Курсовая работа: Контрольные карты Шухарта в системе управления качеством

Название: Контрольные карты Шухарта в системе управления качеством
Раздел: Рефераты по менеджменту
Тип: курсовая работа

САНКТ – ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра экономики и управления на предприятии

Контрольные карты Шухарта в системе управления качеством

Курсовая работа

студентки 2 курса группы ЭУП - 22

дневного отделения

специальности 080502 - «Экономика и управление на предприятии»

Научный руководитель:

г. Санкт - Петербург

2009г.


Оглавление:

Введение

Глава 1. Понятие системы управления качеством

Глава 2. Значение статистических методов в управлении качеством

Глава 2.1. Контрольные карты Шухарта, как метод статистического контроля и управления качеством

Глава 3. Построение контрольных карт Шухарта

Заключение

Литература

Приложение 1

Приложение 2


Введение

Пик развития управления качеством пришелся на 1980-1990 года, когда широко внедрялась система управления качеством. В начале своего развития, концепция помогла многим компаниям пересмотреть процесс производства продукции и избежать многомиллионных затрат, связанных с изготовлением бракованной продукции.

Параллельно уменьшению числа дефектов и улучшению качества продукции компании стали проявлять большее внимание к потребителям и их желаниям. Ведь, как известно, привлечение нового клиента может обойтись в 6 раз дороже компании, нежели удержание уже имеющегося.

На ранних стадиях своего становления, управление качеством не сильно отличалось от тщательного администрирования или диспетчеризации, но шло время, развивалась теория и расширялась практика применения концепции. Сейчас, не только промышленные, но и сервисные компании практикуют качественный подход и используют современные средства контроля качества; как правило, это автоматизированные системы (ERP, MRP, АСУ ТП), имеющие в своем арсенале приложения для построения диаграмм, карт, учета числа дефектов или же просто удобную организацию данных о клиентах (CRM).

Целью данной работы является систематизация знаний в области менеджмента качества. Это и обусловило структуру курсовой работы, для рассмотрения исторических аспектов развития концепции отведена первая глава; описанию значения статистических методов - вторая глава; и построение контрольных карт, на примере случайной выборки некоторого процесса – в третьей. Рассмотрение контрольных карт Шухарта, а не других, более поздних разработок, объясняется, прежде всего, тем, что работы Шухарта, дали толчок развитию концепции в этом направлении. И для более глубокого понимания всего менеджмента качеством, необходимо обладать знаниями о появлении значимых открытий.


Глава 1. Понятие системы управления качеством

Управление качеством имеет множество определений, в зависимости от позиции, занимаемой автором. Некоторые выделяют особую роль человеческого фактора, другие – важность системного подхода и количественных измерений, третьи подчеркивают эволюцию школ менеджмента.

Итак, управление качеством, представляет собой, в широком смысле, такое управление предприятием, которое позволяет наиболее полно удовлетворять потребности клиентов и предвосхитить их ожидания. Возникают, закономерные, на мой взгляд, вопросы: во-первых, за счет чего осуществляется их удовлетворение, во-вторых, чем подход управления качеством в этом плане отличается от обычного процесса планирования и производства продукции?

Отвечая на вопрос об удовлетворении потребителей, можно сказать, что менеджмент качества за главное условие принимает отношение потребителя к качеству получаемой продукции. В таком случае, качество продукции становится наиболее значимым для потребителя показателем и как следствие, основным конкурентным преимуществом.

Второй вопрос касается отличий обычного производства, от такого, где применяются принципы качества. Интересна позиция, японских авторов, относящих процесс управления качеством продукции к особой философии предприятия, новому взгляду на производство и неразрывно связанной с концепцией непрерывного совершенствования. Помимо такого, немного идеализированного отношения, можно показать и другое отличие; обычный процесс производства предусматривает ряд мероприятий, направленных на выявление и удовлетворение потребностей потребителей, о чем также говорится в определении управления качеством. Однако качественный подход подчеркивает неотъемлемую важность изготовления качественной продукции, на всех этапах производства, начиная от разработки товара и заканчивая своевременными поставками потребителю. Такой подход диктует приоритетную задачу, стоящую перед предприятием - изготовление качественной продукции от цикла к циклу, что, несомненно, гарантирует стабильность получения потребителем хорошей продукции. Для предприятия, это, прежде всего, означает, получение уважения потребителей и выработке у них лояльности, что в современных условиях, далеко не маловажная характеристика.

