Курсовая работа: Моделирование движения парашютиста
Название: Моделирование движения парашютиста Раздел: Рефераты по математике Тип: курсовая работа | |||||||||||||||
БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Курсовая работа Дисциплина «Математическое моделирование» Тема: «Моделирование движения парашютиста» Минск 2008 Содержание Введение 1. Свободное падение тела с учетом сопротивления среды 2. Формулировка математической модели и ее описание. 3. Описание программы исследования с помощью пакета Simulink 4. Решение задачи программным путем Список использованных источников ВведениеФормулировка проблемы :Катапульта выбрасывает манекен человека с высоты 5000 метров. Парашют не раскрывается, манекен падает на землю. Оценить скорость падения в момент удара о землю. Оценить время достижения манекеном предельной скорости. Оценить высоту, на которой скорость достигла предельного значения. Построить соответствующие графики, провести анализ и сделать выводы. Цель работы :Научиться составлять математическую модель, решать дифференциальные уравнения программными средствами (используется язык технических вычислений MatLAB 7.0, пакет расширения Simulink) и анализировать полученные данные о математической модели. 1. Свободное падение тела с учетом сопротивления средыПри реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту, относительно несложную, задачу нельзя решить средствами “школьной” физики: таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления. Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным). При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение, где определяется свойствами среды и формой тела. Например, для шарика — это формула Стокса, где — динамическая вязкость среды, r — радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм = 0,0182 H.c.м-2 для воды 1,002 H.c.м-2 , для глицерина 1480 H.c.м-2. Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (в движение станет равномерным). Имеем или (1) Пусть r= 0,1 м, = 0,8 кг/м (дерево). При падении в воздухе м/с, в воде 17 м/с, в глицерине 0,012 м/с. На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости: . Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если , то вкладом можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды и зависит от формы тела. Обычно представляют k2 = 0,5сS, где с — коэффициент лобового сопротивления — безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис.1. При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается. Для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе. Вернемся к указанной выше оценке, исходя из квадратичной зависимости силы сопротивления от скорости. Имеем или (2) для шарика (3)
Рис 1 . Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму Примем r = 0,1 м, =0,8.103 кг/м3 (дерево). Тогда для движения в воздухе (= 1,29 кг/м3 ) получаем 18 м/с, в воде(= 1.103 кг/м3 ) 0,65 м/с, в глицерине (= 1,26.103 кг/м3 ) 0,58 м/с. Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения — уравнение второго закона Ньютона с учетом двух сил, действующих на тело: силы тяжести и силы сопротивления среды: (4) Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем (5) Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7) заданы? При такой постановке модель носит сугубо дескриптивный характер. Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет. Начиная с этого момента, , и соответствующую установившуюся скорость можно найти из условия =0, решая не дифференциальное, а квадратное уравнение. Имеем (6) (второй — отрицательный — корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от до . Как и по какому закону – это можно узнать, лишь решив дифференциальное уравнение (7). Однако даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение. И хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны. Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций – а как найти закон изменения во времени перемещения? Формальный ответ прост: (7) но шансы на реализацию этой квадратуры уже совсем невелики. Дело в том, что класс привычных нам элементарных функций очень узок, и совершенно обычна ситуация, когда интеграл от суперпозиции элементарных функций не может быть выражен через элементарные функции в принципе. Математики давно расширили множество функций, с которыми можно работать почти так же просто, как с элементарными (т. е. находить значения, различные асимптотики, строить графики, дифференцировать, интегрировать). Тем, кто знаком с функциями Бесселя, Лежандра, интегральными функциями и еще двумя десятками других, так называемых специальных функций, легче находить аналитические решения задач моделирования, опирающихся на аппарат дифференциальных уравнений. Однако даже получение результата в виде формулы не снимает проблемы представления его в виде, максимально доступном для понимания, чувственного восприятия, ибо мало кто может, имея формулу, в которой сопряжены логарифмы, степени, корни, синусы и тем более специальные функции, детально представить себе описываемый ею процесс - а именно это есть цель моделирования. В достижении этой цели компьютер — незаменимый помощник. Независимо от того, какой будет процедура получения решения - аналитической или численной, — задумаемся об удобных способах представления результатов. Разумеется, колонки чисел, которых проще всего добиться от компьютера (что при табулировании формулы, найденной аналитически, что в результате численного решения дифференциального уравнения), необходимы; следует лишь решить, в какой форме и размерах они удобны для восприятия. Слишком много чисел в колонке быть не должно, их трудно будет воспринимать, поэтому шаг, с которым заполняется таблица, вообще говоря, гораздо больше шага, с которым решается дифференциальное уравнение в случае численного интегрирования, т.е. далеко не все значения и , найденные компьютером, следует записывать в результирующую таблицу (табл. 2). Таблица 2 Зависимость перемещения и скорости падения от времени (от 0 до 15 с)
