Реферат: Уральский федеральный округ 2 Заселение Урала

Название: Уральский федеральный округ 2 Заселение Урала
Раздел: Исторические личности
Тип: реферат

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОБЛАСТНОЙ УНИВЕРСИТЕТ

Экономический факультет. Государственное и муниципальное управление.

Курсовая работа

На тему: «Статистическое изучение социально-экономического явления.»

Вариант №7.

Выполнила студентка

заочного отделения

группа 21

Живаева К.М.

Москва, 2008


Оглавление

Введение

Формирование исходной выборки

Статистические распределения рядов признаков-факторов и результирующего признака

Проверка однородности и нормальности

Вывод зависимостей результирующего-признака от факторов-признаков

Группировка

Определение доверительного интервала

Вычисление линейных коэффициентов корреляции, вывод уравнения регрессии

Заключение

Список источников

Введение

Целью данной работы является статистическое исследование взаимосвязей стоимости автомобиля марки «Хонда-Сивик» с факторными признаками: пробегом и временем эксплуатации; а также, на основании исследования выявления первичных факторов, влияющих на стоимость и вывод зависимости целевого параметра(стоимости) от первичного фактора.

Для построения исходной выборки был выбран сайт www.auto.ru.

Формирование исходной выборки

Используя сайт auto.ru проводим выборочное исследование 50 автомобилей марки Хонда-Сивик.

Исследуемые признаки:

Y ‑ цена автомобиля, тыс.руб.;

Х1 ‑ время эксплуатации, лет;

Х2 ‑ пробег, тыс. км.

№ п/п Марка Y Х1 Х2
1 Civic VII 379 5 121
2 Civic VII 399 4 74
3 Civic VII 429 4 88
4 Civic VII 393 3 95
5 Civic VII 397 3 60
6 Civic VII 430 3 54
7 Civic VII 459 3 46
8 Civic VIII 455 2 107
9 Civic VIII 467 2 47
10 Civic VIII 468 2 97
11 Civic VIII 552 2 60
12 Civic VIII 565 2 41
13 Civic VIII 570 2 57
14 Civic VIII 579 2 30
15 Civic VIII 597 2 150
16 Civic VIII 441 1 75
17 Civic VIII 466 1 30
18 Civic VIII 500 1 15
19 Civic VIII 524 1 26
20 Civic VIII 530 1 22
21 Civic VIII 539 1 32
22 Civic VIII 555 1 62
23 Civic VIII 560 1 14
24 Civic VIII 575 1 30
25 Civic VIII 575 1 88
26 Civic VIII 600 1 18
27 Civic VIII 600 1 18
28 Civic VIII 615 1 40
29 Civic VIII 680 1 14
30 Civic VIII 510 0 18
31 Civic VIII 533 0 0
32 Civic VIII 533 0 0
33 Civic VIII 541 0 0
34 Civic VIII 541 0 0
35 Civic VIII 561 0 0
36 Civic VIII 570 0 29
37 Civic VIII 585 0 0
38 Civic VIII 590 0 0
39 Civic VIII 606 0 0
40 Civic VIII 616 0 0
41 Civic VIII 640 0 0
42 Civic VIII 640 0 0
43 Civic VIII 640 0 0
44 Civic VIII 643 0 0
45 Civic VIII 650 0 10
46 Civic VIII 650 0 0
47 Civic VIII 661 0 0
48 Civic VIII 661 0 0
49 Civic VIII 683 0 0
50 Civic VIII 600 0 13

Статистические распределения рядов признаков-факторов и результирующего признака

Исследуем статистическое распределение признаков Х1 с помощью интервального вариационного ряда:

Интервальный ряд для Х 1
Х 1 F 1 Ср. цена тыс.руб.
0-1 21 603
1-2 14 554
2-3 8 532
3-4 4 420
4-5 2 414
5-6 1 379

Приведем графическое отображение ряда для Х1 в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую, моду и медиану интервального ряда распределения для X1 . Формула для вычисления среднего арифметического:

где – средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где – значение моды;

X0 – нижняя граница модального интервала;

h – величина модального интервала (1 год);

– частота модального интервала;

– частота интервала, предшествующая модальному;

– частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда X1 наибольшее значение частоты равно 21, т.е. это будет интервал 0 лет , тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

n – число единиц в совокупности

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где – значение медианы;

– нижняя граница медианного интервала;

- номер медианы;

- накопленная частота интервала, предшествующая медианному;

- частота медианного интервала.