Резюмируя, видим, что потребители получают качественную продукцию, а производители – стабильную прибыль. Современные рынки показывают быстрые темпы развития, что ставит условие перед фирмами: «развивайся, чтобы выжить». И в таком случае, хорошая, качественная продукция, но не отвечающая требованиям рынка, так же не сможет оказать значительной конкуренции, как и фирма, 30% продукции которой, составляют бракованные товары. Именно поэтому управление качеством отводит важную роль предвосхищению ожиданий и потребностей потребителя, созданию у него новых потребностей и их удовлетворения, в соответствии с подходом обеспечения качества продукции.

Как было показано выше, управление качеством процесс обширный, и затрагивающий все производство, все звенья руководства (от контролеров, до руководителей высшего звена) и все производственные процессы. Но, где и при каких условиях он зародился? Что способствовало появлению нового похода в управлении? Давайте посмотрим на управление качеством в ретроспективе.

Управление качеством продукции красной линией проходит через всю историю развития менеджмента. Начиная от знаменитого труда Тауна, 1866 года «инженер как экономист», принято говорить о зарождении менеджмента.

Вдохновленный трудом Тауна, основателем научной школы менеджмента явился Ф. Тейлор. Его подход буквально совершил переворот в производстве. Помимо введения в практику измерения времени, затраченного на выполнение различных операций, Тейлор установил требования к качеству изделий, в виде полей допусков (проходные и непроходные калибры). Также установил систему штрафов за брак (вплоть до увольнения), мотивацию и обучение работников. Революционный подход Тейлора дал толчок дальнейшему развитию менеджмента.

Другим, не безызвестным менеджером 20 века был Генри Форд, основавший поныне существующую автомобильную компанию. Разработав модель «Т», Форд обрек себя на увековечение. Он не только изобрел легкий, прочный (по тем временам) и неприхотливый автомобиль, но и внедрил систему массового конвейерного производства. Унифицировал и стандартизировал все операции, включил в сферу производства послепродажное обслуживание. Занялся охраной труда и созданием нормальных условий работы. «По мнению Генри Форда, главным фактором успеха предприятия является качественный продукт, который оно производит. Пока качество не доказано, нельзя начинать производство продукта»[1] .

Большой вклад в развитие менеджмента внес Эмерсон, с книгой, опубликованной в 1912 году «12 принципов производительности». Эмерсон отметил важность постановки цели, диспетчеризации, введении вознаграждений за производительность и другие принципы. Ключевым аспектом организации производства он видел эффективность, за счет увеличения которой можно достичь высоких результатов, избегая перенапряжения.

В ходе дальнейшего развития менеджмента предприятия встали перед необходимостью сокращения трудозатрат на контроль качества, так как прежние методы контроля качества, предполагавшие контроль каждой единицы выпускаемой продукции привели к разрастанию штата контролеров. Проблему решили методы, пришедшие на смену - методы статистического контроля качества. Г. Доджем и Г. Ромингом были предложены методы выборочного контроля, позволившие проверять не всю продукцию, а некоторое количество из всей партии. Осуществляли статистический контроль новые специалисты – инженеры по качеству.

Большой вклад применения статистических методов принадлежит Волтеру Шухарту, который, работая в компании Белла (BellTelephoneLaboratories, ныне АT&T) в составе группы специалистов по качеству, в середине 1920-х гг. заложил основы статистического контроля качества. Шухарт причислен к патриархам современной философии качества[2] . Большое внимание Шухарт отводил составлению и анализу контрольных карт, которые будут рассмотрены в последующих главах.

Велик вклад Эдварда Деминга, американского специалиста в области качества. Во время Второй Мировой Войны, он обучал инженеров США контролю качества, в рамках программы национальной обороны. Уже после войны, в 1950-м году, Деминг был приглашен на оккупированную Японию для представления совместной с Шухартом теории. Выступая перед владельцами и руководителями большинства предприятий, Деминг, увещевал, что если следовать статистическим методам, то очень скоро японские производители смогут выйти на мировые рынки. Что было жизненно важно для послевоенной Японии.

Учение Деминга задало направление развитию японских компаний. Деминг, вдохновил публику своими идеями, «ни одна нация не обязана быть бедной» такой была его вступительная фраза. Очень скоро Япония вышла на мировые рынки, с товарами, превосходящими по качеству свои американские и европейские аналоги.