Кроме таблицы необходимы графики зависимостей и ; по ним хорошо видно, как меняются со временем скорость и перемещение, т.е. приходит качественное понимание процесса. Еще один элемент наглядности может внести изображение падающего тела через равные промежутки времени. Ясно, что при стабилизации скорости расстояния между изображениями станут равными. Можно прибегнуть и к цветовой раскраске — приему научной графики, описанному выше. Наконец, можно запрограммировать звуковые сигналы, которые подаются через каждый фиксированный отрезок пути, пройденный телом — скажем, через каждый метр или каждые 100 метров — смотря по конкретным обстоятельствам. Надо выбрать интервал так, чтобы вначале сигналы были редкими, а потом, с ростом скорости, сигнал слышался все чаще, пока промежутки не сравняются. Таким образом, восприятию помогают элементы мультимедиа. Поле для фантазии здесь велико. Приведем конкретный пример решения задачи о свободно падающем теле. Герой знаменитого фильма “Небесный тихоход” майор Булочкин, упав с высоты 6000 м в реку без парашюта, не только остался жив, но даже смог снова летать. Попробуем понять, возможно, ли такое на самом деле или же подобное случается только в кино. Учитывая сказанное выше о математическом характере задачи, выберем путь численного моделирования. Итак, математическая модель выражается системой дифференциальных уравнений. (8) Разумеется, это не только абстрактное выражение обсуждаемой физической ситуации, но и сильно идеализированное, т.е. ранжирование факторов перед построением математической модели произведено. Обсудим, нельзя ли произвести дополнительное ранжирование уже в рамках самой математической модели с учетом конкретно решаемой задачи, а именно — будет ли влиять на полет парашютиста линейная часть силы сопротивления и стоит ли ее учитывать при моделировании. Так как постановка задачи должна быть конкретной, мы примем соглашение, каким образом падает человек. Он опытный летчик и наверняка совершал раньше прыжки с парашютом, поэтому, стремясь уменьшить скорость, он падает не “солдатиком”, а лицом вниз, “лежа”, раскинув руки в стороны. Рост человека возьмем средний — 1,7 м, а полуобхват грудной клетки выберем в качестве характерного расстояния — это приблизительно 0,4 м. для оценки порядка величины линейной составляющей силы сопротивления воспользуемся формулой Стокса. Для оценки квадратичной составляющей силы сопротивления мы должны определиться со значениями коэффициента лобового сопротивления и площадью тела. Выберем в качестве коэффициента число с=1,2 как среднее между коэффициентами для диска и для полусферы (выбор дня качественной оценки правдоподобен). Оценим площадь: S = 1,7 ∙ 0,4 = 0,7(м2). В физических задачах на движение фундаментальную роль играет второй закон Ньютона. Он гласит, что ускорение, с которым движется тело, прямо пропорционально действующей на него силе (если их несколько, то равнодействующей, т.е. векторной сумме сил) и обратно пропорционально его массе: . Так для свободно падающего тела под действием только собственной массы закон Ньютона примет вид: Или в дифференциальном виде: Взяв интеграл от этого выражения, получим зависимость скорости от времени: Если в начальный момент V0 = 0, тогда . Далее определим зависимость высоты от времени, для чего проинтегрируем последнее выражение. . Выясним, при какой скорости сравняются линейная и квадратичная составляющие силы сопротивления. Обозначим эту скорость Тогда или Ясно, что практически с самого начала скорость падения майора Булочкина гораздо больше, и поэтому линейной составляющей силы сопротивления можно пренебречь, оставив лишь квадратичную составляющую. После оценки всех параметров можно приступить к численному решению задачи. При этом следует воспользоваться любым из известных методов интегрирования систем обыкновенных дифференциальных уравнений: методом Эйлера, одним из методов группы Рунге — Кутта или одним из многочисленных неявных методов. Разумеется, у них разная устойчивость, эффективность и т.д. — эти сугубо математические проблемы здесь не обсуждаются. Вычисления производятся до тех пор, пока не опустится на воду. Примерно через 15 с после начала полета скорость становится постоянной и остается такой до приземления. Отметим, что в рассматриваемой ситуации сопротивление воздуха радикально меняет характер движения. При отказе от его учета график скорости, изображенный на рисунке 2, заменился бы касательной к нему в начале координат.
