Лабораторная работа: Тривимірні перетворення

Название: Тривимірні перетворення
Раздел: Рефераты по математике
Тип: лабораторная работа

Вступ

Для кращого сприйняття форми об'єкта необхідно мати його зображення в тривимірному просторі. У багатьох випадках наочне представлення про об'єкт можна одержати шляхом виконання операцій обертання і переносу, а також побудови проекцій. Введемо однорідні координати. Точка в тривимірному просторі задається чотиримірним вектором чи . Перетворення з однорідних координат описується співвідношеннями

( 4 .1)

де T - деяка матриця перетворення.

Ця матриця може бути представлена у вигляді 4 окремих частин

Матриця 3x3 здійснює лінійне перетворення у виді зміни масштабу, зсуву й обертання. Матриця-рядок 1х3 робить перенос, а матриця-стовпець 3х1 - перетворення в перспективі. Останній скалярний елемент виконує загальну зміну масштабу. Повне перетворення, отримане шляхом впливу на вектор положення матрицею 4x4 і нормалізації перетвореного вектора, будемо називати білінійним перетворенням. Воно забезпечує виконання комплексу операцій зсуву, часткової зміни масштабу, обертання, відображення, переносу, а також зміни масштабу зображення в цілому.

Тривимірна зміна масштабу

Діагональні елементи основної матриці перетворення 4х4 здійснюють часткову і повну зміну масштабу. Розглянемо перетворення

,( 4 . 2 )

яке робить часткову зміну масштабу. На рис.4.1а показане перетворення паралелепіпеда в одиничний куб шляхом зміни масштабу. Загальна зміна масштабу виходить за рахунок використання четвертого діагонального елемента, тобто

. ( 4 . 3 )

Це перетворення ілюструє рис.4.1б. Такий же результат можна отримати при рівних коефіцієнтах часткових змін масштабів. У цьому випадку матриця перетворення повинна бути рівна

. ( 4 . 4 )


Вектори положення точок А і В рівні і .

Рис.4.1. Тривимірні перетворення iз зміною масштабів.


Тривимірний зсув

Недіагональні елементи верхньої лівої підматриці 3х3 від загальної матриці перетворення розміру 4х4 здійснюють зсуви в трьох вимірах, тобто

. ( 4 . 5 )

Простий тривимірний зсув одиничного куба показаний на рис.4.1в.

Тривимірні обертання

Раніше було показано, що матриця 3х3 забезпечувала комбінацію операцій зміни масштабу і зсуву. Однак, якщо визначник матриці 3х3 дорівнює +1, то має місце чисте обертання навколо початку координат. Перед розглядом загального випадку тривимірного обертання навколо довільної осі дослідимо кілька окремих випадків. При обертанні навколо осі х розміри уздовж осі х не змінюються. Таким чином, матриця перетворень буде мати нулі в першому рядку і першому стовпці, за винятком одиниці на головній діагоналі. Це приводить до матриці перетворення, що відповідає повороту на кут навколо осі х і задається співвідношенням

( 4 . 6 )


Обертання вважається додатнім, тобто за годинниковою стрілкою, якщо дивитися з початку координат вздовж осі обертання. На рис.4.2а показаний поворот на -90° навколо осі x .

Для обертання на кут Ф навколо осі y - нулі ставлять у другому рядку і другому стовпці матриці перетворення, за винятком одиниці на головній діагоналі. Повна матриця задається виразом

( 4 . 7 )

Рис.4.2. Тривимірні обертання.


На рис.4.2б показаний поворот на 90° навколо осі y . Аналогічно матриця перетворення для обертання на кут навколо осі z має вид

( 4 . 8 )

Аналіз визначників для матриць (4.6)-(4.8) показує, що для будь-якої матриці обертання детермінант дорівнює +1.

Тому що обертання описуються множенням матриць, то тривимірні обертання некомутативні, тобто порядок множення буде впливати на кінцевий результат. Для того щоб показати це, розглянемо обертання навколо осі х , за яким слідує обертання на такий же кут навколо осі y . Використовуючи рівняння (4.6) і (4.7) при = Ф , одержимо


Рис.4.3. Некомутативність тривимірних обертань.


(4.9)

Зворотна послідовність дій, тобто обертання навколо осі y і наступне за ним обертання на такий же кут навколо осі x при = Ф дає

( 4 . 10 )

На рис.4.3 для лівого верхнього зображення штриховими лініями показані результати двох послідовних обертань, описаних матрицею перетворення (4.9). Зображення, отримане обертаннями, виконаними в іншій послідовності, описаними рівняннями (4.10), показані суцільною лінією. З порівняння отриманих зображень видно, що при зміні порядку обертання виходять різні результати.

Часто буває необхідно обертати зображення навколо однієї з осей декартової системи координат.

Відображення в просторі

Іноді потрібно виконати дзеркальне відображення тривимірного зображення. У трьох вимірах найпростіше відображення здійснюється щодо площини. Для відображення без зміни масштабів необхідно, щоб визначник перетворення дорівнював -1,0. При відображенні щодо площини xy змінюється тільки знак координати z . Отже, матриця перетворення для відображення щодо площини xy має вигляд

( 4 . 11 )

Відображення одиничного куба щодо площини ху показане на рис.4.4. Для відображення щодо площини уz

( 4 . 12 )


Рис.4.4. Просторове відображення щодо площини xy .

( 4 . 12 )

а для відображення щодо площини xz

( 4 . 13 )

Відображення щодо інших площин можна одержати шляхом комбінації обертання і відображення.

Просторовий перенос

Тривимірний лінійний перенос зображення задається виразом

( 4 . 14 )

Після перемножування одержимо

( 4 . 15 )

Тривимірне обертання навколо довільної осі

тривимірне обертання фігура відображення

Метод двовимірного плоского обертання навколо довільної осі був розглянений раніше. Узагальненням цього методу є спосіб обертання навколо довільної осі в тривимірному просторі. Як і для плоского випадку, розглянена процедура полягає в переносі зображення і заданої осі обертання, що забезпечує обертання навколо осі, що проходить через початок координат. Метод тривимірного обертання полягає в лінійному переносі, обертанні навколо початку координат і зворотньому лінійному переносі у вихідне положення. Якщо вісь, навколо якої виконується обертання, проходить через точку А = , то матриця перетворення визначається наступним виразом:


(4.16)

де елементи матриці обертання R розміру 4х4 визначаються в загальному випадку співвідношенням

(4.17)