Следующим ученым, приехавшим в Японию из Америки, был Джуран. Джуран рассматривал вопросы качества на уровне всей компании и отдельных подразделений. Лекции Джурана носили практический характер, и акценты были расставлены на определении показателей качественной продукции, установлении стандартов и способов измерения, соответствия продукции спецификациям.

Целью качественного подхода является создание более совершенного продукта, который сможет лучше удовлетворять потребности клиентов. И такую сложную проблему не решить, только проводя необходимые измерения и анализируя полученные данные. Для достижения такой цели, необходимо подчас, модернизировать имеющееся оборудование, усовершенствовать технологический процесс производства, или целиком его изменить. Также стоит учитывать необходимые работы, лежащие до (маркетинговые исследования, проектирование, закупки ) и после (упаковка, хранение, поставка, продажа и послепродажное обслуживание) производства продукции. Все это доказывает необходимость рассматривать управление качеством в единой системе и управлять им, придерживаясь одной стратегии в масштабе предприятия.

Параллельно Демингу и Джурану, доктор Фейгенбаум (США), в 50-х годах в монографии «всеобщее управление качеством» излагает значимость системного (комплексного) подхода к управлению качеством продукции.

в 1922 году экспертной группой из США было выведено понятие Всеобщего качества : «Всеобщее качество (total quality, TQ) – это система управления, сфокусированная на людях, цель которой – постоянное повышение степени удовлетворения потребителей при постоянном снижении реальных затрат. TQ – это подход на основе всей системы (а не отдельных участков или программ) и интегральная часть стратегии высшего уровня; оно работает горизонтально, охватывая функции и подразделения, привлекая всех сотрудников сверху вниз и выходя за традиционные границы, чтобы включить в общую цепь и цепь поставок и, цепь потребителя. В TQ большое влияние уделяется овладению политикой постоянных изменений и ее адаптации, так как эти составляющие считаются мощными рычагами, в значительной степени влияющих на успех организации»[3] .

Следующим этапом на пути развития системы управления качеством является развитие процессного подхода и популяризация реинжениринга. Реинжениринг предлагает заменить принцип разделения труда в управлении на процессный подход. Во главу организации встают процессы, имеющие своих исполнителей. Предприятия были охвачены новой идеей, начался массовый пересмотр работы процессов, их оптимизация, изменение и внедрение новых. До тех пор пока не было обнаружено, что реинжениринг отнюдь не универсальное средство.

Сейчас же, в 21 веке, в науке укореняется адаптивная модель организации и распространяется концепция управления знаниями.

Но, несмотря на широкое распространение знаний о методах и системах управления качеством, многие предприятия не осознают важность контроля качества. Стремясь не отставать от мировых стандартов, устанавливают программные продукты, строят контрольные карты, не понимая, как им может это помочь.

Как бы просты или сложны не были методы управления качеством, сами по себе они не смогут оказать предприятию никакой пользы, ведь, даже проведя все необходимые исследования, и получив выводы, следует еще разработать и внедрить изменения. Существенная часть российских предприятий, приступая к разработке системы менеджмента качества (СМК), не ставит задачу достижения результативности, и тем более эффективности СМК[4] , что является обязательным условием управления качеством. Внедрение же распространенной системы ISO, напоминает больше дорогостоящую сертификацию, нежели менеджмент, направленный на удовлетворение потребителей.

Внедрение всеобщего менеджмента качества в России сопряжено со значительными трудностями, и прежде всего, это неприятие концепции качества руководителями, неготовность быть лидерами, приверженными внедрению качества и следовать выбранной цели.[5] Специфика России, ее людей, нравов и порядков, видимо, еще не скоро окажется, готова к кардинальным изменениям системы взглядов на управление организацией.

Таковы основные вехи развития систем управления качеством продукции.


Глава 2. Значение статистических методов в управлении качеством

карта шухарт управление качество

Значение статистических методов трудно переоценить, так как без подобных методов контроля, было бы трудно, почти невозможно, выявить зависимость дефектов от тех или иных факторов. При этом, организации должны стремиться к уменьшению изменчивости факторов, и как следствие, проявлению большей стабильности качества продукции. К примеру, во время механической обработки металла используется резец, который после обработки новой единицы металла немного затупляется. Помимо этого, изменение температуры, состава смазочно-охлаждающей жидкости или влияние других факторов может привести к появлению брака продукции.