Рис. 2. График зависимости скорости падения от времени 2. Формулировка математической модели и ее описаниепарашютист падение сопротивление математическая модель При построении математической модели необходимо соблюдение следующих условий: - манекен массой 50 кг соответственно падают в воздухе с плотностью 1,225 кг/м3; - на движение влияют только силы линейного и квадратичного сопротивления; - площадь сечения тела S=0.4 м2; Тогда для свободно падающего тела под действием сил сопротивления закон Ньютона примет вид: , где a – ускорение тела, м/с2, m – его масса, кг, g – ускорение свободного падения на земле, g = 9,8 м/с2, v – скорость тела, м/c, k1 – линейный коэффициент пропорциональности, примем k1 = β = 6πμl (μ – динамическая вязкость среды, для воздуха μ = 0,0182 Н.с.м-2; l – эффективная длина, примем для среднестатистического человека при росте 1,7 м и соответствующем обхвате грудной клетки l = 0,4 м), k2 – квадратичный коэффициент пропорциональности. K2 = α = С2ρS. В данном случае достоверно можно узнать лишь плотность воздуха, а площадь манекена S и коэффициент лобового сопротивления С2 для него определить сложно, можно воспользоваться полученными экспериментальными данными и принять K2 = α = 0,2. Тогда получим закон Ньютона в дифференциальном виде:
Так как
Тогда можно составить систему дифференциальных уравнений: Математическая модель при падении тела в гравитационном поле с учетом сопротивления воздуха выражается системой из двух дифференциальных уравнений первого порядка. 3. Описание программы исследования с помощью пакета SimulinkДля имитационного моделирования движения парашютиста в системе MATLAB используем элементы пакета расширения Simulink. Для задания величин начальной высоты - H_n, конечной высоты - H_ k, числа - pi, μ – динамическая вязкость среды - my, обхват - R, массе манекена m, коэффициент лобового сопротивления - c, плотность воздуха - ro, площадь сечения тела - S, ускорение свободного падения - g, начальная скорость - V_n используем элемент Constantнаходящийся в Simulink/Sources(рисунок 3). Рисунок 3. Элемент Constant Для операции умножения используем блок Product, находящийся в Simulink/MathOperations/Product (рисунок 4).
Рисунок. 4 Для ввода k1 – линейного коэффициента пропорциональности и k2 – квадратичного коэффициента пропорциональности используем элемент Gain, находящийся в Simulink/MathOperations/Gain(Рисунок. 5.)
Рисунок. 5 Для интегрирования – элемент Integrator. Находящийсяв Simulink/Continuous/Integrator. Рисунок. 6.
Рисунок. 6 Для вывода информации используем элементы Display и Scope. Находящиеся в Simulink/Sinks. (Рисунок. 7) Рисунок. 7 Математическая модель для исследования с использованием вышеперечисленных элементов, описывающая последовательный колебательный контур приведена на рисунке 8. Рисунок. 8 Программа исследований 1. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 50кг.
Рисунок 9 Из графиков видно, что при расчете падения парашютиста массой 50 кг, следующие данные: максимальная скорость равна 41,6 м/с и время равно 18с , и должна достигаться через 800 м падения, т.е. в нашем случае на высоте около 4200 м.
Рисунок. 10 2. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 100кг.
