Контрольная работа: Системи лінійних рівнянь
Название: Системи лінійних рівнянь Раздел: Рефераты по математике Тип: контрольная работа |
СИСТЕМИ ЛІНІЙНИХ РІВНЯНЬ 1. Основні поняття і теореми Постановка задачі.
Потрібно знайти значення х
1, х
2, … , хn
, що задовольняють таким співвідношенням: Тут aij (i = 1, 2, … , m ; j = 1, 2, … , n ) і bk (k = 1, 2, … , m ) – задані числа. При цьому: Матриця А називається головною матрицею системи, вектор b – вектором-стовпцем правих частин, вектор x – вектором-стовпцем невідомих. Використовуючи ці позначки, можна систему записати в матричній формі: Ах = b . Якщо b 1 = b 2 = ¼ = bm = 0, то система рівнянь називається однорідною . Якщо хоча б одне з bk (k = 1, 2, ¼ , m ) відмінне від нуля, то система називається неоднорідною .
Матриця Якщо система має хоча б один розв’язок, то вона називається сумісною . При цьому система, що має єдиний розв’язок, називається визначеною , а більше одного розв’язку – невизначеною . Якщо система не має розв’язків, то вона називається несумісною . При розв’язуванні систем лінійних рівнянь має бути знайдена відповідь на три запитання: А. Чи сумісна система? В. Чи визначена система? С. Як знайти розв’язок (чи розв’язки) системи, якщо вони існують? Правило Крамера.
Якщо неоднорідна система рівнянь невироджена (detА
¹ 0), то система визначена, тобто має єдиний розв’язок, і його можна знайти за формулами Крамера: Ранг матриці. З розв’язуванням систем рівнянь безпосередньо пов'язане поняття рангу матриці. Ранг матриці – це найвищий порядок її мінора, відмінного від нуля. Для того щоб знайти ранг матриці, важливо орієнтуватися в тому, які перетворення з матрицею можна робити, не змінюючи при цьому її ранг: 1) транспонування; 2) перестановка двох рядків (стовпців); 3) множення всіх елементів рядка (або стовпця) на число a¹ 0; 4) додавання до всіх елементів рядка (стовпця) відповіднихелементів іншого рядка (стовпця); 5) вилучення нульового рядка (стовпця); 6) викреслення рядка (стовпця), що є лінійною комбінацією інших рядків (стовпців). Однорідні системи. Розглядається однорідна система лінійних рівнянь з n невідомими: Ах = 0. Якщо rangА = n (detА ¹ 0), то система визначена і має тільки тривіальний розв’язок: x 1 = x 2 = … = xn = 0. Якщо rangА < n (detА = 0), то система має не тільки тривіальні розв’язки. При цьому всі розв’язки однорідної системи рівнянь утворюють лінійний простір L і dim L = n – rangА . Щоб знайти базис простору розв’язків однорідної системи рівнянь, треба: 1.Знайти базисний мінор матриці А . 2.Якщо рядок не входить до базисного мінора, то рівняння, яке йому відповідає, є лінійною комбінацією інших рівнянь, і його можна не брати до уваги. 3.Якщо стовпець не входить у базисний мінор, то невідома з відповідним номером призначається вільною. Усього знайдеться (n – rang A ) вільних невідомих. 4.Нехай вільні невідомі хr +1, хr +2, … , хn . Якщо дати вільним невідомим довільні значення, то одержимо неоднорідну систему рівнянь відносно хr +1, хr +2, … , х n , у якої визначник не дорівнює нулю, і, отже, система має єдиний розв’язок. 5.Дамо вільним невідомим значення (1, 0, 0, 0, … , 0), потім (0, 1, 0, 0, … , 0) і т. д. Розв’язуючи системи, що утворюють, одержимо відповідно вектори 6.Загальний розв’язок лінійної системи однорідних рівнянь у цьому випадку є лінійною комбінацією базисних векторів:
Неоднорідні системи.
