння не має корінь, при інших - має тільки один корінь, при третіх - два корені. При рішенні таких рівнянь треба: 1) знайти множину всіх доступних значень параметрів; 2) перенести всі члени, що містять невідоме, у ліву частину рівняння, а всі члени, що не містять невідомого в праву; 3) привести подібні доданки; 4) вирішувати рівняння ax = b. Можливо три випадки. 1. а 0, b – будь-яке дійсне число. Рівняння має єдине рішення х = . 2. а = 0, b = 0. Рівняння приймає вид: 0х = 0, рішеннями є всі х R. 3. а = 0, b 0. Рівняння 0х = b рішень не має. Зробимо одне зауваження. Істотним етапом рішення рівнянь із параметрами є запис відповіді. Особливо це ставиться до тих прикладам, де рішення як би «гілкується» залежно від значень параметра. У подібних випадках складання відповіді - це збір раніше отриманих результатів. І тут дуже важливо не забути відбити у відповіді всі етапи рішення. У тільки що розібраному прикладі запис відповіді практично повторює рішення. Проте, я вважаю за доцільне привести відповідь. Відповідь: х = при а 0, b – будь-яке дійсне число; х - будь-яке число при а = 0, b = 0; рішень немає при а = 0, b ? 0. Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, тригонометричною й логарифмічною функціями 1. Знайдемо значення параметра n, при яких рівняння 15·10 х – 20 = n – n · 10х + 1 не має коренів? Рішення : перетворимо задане рівняння: 15·10 х – 20 = n – n · 10х + 1 ; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х = . Рівняння не буде мати рішень при ≤ 0, оскільки 10 х завжди позитивно. Вирішуючи зазначену нерівність методом інтервалів, маємо: ≤ 0; (n + 20)·(15 + 10n) ≤ 0; - 20 ≤ n ≤ - 1,5. Відповідь : . 2. Знайдемо всі значення параметра а , при яких рівняння lg2 (1 + х2 ) + (3а – 2)· lg(1 + х2 ) + а2 = 0 не має рішень. Рішення : позначимо lg(1 + х2 ) = z, z > 0, тоді вихідне рівняння прийме вид: z2 + (3а – 2) · z + а2 = 0 Це рівняння – квадратне з дискримінантом, рівним (3а – 2)2 – 4а2 = 5а2 – 12а + 4. При дискримінанті менше 0, тобто при 5а2 – 12а + 4 < 0 виконується при 0,4 < а <2. Відповідь: (0,4; 2). 3. Знайдемо найбільше ціле значення параметра а , при якому рівняння cos2x + asinx = 2a – 7 має рішення. Рішення : перетворимо задане рівняння: cos2x + a sinx = 2a – 7; 1 – 2sin2 х – asinx = 2a – 7; sin2 х - a sinx + a – 4 = 0; (sinх – 2) · = 0. Рішення рівняння (sinх – 2) · = 0 дає: (sinх - 2) = 0; х належить порожній множині. sinх - = 0; х = (-1)n arcsin + πn, n Z при ≤ 1. Нерівність ≤ 1 має рішення 2 ≤ а ≤ 6, звідки треба, що найбільше ціле значення параметра а дорівнює 6. Відповідь : 6. 4. Указати найбільше ціле значення параметра а , при якому корінь рівняння 4х2 - 2х + а = 0 належить інтервалу (- 1; 1). Рішення : корінь заданого рівняння рівні: х1 =(1+ ) х2 =, при цьому а ≤ . За умовою -1 < (1+ ) < 1 < < 3, - 1 < < 1 > > - 3. Рішенням, що задовольняють зазначеним подвійним нерівностям, буде рішення подвійної нерівності: - 3 < < 3. Нерівність - 3 < виконується при всіх а ≤ , нерівність < 3 – при - 2 < а ≤ . Таким чином, припустимі значення параметра а лежать в інтервалі (-2; . Найбільше ціле значення параметра а із цього інтервалу, що одночасно належить і інтервалу (-1; 1), дорівнює 0. Відповідь : 0. 5. При яких значеннях параметра а число корінь рівняння 2 - х = 0 дорівнює а? Рішення : побудуємо ескіз графіка функції, в = 2 - х при цьому врахуємо, що функція в – парна і її графік – симетричний щодо осі ординат, у силу чого можна обмежитися побудовою тільки його правої частини ( х ≥ 0). Також урахуємо, що тричлен х2 - 8х + 7 має коріння х = 1 і х = 7, при х = 0 в = 7, а при х = 4 – мінімум, рівний – 9. На малюнку: пунктирними прямими зображена парабола в = х2 - 8х + 7 з мінімумом умін рівним - 9 при х хв = 4, і коріннями х1 = 1 і х2 = 7; суцільними лініями зображена частина параболи в = 2 – 8х + (1 < х < 7), отримана дзеркальним відбиттям щодо осі 0х частини параболи х2 - 8х + 7 при 1 < х < 7. (Ескіз лівої частини графіка функції при х < 0 можна одержати, відбивши ескіз правої частини графіка симетрично щодо осі 0у). Проводячи горизонталі в = а , а N, одержуємо k крапок її перетинання з лініями ескізу графіка. Маємо:
