Учебное пособие: Адсорбция
Название: Адсорбция Раздел: Рефераты по химии Тип: учебное пособие |
1. Адсорбция. Область применения Абсорбцией называется процесс поглощения газов или паров из газовых или парогазовых смесей жидким поглотителем – абсорбентом. Если поглощаемый газ – абсорбтив – химически не взаимодействует с абсорбентом, то такая абсорбция физическая, если же абсорбтив образует с абсорбентом химическое соединение, то такой процесс называется хемосорбцией. Физическая абсорбция обратима, выделение поглощаемого газа из раствора – десорбция. Сочетание абсорбции и десорбции позволяют многократно использовать поглотитель и выделять поглощённый газ в чистом виде. Абсорбция применяется: - для получения готового продукта (абсорбция - для выделения ценных компонентов из газовых смесей (абсорбция бензола из коксового газа, абсорбция ацетилена из газов крекинга или пиролиза природного газа и т.д.), при этом абсорбцию проводят в сочетании с десорбцией; - для очистки газовых выбросов от вредных примесей; - для осушки газов. 2. Равновесие при абсорбции. Закон Генри Система состоит из трёх компонентов (распределяемое вещество и два распределяющих вещества) и двух фаз – жидкой и газовой. Такая система по правилу фаз имеет три степени свободы. Для абсорбции переменными являются Т, р, концентрация компонента А в газовой и жидкой фазах. Следовательно, в состоянии равновесия при Т=const и постоянном общем давлении зависимость между парциальным давлением газа А или его концентрацией и составом жидкой фазы однозначна. Эта зависимость выражается законом Генри: парциальное давление
где Рис. 1 Для идеальных растворов зависимость равновесных концентраций от давления изображается прямой, т.к. Чем больше Т, тем меньше растворимость. Если
Тогда, подставив значение Итак для закона Генри имеем
Здесь Величина m уменьшается с увеличением Р и снижения Т. Таким образом, растворимость газа в жидкости растёт с ростом давления и снижения Т. Когда в равновесии с жидкостью находятся смесь газов, закону Генри может следовать каждый из компонентов смеси в отдельности. Закон Генри справедлив только для идеальных газов, а также к сильно разбавленным реальным растворам. Для хорошо растворимых газов, при больших концентрациях их в растворе, растворимость меньше, чем по закону Генри. Для систем, не подчиняющихся закону Генри, m является величиной переменной и линия равновесия представляет собой кривую, которую строят обычно по опытным данным. При больших давлениях (1 МПа и выше) изменение объёма жидкости вследствие растворения в ней газа соизмеримо с изменением объёма газа, тогда
При выражении состава фаз не в абсолютных, а в относительных концентрациях видоизменяется и запись закона Генри. Общая масса фазы, состоящей из распределяемого компонента и 1 кг носителя равна (1+Х) кг (жидкая фаза) и (1+Y) кг (газовая фаза). Тогда весовые концентрации х и у распределяемого компонента в фазах: Тогда закон Генри запишется:
Следовательно, линия равновесия в системе газ – жидкость в координатах Х и У изображается кривой. При малых концентрациях Х в жидкости (5.76) упрощается и принимает вид:
В случае абсорбции многокомпонентных смесей парциальное давление каждого компонента в газовой смеси зависит не только от его концентрации в растворе, но и от концентрации в растворе других компонентов, т.е. является функцией большого числа переменных. Поэтому в подобных случаях, равновесные зависимости основываются на опытных данных. 3. Материальный баланс и расход абсорбента Рис. 2
Из уравнения (5.78) обычно определяют Уравнение (5.78) можно представить в виде:
Уравнение (5.80) носит название рабочей линии. Она, рабочая линия, в координатах У-Х прямая с углом наклона, тангенс которого равен Рис. 3 Поскольку