Теорема Кронекера – Капеллі: система неоднорідних лінійних рівнянь Ах
= b
сумісна тоді і тільки тоді, коли rangА
= rang При цьому якщо rangА
= rang Якщо rangА
= rang Загальний розв’язок неоднорідної системи – це загальний розв’язок відповідної однорідної системи плюс деякий частинний розв’язок неоднорідної системи. Останнє твердження можна записати через абревіатури відповідних термінів: З.Р.Н.С. = З.Р.О.С. + Ч.Р.Н.С. Обернена матриця . Запишемо систему в матричному вигляді Ах = b . Якщо detА ¹ 0 (така матриця А називається невиродженою ), то для матриці А існує матриця А –1 така, що А –1А = АА –1 = Е .Така матриця називається оберненою до матриці А , і розв’язок системи можна записати за допомогою оберненої матриці у вигляді: А –1Ах = А –1b Þх = А –1b . Таким чином, у випадку існування оберненої матриці А –1розв’язок системи має вигляд: х = А –1b . Як же знайти обернену матрицю А –1 до невиродженої матриці А ? I спосіб. 1) Складемо матрицю Аik з алгебраїчних доповнень до елементів аik матриці А ; 2) транспонуємо матрицю з алгебраїчних доповнень; 3) кожен елемент матриці, що утворилась, ділимо на detА . В результаті маємо обернену матрицю – А-1. II спосіб. 1) Запишемо матрицю А , а праворуч від неї, через вертикальну риску, –одиничну матрицю Е . Одержимо матрицю яка має n рядків та 2n стовпців; 2) у матриці, що утворилась, за допомогою застосування до рядків (і тільки до рядків) перетворень, що не змінюють ранг матриці, утворимо на місці матриці А одиничну матрицю. На місці одиничної матриці тепер стоїть А –1. III спосіб. Праворуч від матриці припишемо одиничну матрицю Е , а знизу припишемо матрицю (–Е ). У правому нижньому куті поставимо нульову матрицю. Використовуючи операції тільки над рядками матриці, що утворилась, на місці матриці (–Е ) утворимо нульову матрицю. Тоді у правому нижньому куті буде стояти А –1. IV спосіб.
Для обернення матриці, що має блокову структуру, тобто матриці вигляду: 1.Перша формула Фробеніуса (якщо detА ¹ 0):
2.Друга формула Фробеніуса (якщо detD ¹ 0):
2. Контрольні питання і завдання 1. Що таке ранг матриці і її базисний мінор? Чи визначаються вони однозначно? 2. Знайти ранг і всі базисні мінори матриці: 3. Як пов'язані ранг матриці і вимірність лінійної оболонки її рядків. 4. Чому дорівнює вимірність простору розв’язків однорідної системи лінійних рівнянь, якщо в системі 10 рівнянь, 16 невідомих і ранг матриці системи дорівнює 6? 5. Чи утворює множина розв’язків неоднорідної системи лінійний простір? Яка з властивостей лінійного простору не виконується? 6. Згадайте визначення лінійного многовиду. Що називається його базисом і вимірністю? 7. Як визначається вектор зсуву для лінійного многовиду, що є множиною розв’язків неоднорідної системи? 3. Приклади розв’язування задач Задача 1.
Знайти ранг матриці Розв’язання. Насамперед відзначимо, що четвертий рядок матриці є сумою другого і третього рядків і тому при вилученні цього рядка ранг матриці не зміниться. 1.Відкинемо четвертий рядок. 2.З другого і третього рядків матриці віднімемо перший рядок, помножений, відповідно, на 2 та 3. 3.В отриманій матриці з третього рядка віднімемо другий, помножений на 2. Одержимо ланцюжок перетворень: лінійний рівняння матриця
У матриці, що утворилась, мінор, який стоїть в перших трьох стовпцях, не дорівнює нулю. Отже, ранг вихідної матриці дорівнює 3 і мінор 3-го порядку, що стоїть в перших трьох стовпцях, є базисним мінором матриці А. Задача 2. Знайти матрицю, яка є оберненою до матриці
Розв’язання.
Знайдемо обернену матрицю за визначенням. Нехай обернена матриця має вигляд: АА
–1 = Е
, тобто Знаходячи добуток матриць, одержимо рівності:
Із цих співвідношень одержуємо: g = 0, d = 0, a = 1; далі: h = 0, e =1, b = –3. І нарешті: m = 1, f = –2, c = 11. У підсумку дійдемо висновку, що:
Задача 3.
Знайти матрицю, яка є оберненою до матриці Розв’язання. Побудуємо матрицю 6 ´ 6, дописавши праворуч від А одиничну матрицю Е , внизу матрицю (– Е ), а інші місця заповнимо нулями.
За допомогою операцій над рядками матриці А ¢ утворимо на місці (–Е ) нульову матрицю. Тоді в правому нижньому куті буде стояти матриця А –1. 1.До всіх рядків матриці А ¢ додамо третій рядок з деяким множником, домагаючись того, щоб всі елементи першого стовпця, крім а 31, дорівнювали нулю. 2.Перший рядок отриманої матриці поділимо на (–3) і, додаючи до інших рядків матриці отриманий перший рядок з деякими множниками, досягаємо того, щоб у другому стовпці стояли нулі, крім елемента а 12. 3.За допомогою другого рядка утворимо нулі в третьому стовпці, крім елемента а 23. Одержимо ланцюжок перетворень: Звідси укладаємо, що Задача 4.