Далеко не все участвующие в производстве факторы обладают постоянством, на уменьшение их изменчивости и направлены статистические методы контроля и управления качеством. Существуют, однако, и другие способы снижения уровня дефектности продукции, такие как использование интуиции эксперта или прошлого опыта по устранению подобных проблем.

Предложенные методы могут, как оказаться очень действенными, так и проявить неспособность правильно продиагностировать и решить проблему. И здесь дело встает за человеком, руководящим контролем, соответствием методов для достижения поставленных целей исследования, объективностью выбранных показателей, надежностью измерений т.д.

Рассмотрим статистические методы контроля качеством. Каэру Исикава, заслуженным профессором Токийского университета, было предложено разделение статистических методов на три группы:

1. элементарные методы, к ним относятся «семь простых инструментов качества»

·контрольный листок

æ позволяет в удобной форме регистрировать данные о дефектах, с которыми сталкивается контролер. В дальнейшем, становится источником статистической информации.

·гистограмма качества

æ Строится на основе контрольного листка и показывает частоту попадания значений контролируемого параметра в заданные интервалы.

·причинно-следственная диаграмма

æ также называют диаграммой «рыбий скелет». За основу диаграммы берется один показатель качества, принимающий вид прямой горизонтальной линии («хребет»), к которой присоединяются линиями главные причины, влияющие на показатель («большие кости хребта»). Вторичные и третичные причины, оказывающие влияние на старшие причины, соединяются также прямыми линиями («средние и мелкие кости»). После построения, необходимо проранжировать все причины по степени влияния на показатель.

· диаграмма Парето

æ Главное предположение диаграммы, что в большинстве случаев, подавляющее число дефектов возникает из-за небольшого числа важных причин.[6] Следствием из поостренной диаграммы будет вывод о том, какие виды дефектов имеют большую долю среди остальных и, соответственно, на что следует обратить особое внимание.

·Стратификация

æ Стратификация или расслоение данных проводится при необходимости сравнения результатов аналогичных процессов, выполненных разными рабочими, или на разных станках, с применением разных материалов и в других случаях.

·диаграмма рассеивания

æ строится на основе парных данных (например, число дефектов от температуры воздуха в печи) зависимость которых необходимо исследовать. Диаграмма может дать информацию о форме распределения пар. На основе диаграммы возможно проведение корреляционного и регрессионного анализа.

·контрольная карта

æ принципы и способы построения контрольных карт будут рассмотрены в третьей главе работы.

2. промежуточные методы, это методы приемочного контроля, теории распределений, статистические оценки и критерии.

3. передовые методы, это методы, основанные на использовании компьютерных технологий:

·планирование эксперимента,

·многомерный анализ

·методы исследования операций.[7]

Качество продукции определяется набором величин и признаков, которые в общем можно назвать показателями качества. На их основе проводят статистические исследования. Показатели характеризуют потребительские свойства продукции и могут иметь различный содержательный смысл[8] .

Глава 2.1 Контрольные карты Шухарта, как метод статистического контроля и управления качеством

Контрольные карты принадлежат к «семерке простых методов» менеджмента качества, по классификации К. Исикавы. Как и другие методы, контрольные карты направлены на выявление факторов, влияющих на вариабельность процессов. Так как, на изменчивость могут влиять случайные, либо определенные (неслучайные) причины. К случайным причинам, можно отнести такие причины, чье появление невозможно избежать, даже используя одинаковое сырье, оборудование и работников, обслуживающих процесс (примером могут служить колебания температуры окружающей среды, характеристик материала, и т.д.). Определенные (неслучайные) же причины подразумевают наличие некоторой зависимости, между изменением факторов и вариабельностью процесса. Такие причины могут быть выявлены и устранены при настройке процесса (например, ослабление креплений, износ инструмента, недостаточная заточка станка и др.). В идеальной ситуации, изменчивость определенных факторов следует снизить до ноля, а путем усовершенствования технологического процесса добиться уменьшения влияния и случайных факторов.

Контрольные карты используются для настройки уже существующих процессов, при которых продукция удовлетворяет техническим требованиям.

Построение контрольных карт главным образом, направлено на подтверждение или отклонение гипотезы о стабильности и контролируемости процесса. За счет того, что карты носят многократный характер, они позволяют определить, случайно ли протекание исследуемого процесса, если это так, то процесс должен стремиться к нормальному, гауссовскому распределению. В противном случае, на графике можно будет проследить тренды, серии и другие ненормальные отклонения.