По накопленной частоте определяем, что медиана будет находиться в интервале от 1 года до 2-х лет , тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где – дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где – дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где – коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где ;

– коэффициент ассиметрии;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Вычислим значения коэффициента эксцесса:

где

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Исследуем статистическое распределение признаков Х2 с помощью интервального вариационного ряда.

Для построения ряда распределения необходимо определить число групп и величину интервала. Для определения числа групп воспользуемся формулой Стерджесса:

гдеm – число групп (всегда целое);

n – число единиц в выборке, в нашем случае n= 50.

Вычислим m:

Величину интервала определим по формуле:

где Хmax – максимальное значение признака;

Хmin - минимальное значение признака;

m – число групп.

На основании полученных данных построим интервальный ряд для Х2 :

Интервальный ряд для Х 2
Х 2 F 2 Ср. цена тыс.руб.
0 - 21 25 601
21 - 42 9 551
42 - 63 7 490
63 - 84 2 420
84 - 105 4 466
105 - 126 2 417
126 - 150 1 597

Приведем графическое отображение ряда для Х2 в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую, моду и медиану интервального ряда распределения для X2 . Формула для вычисления среднего арифметического:

где – средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где – значение моды;

– нижняя граница модального интервала;

h – величина модального интервала (1 год);

- частота модального интервала;

- частота интервала, предшествующая модальному;

- частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда X1 наибольшее значение частоты равно 25, т.е. это будет интервал 0 до 21 тыс. км., тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где

n – число единиц в совокупности

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где– значение медианы;

– нижняя граница медианного интервала;

- номер медианы;

- накопленная частота интервала, предшествующая медианному;

- частота медианного интервала.

По накопленной частоте определяем, что медиана будет находиться в интервале от 21 до 42 тыс. км., тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где – дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где – дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где – коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где

– коэффициент ассиметрии

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Вычислим значения коэффициента эксцесса:

где;

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Исследуем статистическое распределение признаков Y с помощью интервального вариационного ряда.

Величину интервала определим по формуле, используя полученное ранее значение m:

где Хmax – максимальное значение признака;

Хmin - минимальное значение признака;

m – число групп.

На основании полученных данных построим интервальный ряд для Y:

Интервальный ряд для Y
Y Fy Ср. цена тыс.руб.
379 - 422 4 400,5
422 - 465 5 443,5
465 - 508 4 486,5
508 - 551 8 529,5
551 - 594 12 572,5
594 - 637 7 615,5
637 - 683 10 660

Приведем графическое отображение ряда для Y в виде гистограммы и кумуляты:

Вычислим среднюю арифметическую , моду и медиану интервального ряда распределения для Y. Формула для вычисления среднего арифметического:

где – средняя по ряду распределения;

– средняя по i-му интервалу;

– частота i-го интервала (число автомобилей в интервале).

Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:

где – значение моды;

Y0 – нижняя граница модального интервала;

h– величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующая модальному;

- частота послемодального интервала.

Модальный интервал определяется по наибольшей частоте. Для ряда Y наибольшее значение частоты равно 12, т.е. это будет интервал 551-594, тогда значение моды:

Медиана – значение признака, лежащее в середине упорядоченного ряда распределения.

Номер медианы определяется по формуле:

где ;

n – число единиц в совокупности;

т.к. медиана с дробным номером не бывает, то полученный результат указывает, что медиана находится между 25-й и 26-й величинами совокупности.

Значение медианы можно определить по формуле:

где – значение медианы;

– нижняя граница медианного интервала;

– номер медианы;

– накопленная частота интервала, предшествующего медианному;

- частота медианного интервала;

По накопленной частоте определяем, что медиана будет находиться в интервале 551-594 , тогда значение медианы:

Для вычисления дисперсии воспользуемся следующей формулой:

где – дисперсия;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Среднее квадратическое отклонение вычислим по следующей формуле:

где – дисперсия;

– среднее квадратическое отклонение;

Вычислим коэффициент вариации

где – коэффициент вариации;

– среднее квадратическое отклонение;

- среднее по ряду распределения.