Знайти матрицю, яка є оберненою до Розв’язання.
Для обернення матриці застосуємо першу формулу Фробеніуса. Позначимо: Знаходимо послідовно:
І тоді Задача 5.
За допомогою правила Крамера розв’язати систему лінійних неоднорідних рівнянь: Розв’язання.
Головна матриця системи має вигляд: Розв’язок системи може бути знайдений за правилом Крамера, тому що detА = в = 18 ¹ 0. Для цього побудуємо визначники Dх , Dу , Dz , які відрізняються від головного визначника тим, що в ньому стовпець коефіцієнтів при, відповідно, х , у та z замінено на стовпець вільних членів, тобто:
Обчислюючи їх, знаходимо, що Dх = 18, Dу = 36, Dz = 54. Отже Задача 6. Розв’язати систему лінійних однорідних рівнянь: Розв’язання. Насамперед відзначимо, що система напевне сумісна, оскільки однорідна система завжди має щонайменше нульовий розв’язок. Почнемо пошук загального розв’язку даної системи. Головна матриця системи має вигляд: Знайдемо ранг матриці А. Перший рядок матриці з відповідними множниками додамо до інших рядків матриці так, щоб елементи першого стовпця обернулися на нуль, крім елемента а 11. Вийде матриця А 1 така, що rangА
1 = rangА
і Відзначаючи, що третій і четвертий рядки матриці пропорційні другому рядку, укладаємо, що rangА
1 = rangА
2, де Тоді вийшла система двох рівнянь, з яких можна написати: х 1 = 14х 3 – 7х 4 + 3х 5 – х 6, х 2 = –7х 3 + 2х 4 – х 5 – 2х 6 і змінні х 3, х 4, х 5, х 6 – будь-які. Це і є розв’язок системи. Однак можна (і необхідно) піти далі. Множина розв’язків лінійної однорідної системи утворює лінійний простір L вимірності dimL = n – rangА = 6 – 2 = 4. Для знаходження базисних векторів простору розв’язків надамо вільним невідомим х 3, х 4, х 5, х 6 значення: а) 1, 0, 0, 0; б) 0, 1, 0, 0; в) 0, 0, 1, 0; г) 0, 0, 0, 1. Одержимо чотири вектори, що утворять базис L : е 1 = (14, –7, 1, 0, 0, 0); е 2 = (–7, 2, 0, 1, 0, 0); е 3 = (3, –1, 0, 0, 1, 0); е 4 = (–1, –2, 0, 0, 0, 1). У такий спосіб L = ℒ(е 1, е 2, е 3, е 4), і будь-який розв’язок вихідної системи може бути записаний у вигляді лінійної комбінації базисних векторів, тобто у вигляді: с 1(14, –7, 1, 0, 0, 0) + с 2(–7, 2, 0, 1, 0, 0) + с 3(3, –1, 0, 0, 1, 0) + с 4(–1, –2, 0, 0, 0, 1), де с 1, с 2, с 3, с 4 – будь-які значення. Це і є загальний розв’язок вихідної лінійної однорідної системи рівнянь. Задача 7. Розв’язати систему лінійних неоднорідних рівнянь Розв’язання.
Розширена матриця системи рівнянь має вигляд: Це і є загальний розв’язок вихідної системи лінійних рівнянь. Однак з метою прояснення алгебраїчної структури розв’язку системи відзначимо таке: Враховуючи, що rang
Звідси х 1 = 14х 3 – 7х 4 – 3х 5, х 2 = – 7х 3 + 2х 4 – х 5, де х 3, х 4, х 5 – будь-які. Даючи вільним змінним х 3, х 4, х 5 значення: а) 1, 0, 0; б) 0,1,0; в) 0, 0, 1; одержимо, відповідно, базисні вектори простору L розв’язків однорідної системи рівнянь:е 1 = (14, –7, 1, 0, 0), е 2 = (–7, 2, 0, 1, 0), е 3 = (–3, –1, 0, 0, 1). Отже, розв’язки вихідної системи утворюють лінійний многовид М : M = {x ½x = f + c 1e 1 + c2e2 + c 3e 3}, де c 1, c2 , c 3 – будь-які, |