В следующей главе будет рассмотрена практическая часть, касательно контрольных карт Шухарта.


Глава 3. Построение контрольных карт Шухарта

Прежде чем приступать к непосредственному построению контрольных карт, ознакомимся с основными этапами поставленной задачи. Итак, ввиду того, что разные авторы преследуют свои цели, описывая построение контрольных карт, ниже будет представлено оригинальное видение этапов построения контрольных карт Шухарта.

Алгоритм построения контрольных карт Шухарта:

I. Анализ процесса.

В первую очередь необходимо задаться вопросом о существующей проблеме, потому что, при отсутствии оных, проведение анализа не будет иметь смысла. Для большей наглядности, можно воспользоваться причинно-следственной диаграммой Исикавы (упоминалась выше, гл. 2). Для ее составления рекомендуется привлечение сотрудников из разных отделов и использование мозгового штурма. Проведя доскональный анализ проблемы, и выяснив факторы, на нее влияющие переходим ко второму этапу.

II. Выбор процесса.

Прояснив в предыдущем этапе влияющие на процесс факторы, нарисовав детальный скелет «рыбы», необходимо выбрать процесс, который будет подвержен дальнейшему исследованию. Этот этап очень важен, потому что, выбор неверных показателей сделает всю контрольную карту менее эффективной, ввиду исследования малозначительных показателей. На этом этапе стоит осознавать, что выбор соответственного процесса и показателя определяет исход всего исследования и затрат, связанного с ним.

Приведем некоторые примеры, возможных показателей :

Таблица 1. Применение контрольных кар в сервисных организациях

Организация Показатели качества
Больница

Точность лабораторных тестов

Точность заявок на страховые выплаты

Своевременность доставки еды и лекарств

Почтовое отделение

Точность сортировки почтовых отправлений

Время доставки почтовых отправлений

Процент точных почтовых отправлений, доставленных вовремя.

Транспорт

Доля правильно выбранных маршрутов для грузовых автомобилей

Стоимость повреждения груза в расчете на одну претензию

Гостиница

Доля номеров, убранных с удовлетворительных качеством

Время расчета с гостем

Число полученных жалоб

Источник Эванс Дж. Управление качеством: учебн. Пособие/Дж. Эванс.-М.: Юнити-Дана, 2007.

При этом, показатель следует выбирать, руководствуясь главной целью компании, а именно, удовлетворение потребностей покупателей. Когда выбран процесс и показатель, его характеризующий можно переходить к сбору данных.

III. Сбор данных.

Цель данного этапа - сбор данных о процессе. Для этого, необходимо спроектировать наиболее пригодный способ для сбора данных, выяснить, кто и в какое время будет проводить замеры. Если процесс не оснащен техническими средствами, позволяющими автоматизировать занесение и обработку данных, возможно применение одного из семи простых способов Исикавы – контрольных листков. Контрольные листки, фактически, представляют собой бланки, для регистрации исследуемого параметра. Их преимущество заключается в простоте использования и легкости обучения сотрудников. Если же на рабочем месте имеется компьютер, возможно занесение данных через соответствующие программные продукты.

В зависимости от специфики показателя, определяется частота, время сбора и объем выборки для обеспечения репрезентативности данных. Собранные данные являются основой для проведения дальнейших операций и вычислений.

После сбора информации, исследователь должен принять решение о необходимости группировки данных. Разбиение на группы зачастую определяет работоспособность контрольных карт. Здесь, с помощью уже проведенного анализа с применением причинно-следственной диаграммы можно установить факторы, по которым можно будет наиболее рационально сгруппировать данные. Следует учесть, что данные внутри одной группы должны обладать небольшой изменчивостью, в ином случае, данные могут быть ложно интерпретированы. Также, если процесс делится с помощью стратифицирования на части, следует проанализировать каждую их частей в отдельности (пример: изготовление одинаковых деталей, разными работниками).

Изменение способа группирования, будет приводить к изменению факторов, которые образуют внутригрупповые вариации. Следовательно, необходимо изучить факторы, влияющие на изменение показателя, чтобы суметь применить правильную группировку.

IV. Вычисление значений контрольной карты.

Контрольные карты Шухарта делятся на количественные и качественные (альтернативные) в зависимости от измеримости исследуемого показателя. Если значение показателя измеримо (температура, вес, размер, и др.) применяют карты значения показателя, размахов и двойные карты Шухарта. Напротив, если показатель не позволяет применять числовые измерения, используют типы карт, для альтернативного признака. Фактически, показатели, исследуемые по такому признаку, определяются как соответствующие или не соответствующие предъявляемым требованиям. Отсюда и использование карт для доли (числа) дефектов и числа соответствий (несоответствий) на единицу продукции.