Вычислим значения коэффициента ассиметрии:

где

– коэффициент ассиметрии;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Подставив значения, получим, что:

Вычислим значения коэффициента эксцесса:

где ;

- коэффициент эксцесса;

– среднее квадратическое отклонение;

– среднее по i-му интервалу;

– среднее по ряду распределения;

– частота i-го интервала;

n – размер выборки (n=50).

Проверка однородности и нормальности

Проверим интервальные распределения на однородность:

следовательно, совокупность для Х1 является неоднородной.

следовательно, совокупность для Х2 является неоднородной.

следовательно, совокупность для Y является однородной.

Исследуем нормальность распределения факторного признака Х1 :

Интервалы значений признака-фактора Число единиц, входящих в интервал Удельный вес единиц, входящих в интервал, в общем их числе, % Удельный вес единиц, входящих в интервал, при нормальном распределении, %
1 2 3 4

(1,6-1,25)-(1,6+1,25)

0,35 – 2,85

22 44 68,3

(1,6-2×1,25) - (1,6+2×1,25)

-0,9 – 4,1

49 98 95,4

(1,6-3×1,25) - (1,6+3×1,25)

-2,15 – 5,35

50 100 99,7

Таким образом, сопоставляя гр.3 и гр.4 делаем вывод: распределение Х1 относительно близко к нормальному, но не подчиняется ему.

Исследуем нормальность распределения факторного признака Х2 :

Интервалы значений признака-фактора Число единиц, входящих в интервал Удельный вес единиц, входящих в интервал, в общем их числе, % Удельный вес единиц, входящих в интервал, при нормальном распределении, %
1 2 3 4

(36,15-34,03)-(36,15+34,03)

2,12 – 70,18

24 48 68,3

(36,15-2×34,03) - (36,15+2×34,03)

-31,91 – 104,21

47 94 95,4

(36,15-3×34,03) - (36,15+3×34,03)

-65,94 – 138,24

49 98 99,7

Таким образом, сопоставляя гр.3 и гр.4 делаем вывод: распределение Х2 близко к нормальному, но не подчиняется ему.

Таким образом, проведя анализ на нормальность распределения мы можем отобрать данные не попадающие в диапазон 3х σ. Для ряда Х1 таких значений нет. Для ряда Х2 исключаем значение с пробегом 150 тыс. км.

С учетом отфильтрованных по правилу 3х сигм составим интервальные ряды для Х1 , Х2 , Y.

Вывод зависимостей результирующего-признака от факторов-признаков

Интервальный ряд для Х 1
Х 1 F 1 Ср. цена тыс.руб.
0-1 21 603
1-2 14 554
2-3 7 522
3-4 4 420
4-5 2 414
5-6 1 379
Интервальный ряд для Х 2
Х 2 F 2 Ср. цена тыс.руб.
0 - 21 25 601
21 - 42 9 551
42 - 63 7 490
63 - 84 2 420
84 - 105 4 466
105 - 126 2 417
Интервальный ряд для Y
Y F y Ср. цена тыс.руб.
379 - 422 4 400,5
422 - 465 5 443,5
465 - 508 4 486,5
508 - 551 8 529,5
551 - 594 12 572,5
594 - 637 6 615,5
637 - 683 10 660

Проведем аналитические группировки продаваемых автомобилей по времени эксплуатации и пробегу и определим групповые средние.

Построим график Y(X1 )

Зависимость цены от времени эксплуатации существует и носит линейный характер, чем больше время эксплуатации, тем дешевле автомобиль.

Построим график Y(X2 )

Зависимость цены от пробега существует и носит линейный характер, чем больше пробег автомобиля, тем дешевле автомобиль.

Группировка

На основанииданных статистического наблюдения выделим три типа автомобилей:

· по времени эксплуатации:

o новые автомобили от 0 до 1 года – 34 шт.

o средние автомобили от 2 до 3 лет – 13 шт.

o старые автомобили от 3 до 5 лет – 3 шт.

· по пробегу:

o новые автомобили от 0 до 50 тыс. км. – 36 шт.

o средние автомобили от 50 до 100 тыс.км. – 11 шт.

o старые автомобили от 100 до 150 тыс.км. – 3 шт.

· по цене:

o новые автомобили от 581 до 683 тыс. руб. – 19 шт.

o средние автомобили от 480 до 581 тыс. руб. – 12 шт.

o старые автомобили от 379 до 480 тыс. руб. – 12 шт.