По Разинову, можно принять 4. Тепловой баланс и температура адсорбента Рис. 4 Если абсорбцию ведут без отвода тепла или с недостаточным его отводом, то температура повышается вследствие выделения тепла при поглощении газа жидкостью, что необходимо учитывать при расчете. Для технических расчетов можно пренебречь нагреванием гая фазы и считать, что выделяющееся при абсорбции тепло затрачивается только на нагрев жидкости. Если линия равновесия при температуре t н поступающей жидкости изображает кривой О D (рис. Х1-4), то при температуре уходящей жидкости линия равновесиям положится выше (кривая ОС) и действительная линия равновесия при переменной температуре жидкости изобразится кривой АВ. Ординату У* некоторой точки О' на кривой равновесия, соответствующую составу жидкости X , можно найти, если известна температура t при данном составе жидкости.Для этого необходимо составить уравнение теплового баланса для части адсорбционного аппарата, расположенной выше некоторого произвольного сечения с концентрациями X и У жидкости и газа соответственно:
q-фференциальная теплота растворения газа, кдж/кмоль; М' - количество газа, поглощенного в рассматриваемой части абсорбера, кмоль/сек; L - расход абсорбента, Кмоль/сек; с - теплоемкость жидкости, кжд/(кмольград); t - температура жидкости в данном сечении, °С; tн- начальная температура жидкости, °С, : М' = L (Х - Хн ), то
Задаваясь рядом произвольных значений X в интервале между известными величинами Хн и Хк , с помощью уравнения (XI, 19) вычисляют t. По опытным данным находят соответствующие значения У* и строят линию равновесия (по точкам О1 , 02. 5. Скорость процесса Скорость физической абсорбции. Скорость процесса абсорбции характеизуется уравнением (X, 46), если движущую силу выражают в концентрациях газовой фазы И уравнением (X, 46а), если движущая сила выражается в концентрациях жидкой фазы В этих уравнениях коэффициенты массопередачи Ку и Кх определяются, согласно уравнениям (X, 47) и (X, 48), следующим образом: В г -коэффициент массоотдачи Как уже отмечалось, для хорошо растворимых газов величина т незначительна и мало также диффузионное сопротивление В жидкой фазе. 1/в ж > т/в ж и можно принять, что Ку = вг . Для плохо растворимых газов можно пренебречь диффузионным сопротивлениемгазовой фазе (в этом случае значения т и вг велики). Отсюда 1/в ж > т/в ж и можно полагать, что Кж ~ вж . В уравнении (X, 46) мольные концентрации газовой фазы могут быть замещены парциальными давлениями газа, выраженными в долях общего давления. Тогда
Если лини равновесия является прямой, то средняя движущая сила процесса, по аналогии с уравнением (X, 54) выражается уравнением где ∆рб = Рн - Рк. и ∆рм = рк - рн - движущая сила на концах абсорб.аппарата; ри и рк - парциальные давления газа на входе в аппарат и выходе из него, Рк *и Рн* - равновесные парциальные давления газа на входе в аппарат и выходе из него. Если парциальное давление выражено в долях общего давления Р, то коэффициенты массопередачи Кр и Ку численно равны друг другу. Если же парциальные давления выражены в единицах давления,то
6. Конструкции абсорберов Абсорбция протекает на поверхности раздела фаз. По способу образования поверхности раздела фаз абсорберов можно разделить на 4 группы: - плёночные - насадочные - тарельчатые - распыливающие. Пленочные. Вместо труб могут быть плоские листы. Пакет листовой насадки из различного материала. Допускаемая скорость воздуха W=3-6 м/с. Далее начинается захлёбывание (подвисание плёнки) аппарата. Δр аппарата – небольшие. Насадочные. Вместо труб могут быть плоские листы. Пакет листовой насадки из различного материала. Допускаемая скорость воздуха W=3-6 м/с. Далее начинается захлёбывание (подвисание плёнки) аппарата. Δр аппарата – небольшие. Тарельчатые абсорберы. ТА – вертикальные цилиндрические колонны, внутри которых на определённом расстоянии друг от друга на высоте колонны размещаются горизонтальные перегородки – тарелки. Тарелки служат для развития поверхности контакта фаз, жидкость течёт сверху вниз, а газ проходит снизу вверх. Процесс массопереноса идёт ступенчато. По способу слива жидкости с тарелками абсорберы бывают: - со сливными устройствами - без сливных устройств (неорганизованный слив жидкости). Распыливающие абсорберы.