Для любого типа карт Шухарта предполагается определение центральной и контрольных линий, где центральная линия (CL-controllimit), фактически представляет собой среднее значение показателя, а контрольные границы (UCL-uppercontrollimit; LCL-lowercontrollimit) - допустимые значения допуска.

Значения верхней и нижней контрольных границ определяются по формулам для разных типов карт, как можно видеть из схемы в приложении 1. Для их вычисления, с целью замены громоздких формул, используют коэффициенты из специальных таблиц для построения контрольных карт, где значение коэффициента зависит от объема выборки (приложение 2). Если же объем выборки велик, то используют карты , дающие наиболее полную информацию.

На данном этапе исследователь должен вычислить значения CL, UCL, LCL.

V. Построение контрольной карты.

Итак, мы и подошли к наиболее интересному процессу – графическое отражение полученных данных. Итак, если данные заносились в компьютер, то с помощью среды программ Statistica или Excel, можно, быстро графически изобразить данные. Однако можно построить контрольную карту и, не имея специальных программ, тогда, по оси OY контрольных карт откладываем значения показателя качества, а по OX – моменты времени регистрации значений, в такой последовательности:

1. наносим на контрольную карту центральную линию (CL)

2. наносим границы (UCL; LCL)

3. отражаем, полученные в ходе исследования данные, путем нанесения соответствующего маркера в точку пересечения значения показателя и времени его регистрации. Рекомендуется использование разных типов маркеров для значений, находящихся внутри границ допуска и выходящих за эти границы.

4. в случае использования двойных карт, повторите пункты 1-3 для второй карты.

VI. Проверка стабильности и управляемости процесса.

Этот этап призван показать нам то, ради чего и проводились исследования – стабилен ли процесс. Под стабильностью (статистической управляемостью) понимают состояние, при котором гарантирована повторяемость параметров. Таким образом, процесс будет стабилен, только в том случае, если не происходят нижеперечисленные случаи.

Рассмотрим основные критерии нестабильности процесса:

1. Выход за контрольные границы

2. Серия – определенное число точек, неизменно оказывающееся по одну сторону от центральной линии - (сверху)снизу.

Серия длиной в семь точек рассматривается как ненормальная. Кроме того, ситуацию следует рассматривать как ненормальную, если:

а) не менее 10 из 11 точек оказываются по одну сторону от центральной линии;

б) не менее 12 из 14 точек оказываются по одну сторону от центральной линии;

в) не менее 16 из 20 точек оказываются по одну сторону от центральной линии.

3. тренд – непрерывно повышающаяся или понижающаяся кривая.

4. приближение к контрольным границам. Если 2 или 3 точки оказываются очень близки к контрольным границам, это свидетельствует о ненормальности распределения.

5. приближение к центральной линии. Если значения концентрируются около центральной линии, это может свидетельствовать о неверном выборе способа группировки, что делает размах слишком широким и приводит к смешиванию данных различным распределений.

6. периодичность. Когда, спустя, определенные равные промежутки времени, кривая идет то на «спад», то на «подъем».

VII. Анализ контрольных карт.

Дальнейшие действия основываются на выводе о стабильности или нестабильности процесса. Если процесс не отвечает критериям стабильности, следует уменьшить влияние неслучайных факторов и, собрав новые данные, построить контрольную карту. Но, если процесс отвечает критериям стабильности, необходимо оценить возможности процесса (Cp). Чем меньше разброс параметров внутри границ допуска, тем выше значение показателя возможности процесса. Показатель отражает отношение ширины параметра и степень его разброса. [9] Индекс возможности рассчитывается как , где можно вычислить как .

Если вычисленный показатель меньше 1, то исследователю нужно усовершенствовать процесс, либо остановить изготовление продукции, либо изменить требования к продукции. При значении индекса:

Cр<1 возможности процесса неприемлемы,

Cр=1 процесс находится на грани требуемых возможностей,

Cр>1 процесс удовлетворяет критерию возможности.

В случае отсутствия смещения относительно центральной линии Cp=Cpk, где . Два этих показателя используют всегда совместно, для определения статуса процесса, так, в машиностроении считается нормой , что означает, что вероятность несоответствия не превышает 0,00006.