Определение доверительного интервала

Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,9.

При вероятности 0,9 t = 1,64

Следовательно:

Таким образом, с вероятностью 0,9 можно утверждать, что средняя цена автомобиля равна:

Определим доверительный интервал, в котором заключена средняя цена всех продаваемых автомобилей, с вероятностью 0,95.

При вероятности 0,95 t = 1,96

Следовательно:

Таким образом, с вероятностью 0,95 можно утверждать, что средняя цена автомобиля равна:

Определим необходимую численность выборки при определении средней цены продаваемых автомобилей, чтобы с вероятностью 0,95 предельная ошибка выборки не превышала 10 тыс.руб.

Вычисление линейных коэффициентов корреляции, вывод уравнения регрессии

На основании выборочного наблюдения оценим степень тесноты связи и проведем оценку ее существенности:

Для определения степени тесноты парной линей зависимости используем линейный коэффициент корреляции(r) :

Для вычисления линейных коэффициентов корреляции составим вспомогательную таблицу:

5 121 379 1,6 36,15 509,8 3,4 84,85 -130,8 -444,72 -11098,4 288,49
4 74 399 1,6 36,15 509,8 2,4 37,85 -110,8 -265,92 -4193,78 90,84
4 88 429 1,6 36,15 509,8 2,4 51,85 -80,8 -193,92 -4189,48 124,44
3 95 393 1,6 36,15 509,8 1,4 58,85 -116,8 -163,52 -6873,68 82,39
3 60 397 1,6 36,15 509,8 1,4 23,85 -112,8 -157,92 -2690,28 33,39
3 54 430 1,6 36,15 509,8 1,4 17,85 -79,8 -111,72 -1424,43 24,99
3 46 459 1,6 36,15 509,8 1,4 9,85 -50,8 -71,12 -500,38 13,79
2 107 455 1,6 36,15 509,8 0,4 70,85 -54,8 -21,92 -3882,58 28,34
2 47 467 1,6 36,15 509,8 0,4 10,85 -42,8 -17,12 -464,38 4,34
2 97 468 1,6 36,15 509,8 0,4 60,85 -41,8 -16,72 -2543,53 24,34
2 60 552 1,6 36,15 509,8 0,4 23,85 42,2 16,88 1006,47 9,54
2 41 565 1,6 36,15 509,8 0,4 4,85 55,2 22,08 267,72 1,94
2 57 570 1,6 36,15 509,8 0,4 20,85 60,2 24,08 1255,17 8,34
2 30 579 1,6 36,15 509,8 0,4 -6,15 69,2 27,68 -425,58 -2,46
2 150 597 1,6 36,15 509,8 0,4 113,85 87,2 34,88 9927,72 45,54
1 75 441 1,6 36,15 509,8 -0,6 38,85 -68,8 41,28 -2672,88 -23,31
1 30 466 1,6 36,15 509,8 -0,6 -6,15 -43,8 26,28 269,37 3,69
1 15 500 1,6 36,15 509,8 -0,6 -21,15 -9,8 5,88 207,27 12,69
1 26 524 1,6 36,15 509,8 -0,6 -10,15 14,2 -8,52 -144,13 6,09
1 22 530 1,6 36,15 509,8 -0,6 -14,15 20,2 -12,12 -285,83 8,49
1 32 539 1,6 36,15 509,8 -0,6 -4,15 29,2 -17,52 -121,18 2,49
1 62 555 1,6 36,15 509,8 -0,6 25,85 45,2 -27,12 1168,42 -15,51
1 14 560 1,6 36,15 509,8 -0,6 -22,15 50,2 -30,12 -1111,93 13,29
1 30 575 1,6 36,15 509,8 -0,6 -6,15 65,2 -39,12 -400,98 3,69
1 88 575 1,6 36,15 509,8 -0,6 51,85 65,2 -39,12 3380,62 -31,11
1 18 600 1,6 36,15 509,8 -0,6 -18,15 90,2 -54,12 -1637,13 10,89
1 18 600 1,6 36,15 509,8 -0,6 -18,15 90,2 -54,12 -1637,13 10,89
1 40 615 1,6 36,15 509,8 -0,6 3,85 105,2 -63,12 405,02 -2,31
1 14 680 1,6 36,15 509,8 -0,6 -22,15 170,2 -102,12 -3769,93 13,29
0 18 510 1,6 36,15 509,8 -1,6 -18,15 0,2 -0,32 -3,63 29,04
0 0 533 1,6 36,15 509,8 -1,6 -36,15 23,2 -37,12 -838,68 57,84
0 0 533 1,6 36,15 509,8 -1,6 -36,15 23,2 -37,12 -838,68 57,84
0 0 541 1,6 36,15 509,8 -1,6 -36,15 31,2 -49,92 -1127,88 57,84
0 0 541 1,6 36,15 509,8 -1,6 -36,15 31,2 -49,92 -1127,88 57,84
0 0 561 1,6 36,15 509,8 -1,6 -36,15 51,2 -81,92 -1850,88 57,84
0 29 570 1,6 36,15 509,8 -1,6 -7,15 60,2 -96,32 -430,43 11,44
0 0 585 1,6 36,15 509,8 -1,6 -36,15 75,2 -120,32 -2718,48 57,84
0 0 590 1,6 36,15 509,8 -1,6 -36,15 80,2 -128,32 -2899,23 57,84
0 0 606 1,6 36,15 509,8 -1,6 -36,15 96,2 -153,92 -3477,63 57,84
0 0 616 1,6 36,15 509,8 -1,6 -36,15 106,2 -169,92 -3839,13 57,84
0 0 640 1,6 36,15 509,8 -1,6 -36,15 130,2 -208,32 -4706,73 57,84
0 0 640 1,6 36,15 509,8 -1,6 -36,15 130,2 -208,32 -4706,73 57,84
0 0 640 1,6 36,15 509,8 -1,6 -36,15 130,2 -208,32 -4706,73 57,84
0 0 643 1,6 36,15 509,8 -1,6 -36,15 133,2 -213,12 -4815,18 57,84
0 10 650 1,6 36,15 509,8 -1,6 -26,15 140,2 -224,32 -3666,23 41,84
0 0 650 1,6 36,15 509,8 -1,6 -36,15 140,2 -224,32 -5068,23 57,84
0 0 661 1,6 36,15 509,8 -1,6 -36,15 151,2 -241,92 -5465,88 57,84
0 0 661 1,6 36,15 509,8 -1,6 -36,15 151,2 -241,92 -5465,88 57,84
0 0 683 1,6 36,15 509,8 -1,6 -36,15 173,2 -277,12 -6261,18 57,84
0 13 600 1,6 36,15 509,8 -1,6 -23,15 90,2 -144,32 -2088,13 37,04
Итого: -4829,8 -98283,3 1894,15