Рисунок 11
Рисунок 12 С массой парашютиста 100 кг.: максимальная скорость равна 58 м/с и время равно 15с , и должна достигаться через 500 м падения, т.е. в нашем случае на высоте около 4500 м. (рисунок. 11., рисунок. 12). Выводы по полученным данным, которые справедливы для манекенов, отличающихся только массой, но с одинаковыми размерами, формой, типом поверхности и другими параметрами, определяющими внешний вид объекта. Легкий манекен при свободном падении в гравитационном поле с учетом сопротивления среды достигает меньшей предельной скорости, но за меньший промежуток времени и, естественно, при одинаковой начальной высоте – в более низкой точке траектории, чем тяжелый манекен. Чем тяжелее манекен, тем быстрее он достигнет земли. 4. Решение задачи программным путем%Функция моделирования движения парашютиста function dhdt=parashut(t,h) global k1 k2 g m % система ДУ первого порядка dhdt(1,1)= -h(2); dhdt(2,1)=(m*g-k1*h(2)-k2*h(2)*h(2))/m М-файл вывода результатов parashutist.m: % Моделирование движения парашютиста % Васильцов С. В. clc global h0 g m k1 k2 a % k1-линейный коэффициент пропорциональности, определяющийся свойствами среды и формой тела. Формула Стокса. k1=6*0.0182*0.4; %k2-квадратичный коэффициент пропорциональности, пропорционален площади сечения тела, поперечного по %отношения к потоку, плотности среды и зависит от формы тела. k2=0.5*1.2*0.4*1.225 g=9.81; % ускорение свободного падения m=50; % масса манекена h0=5000; % высота [t h]= ode45(@parashut,[0 200],[h0 0] ) r=find(h(:,1)>=0); s=length(r); b=length(t); h(s+1:b,:)=[]; t(s+1:b,:)=[]; a=g-(k1*-h(:,2)+k2*h(:,2).*h(:,2))/m % вычисляемускорение % Построение графика зависимости высоты от времени subplot(3,1,1), plot(t,h(:,1),'LineWidth',1,'Color','r'),grid on; xlabel('t, c'); ylabel('h(t), m'); title('Графикзависимостивысотыотвремени', 'FontName', 'Arial','Color','r','FontWeight','bold'); legend('m=50 kg') % Построение графика зависимости скорости от времени subplot(3,1,2), plot(t,h(:,2),'LineWidth',1,'Color','b'),grid on; xlabel('t, c'); ylabel('V(t), m/c'); Title('Графикзависимостискоростиотвремени', 'FontName', 'Arial','Color','b','FontWeight','bold'); legend('m=50 kg') % Построение графика зависимости ускорения от времени subplot(3,1,3), plot(t,a,'-','LineWidth',1,'Color','g'),grid on; text (145, 0,'t, c'); ylabel('a(t), m/c^2'); Title('Графикзависимостиускоренияотвремени', 'FontName', 'Arial','Color','g','FontWeight','bold'); legend('m=50 kg') Экранная форма вывода графиков.
Список использованных источников 1. Вся физика. Е.Н. Изергина. – М.: ООО «Издательство «Олимп», 2001. – 496 с. 2. Касаткин И. Л. Репетитор по физике. Механика. Молекулярная физика. Термодинамика/ Под ред. Т. В. Шкиль. – Ростов Н/Д: изд-во «Феникс», 2000. – 896 с. 3. Компакт-диск «Самоучитель MathLAB». ООО «Мультисофт», Россия, 2005. 4. Методические указания к Курсовой работе: дисциплина Математическое моделирование. Движение тела при учете сопротивления среды. – Минск. РИИТ БНТУ. Кафедра ИТ, 2007. – 4 с. 5. Решение систем дифференциальных уравнений в Matlab. Дубанов А.А. [Электронный ресурс]. – Режим доступа: http://rrc.dgu.ru/res/exponenta/ educat/systemat/dubanov/index.asp.htm; 6. Энциклопедия д.д. Физика. Т. 16. Ч.1. с. 394 – 396. Сопротивление движению и силы трения. А. Гордеев. /Глав. ред. В.А. Володин. – М. Аванта+, 2000. – 448 с. 7. MatlabFunctionReference [Электронный ресурс]. – Режим доступа: http://matlab.nsu.ru/Library/Books/Math/MATLAB/help/techdoc/ref/. |