Дальше, следует скорректировать процесс на полученные данные и проводить его регулярный (постоянный) мониторинг с помощью контрольных карт.

Теперь, рассмотрев алгоритм построения контрольных карт, разберем конкретный пример.

Задание: Контролируется содержание хрома в стальных отливках. Проводят замеры в четырех плавках. В таблице 2 приведены данные по 15 подгруппам. Необходимо построить карту.

Решение: Поскольку уже заранее известно, какой тип карты необходимо построить, вычислим значения

номер подгруппы X1 X2 X3 X4

R
1 0,74 0,76 0,62 0,73 0,713 0,14
2 0,72 0,74 0,84 0,69 0,748 0,15
3 0,87 0,79 0,70 0,92 0,820 0,22
4 0,78 0,66 0,71 0,74 0,723 0,12
5 0,81 0,66 0,82 0,67 0,740 0,16
6 0,63 0,71 0,68 0,82 0,710 0,19
7 0,63 0,73 0,64 0,80 0,700 0,17
8 0,66 0,68 0,85 0,91 0,775 0,25
9 0,63 0,66 0,62 0,85 0,690 0,23
10 0,85 0,61 0,75 0,77 0,745 0,24
11 0,73 0,65 0,74 0,90 0,755 0,25
12 0,85 0,77 0,65 0,69 0,740 0,20
13 0,67 0,69 0,83 0,62 0,703 0,21
14 0,74 0,73 0,62 0,88 0,743 0,26
15 0,81 0,82 0,69 0,73 0,763 0,13
средние: 0,738 0,19

Следующим шагом будет вычисление , где, в соответствии с вышеуказанной схемой, , а . Теперь, имея, значения центральной линии, среднего значения показателя и среднего отклонения, найдем значения контрольных границ карт .

Для значений нижние и верхние контрольные границы определяются по формулам:

=0,738

, где находится по таблице коэффициентов для вычислений линий контрольных карт и равно 0,729. Тогда UCL=0,880 , LCL=0,596.

Для значений нижние и верхние контрольные границы определяются по формулам:

=0,19

,

где и находятся по таблице коэффициентов для вычислений линий контрольных карт и равны 0,000 и 2,282 соответственно. Тогда UCL=0,19*2,282=0,444 и LCL=0,19*0,000=0.

Построим контрольные карты для средних значений и размахов данной выборки, при помощи Excel:


Как мы можем удостовериться, контрольные карты не выявили неслучайные значения, выходы за контрольные границы, серии или тренды. Однако, график средних значений тяготеет к центральному положению, что может свидетельствовать как о неверно выбранных границах допуска, так и о ненормальности распределения и нестабильности процесса. Дабы удостоверится, вычислим индекс возможности процесса. , где можно вычислить как , по таблице коэффициентов, найдем значение, равное ;

Так как, вычисленный индекс <1, что свидетельствует о неприемлемости возможностей процесса, его статистической неуправляемости и не стабильности. Необходимо провести усовершенствования процесса, установить контроль над его протеканием, с целью уменьшения влияния не случайных факторов.


Заключение

Изучая специализированную литературу и углубляясь в управление качеством, мной было почерпнуть большое количество интересной и полезной информации. Так, например, широта использования управления качеством затронула все сферы производства от тяжелой промышленности и нефтезаготовки, до небольших организаций, предоставляющих услуги (места общественного питания, книжные магазины, др.).

В последние годы, под всеобъемлющим влиянием мышления, направленного на улучшение качества и удовлетворение потребителей, к менеджменту качества приписывают такие системы как CRM- клиентоориентированный менеджмент; ERP-система управления ресурсами предприятия; TPM- система всеобщего ухода за оборудованием, и многие другие системы. Исходя из этого, можно сделать вывод, что произошло смещение интересов от управления качеством конкретного процесса к использованию систем качества и программных пакетов, позволяющих тем или иным образом способствовать удовлетворению потребностей клиентов наиболее удобными способами. Вклад Волтера Шухарта в статистическое управление качеством велик, а предложенные им контрольные карты, до сих пор используются, но чаще, вкупе с другими методами, ввиду обеспечения системного подхода и учета многих факторов, которые не брались в учет еще в 20 веке.