Таким чином, а = k при а = 7. Відповідь : 7. 6. Указати значення параметра а , при якому рівняння х4 + (1 – 2а)х2 + а2 – 4 = 0 має три різних корені. Рішення : усяке біквадратне рівняння в загальному випадку має дві пари корінь, причому корінь однієї пари різняться тільки знаком. Три корені можливі у випадку, якщо рівняння має одну пару у вигляді нуля. Корінь заданого рівняння рівні: х = Одна з пар корінь буде дорівнює 0, якщо (2а-1) = . Вирішуючи це рівняння за умови 2а-1 > 0 > , маємо: (2а – 1) = (2а – 1)2 = 17 – 4а 4а2 – 4а +1 = 17 – 4а а = 2. Відповідь : 2. Указати ціле значення параметра p , при якому рівняння cosx – 2sinx = + має рішення. Рішення : р ≥ 0; 2 – р ≥ 0 р ≤ 2; поєднуючи припустимі значення параметра р , маємо: 0 ≤ р ≤ 2. При р = 0 вихідне рівняння приймає вид – 2sinх = 2х належить порожній множині ( у силу обмеженості синуса). При р = 1 вихідне рівняння приймає вид: cosx-2sinx = +1. Максимальне значення різниці (cosx-2sinx) становить = (- sinx – 2cosx) = 0 tgx = -2, при цьому sinx = sin (arctg(-2)) = , cosx – 2sinx = , що менше +1. Отже, при р = 1 рівняння рішень не має. При р = 2 вихідне рівняння приймає вид . Максимальне значення різниці становить при х = arctg(- ) (при цьому sinx = , cosx = ). Оскільки > +1, то рівняння = буде мати рішення. Відповідь : 2. 8. Визначити число натуральних n, при яких рівняння не має рішення. Рішення : х ≠ 0, n ? 10. Рівняння х2 – 8х – n(n – 10) = 0 не має рішення, якщо його дискримінант менше 0, тобто 16 + n(n-10) < 0 n2 -10n +16 < 0 (n-2) (n-8) <0 2 < n < 8. У знайденому інтервалі 5 натуральних чисел: 3, 4, 5, 6 і 7. З огляду на умову n ? 10, знаходимо, що загальне число натуральних n, при яких рівняння не має рішень, дорівнює 6. Відповідь : 6. 9. Знайти найменше ціле значення параметра а, при якому рівняння (0 < х < ) має рішення. Рішення : за умовою 1 > sinx > 0 1 < < + , 1 > cosx > 0 1 < < + , Отже, 2 < а < + . Зводячи обидві частини заданого рівняння у квадрат, маємо: = а2 = а2 = а2 . Уведемо змінну z = . Тоді вихідне рівняння прийме вид: z2 + 2z – а2 = 0. Воно має рішення при будь-якому а, оскільки його дискримінант D = 1 + а2 позитивний при будь-якому а . З огляду на, що 2 < а < + , містимо, що найменше ціле значення параметра а , при якому задане рівняння має рішення дорівнює 3. Відповідь: 3. Висновок Під час створення даного проекту ми вдосконалили свої старі знання по темі «Рівняння з параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями » і якоюсь мірою одержали нові. По завершенню роботи ми прийшли до висновку, що ця тема повинна вивчатися не тільки на елективних курсах і додаткових заняттях, але й у шкільній програмі, тому що вона формує логічне мислення й математичну культуру в школярів. Учням (студентам) знання по цій темі допоможуть здати незалежне оцінювання знань. Література 1. П.І.Горнштейн, В.Б.Полонский, М.С.Якир Задачі з параметрами. – К., 2002. 2. Н.Ю.Глаголєва Задачі по математиці для вступників у вузи. – К., 1994р. 3. В.В.Лікоть Задачі з параметрами, - К., 2003р. 4. В.В.Ткачук Математика – абітурієнтові. – К., 1994р. 5. Г.А.Ястребинецький Рівняння й нерівності, що містять параметри. – К., 2004 6. А.Г.Мордкович Алгебра й початок аналізу. – К., 1997р. |