Тогда

Таким образом, значение линейного коэффициента корреляции = -0,84 свидетельствует о наличии обратной и тесной связи между временем эксплуатации и ценой автомобиля.

Таким образом, значение линейного коэффициента корреляции = -0,63 свидетельствует о наличии обратной и тесной связи между пробегом и ценой автомобиля.

Таким образом, значение линейного коэффициента корреляции = 0,89 свидетельствует о наличии прямой и тесной связи временем эксплуатации и пробегом автомобиля.

Проведем анализ матрицы парных коэффициентов корреляции:

Составим матрицу парных коэффициентов корреляции:

Y X1 X2
Y 1 -0,84 -0,63
X1 -0,84 1 0,89
X2 -0,63 0,89 1

Так как оба условия не соблюдаются, то для составления уравнения регрессии будем использовать наиболее значимый (весомый) факторный признак, т.е. – X1 (время эксплуатации), т.к. .

Составим уравнение регрессии:

В качестве регрессионной модели выберем линейную модель, которая имеет вид:

Вычислим коэффициенты регрессионного уравнения:

Таким образом, уравнение регрессии примет вид:


Заключение

В ходе исследования были выявлены следующие характеристики взаимосвязи стоимости автомобиля с факторными признаками:

· Стоимость автомобиля линейно зависит от пробега и времени эксплуатации причем эта зависимость обратная для обоих случаев. При увеличении пробега (времени эксплуатации) стоимость автомобиля уменьшается;

· Основным фактором, влияющим на конечную стоимость, является время эксплуатации;

· Выявлена зависимость стоимости автомобиля от времени эксплуатации, которая имеет следующий вид:


Список источников

1) Сайт www.auto.ru.

2) Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики: Учеб. пособие. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – 336 с: ил. ISBN 5-279-02555-0.