В завершение, хотелось бы сказать, что главная проблема современных систем качества, в том, что при всей видимой простоте в использовании они не могут гарантировать, их эффективное применение на предприятии. Причины кроются в истоках! Ведь, главное преимущество использования «7 простых методов» управления качеством, то, что без проникновения философией качества, получение сколь бы то ни было значимых результатов мало возможно. Так, компании, еще не готовые к кардинальным изменениям могли бы уберечь себя от внедрения дорогостоящих систем и излишних трат.

Управление качеством – философия успеха современных фирм!


Литература

1. ГОСТ Р 50779.42-99 «Статистические методы. Контрольные карты Шухарта»

2. Голдрат Э.М., Кокс Дж. Цель. Процесс непрерывного совершенствования/Э.М. Голдрат, Дж. Кокс.- издательство «Попурри»-2007.

3. Йосио Кондо. Управление качеством в масштабах компании: становление и этапы развития./ пер. с англ. Е.П. Маркова, И.Н. Рыбаков.- Нижний Новгород: СМЦ «приоритет», 2002.

4. Просветов Г.И. Прогнозирование и планирование: задачи и решения:учебно-методическое пособие./Г.И. Просвеов-М.:Издательство РДЛ, 2005.

5. Кане М.М., Иванов Б.В., Корешков В.Н., Схиртладзе А.Г. Системы, методы и инструменты менеджмента качества/ М.М. Кане, Б.В. Иванов, В.Н. Корешков, А.Г. Схиртладзе. – СПб.: Питер, 2009

6. Качалов В.А. Что такое «постоянное повышение результативности СМК»?// Методы менеджмента качества.-2006.-№10.

7. Клячкин В.Н. Статистические методы в управлении качеством: компьютерные технологии: учеб. Пособие/В.Н. Клячкин.-М.:Финансы и статистика, 2007.

8. Круглов М.Г., Шишков Г.М. Менеджмент качества как он есть/М.Г. Круглов,Г.М. Шишков.-М.:Эксмо, 2006.

9. Кузнецов Л.А. Контроль и оценка многомерного качества//методы менеджмента качества.-2008.-№10.-С. 40-45.

10. Сажин Ю.В., Плетнева Н.П. К вопросу о результативности СМК в России// Методы менеджмента качества.-2008.-№10.-С.20-24.

11. Статистические методы повышения качества: монография/ пер. с англ. Ю.П.Адлера, Л.А. Конарева; под ред. Кумэ.-М.:Финансы и статистика, 1990.

12. Фейгенбаум А. Контроль качества продукции/А. Фейгенбаум. - М.: Экономика, 1986.

13. Эванс Дж. Управление качеством: учебн. Пособие/Дж. Эванс.-М.: Юнити-Дана, 2007.


Приложение 1

Схема контрольных карт Шухарта


Приложение 2

Коэффициенты для вычислений линий контрольных карт.


[1] Кане М.М., Иванов Б.В., Корешков В.Н., Схиртладзе А.Г. Системы, методы и инструменты менеджмента качества/ М.М. Кане, Б.В. Иванов, В.Н. Корешков, А.Г. Схиртладзе. – СПб.: Питер, 2009

[2] Кане М.М., Иванов Б.В., Корешков В.Н., Схиртладзе А.Г. Системы, методы и инструменты менеджмента качества/ М.М. Кане, Б.В. Иванов, В.Н. Корешков, А.Г. Схиртладзе. – СПб.: Питер, 2009.

[3] Эванс Дж. Управление качеством: учебн. Пособие/Дж. Эванс.-М.: Юнити-Дана, 2007.

[4] Качалов В.А. Что такое «постоянное повышение результативности СМК»?// Методы менеджмента качества.-2006.-№10.

[5] Сажин Ю.В., Плетнева Н.П. К вопросу о результативности СМК в России// Методы менеджмента качества.-2008.-№10.-С.20-24.

[6] Статистические методы повышения качества: монография/ пер. с англ. Ю.П.Адлера, Л.А. Конарева; под ред. Кумэ.-М.:Финансы и статистика, 1990.

[7] Клячкин В.Н. Статистические методы в управлении качеством: компьютерные технологии: учеб. Пособие/В.Н. Клячкин.-М.:Финансы и статистика, 2007.

[8] Кузнецов Л.А. Контроль и оценка многомерного качества//методы менеджмента качества.-2008.-№10.-С. 40-45.

[9] Круглов М.Г., Шишков Г.М. Менеджмент качества как он есть/М.Г. Круглов, Г.М. Шишков.- М.: Эксмо, 2006.