Эти абсорберы подразделяют на следующие группы: 1) полые (форсуночные); 2) скоростные прямоточные; 3) механически распыливающие. 7. Насадочные абсорберы Рис. 5 Они наиболее широко распространены в промышленности. Газ оттесняет жидкость к периферии. Поэтому насадки используются секциями высотой до 4D. Насадки – твёрдые тела различной формы. Жидкость в насадочной колонне течёт по элементу насадки в виде тонкой плёнки. При перетекании жидкости с одного элемента на другой плёнка жидкости разрушается и далее образуется вновь. Часть жидкости проходит вниз в виде струек, капель и брызг. Основные характеристики насадок: 1) удельная поверхность а ( 2) свободный объём ε ( 3) свободное сечение S ( Обычно принимают S = ε. Рис. 6 - 1 – сухой аппарат, 2 – орошаемый аппарат Первый режим - Плёночный режим (до А) – наблюдается при небольших плотностях орошения и малых W газа. А – точка подвисания жидкости. Второй режим – режим подвисания (торможения), после точки А повышение Wг приводит к подтормаживанию жидкости газовым потоком. Поэтому Wж уменьшается и количество удерживаемой жидкости увеличивается, течение жидкости нарушается, возникают вихри, брызги, поэтому F увеличивается и увеличивается интенсивность процесса массопередачи. Этот режим заканчивается в точке В. Третий режим – режим эмульгирования. Увеличение Wг приводит к накоплению жидкости в аппарате. При этом наступает инверсия фаз – жидкость становится дисперсионной средой, газ – дисперсной фазой. Образуется газожидкостная дисперсная система, по внешнему виду похожая на пену. Режим эмульгирования соответствует максимальной эффективности насадочных колонн. При этом резко возрастает Четвертый режим – режим уноса (с→), жидкость уносится из аппарата газовым потоком. В технике этот режим не используется. Равномерное распределение газа по сечению аппарата. Насадки должны иметь как можно больше а , кроме того, они должны: - хорошо смачиваться орошаемой жидкостью; - больше e и S; - обладать большой механической прочностью, стойкостью; - иметь невысокую стоимость. 8. Схема абсорбционной установки абсорбер баланс равновесие насадка Абсорбционная установка (рис. 7) предназначена для проведения процесса абсорбции хлористого водорода из смеси с воздухом водой при противоточном движении фаз. Она состоит из насадочного абсорбера, линии подачи газовой смеси и абсорбента, контрольно-измерительной и регулирующей аппаратуры. Абсорбер 1 работает при противоточном движении фаз и представляет собой колонный аппарат D=100 мм и высотой 2530 мм. Абсорбер состоит из восьми секций. В верхней секции размещены каплеотбойник и распределитель жидкости. Шесть секций заполнены насадкой из керамических колец Рашига размером 15x15x2. Удельная поверхность насадки а=200 м2 /м\ доля свободного объема насадки Vсв =0.71 м3 /м3 , суммарная высота слоя насадки Н=1500 мм. Каждая из секций снабжена распределителем жидкости. В нижней секции собраны узел подачи газа и узел гидрозатвора для отвода жидкости. Вода подается в верхнюю часть абсорбера, стекает по насадкеи через узел гидрозатвора 2 сбрасывается в канализацию. Расход воды регулируется вентилем 3. Газовая смесь подается в нижнюю часть абсорбера, проходит через насадку, каплеотбойник и сбрасывается в атмосферу. Расход газа регулируется вентилем 4. Давление и температура в абсорбере измеряются при помощи датчиков 5 и 6 соответственно. Начальная и конечная концентрации хлористого водорода в газе измеряются с помощью датчика 7. Выходные сигналы датчиков поступают на вторичный регистрирующий прибор 8.
Рис. 7 - Абсорбционная установка: 1 - колонна абсорбционная; 2 - гидрозатвор; 3, 4 - вентили; 5,6,7 -датчики давления, температуры и концентрации соответственно; 8 - регистрирующий прибор; 9 - переключатель |