Реферат: Физиология обмена веществ и энергии

Название: Физиология обмена веществ и энергии
Раздел: Рефераты по медицине
Тип: реферат

ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ

Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его

существования и отражает их единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях восполняет энергозатраты организма. Синтез сложных специфичных веществ организма из

простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом, Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Два этих процесса неразрывно связаны. 'Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТ.Ф и НАДФ. С их помощью энергия образующаяся в результате дис­симиляции передается для процессов ассимиляции. Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органел. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми. Т.е. не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин. Состояние белкового обмена оценивается по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего .азота больше, чем выделенного, это называется положительным .азотистым балансом. В организме происходит задержка или ретенция азота. Положи­тельный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обес­печивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.

Жирами организма являются триглицериды, фосфолипиды и стерины. Они также имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органел. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме, потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Покрывая внутренние органы, жировая ткань выполняет и пластическую функцию. Например, околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды явля­ются источниками воды, потому что при окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов. Содержащийся в его жировых клетках полипептид тормозит ре-синтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Они не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль так как служат основным источником энергии для 'клеток.

Потребности нейронов покрываются исключительно глюкозой. Углеводы аккумулируются в виде гликогена в печени

и мышцах. Углеводы имеют определенное пластическое значение. Глюкоза необходима для образования нуклеотидов

и синтеза некоторых аминокислот.

Методы измерения энергетический баланса организма

Соотношение между количеством энергии, поступившей в организм с пищей, и энергии, выделенной организмом во

внешнюю среду называется энергетическим балансом .организма. Существует 2 метода определения выделяемой

организмом энергии.

1. Прямая калориметрия. Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплообменных труб, в которых циркулирует и нагревается вода.

2. Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом (ДК). УС02 ДК=—У02

Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например в молекуле углеводов атомов кислорода много, Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1. В молекуле липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешанном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше 1 при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры. Меньше 0,7 он бывает при переходе жиров в углеводы. Исходя из дыхательного коэффициента рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ. Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов "Метатест-2", "Спиролит".

величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент. Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г. Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а да азотсодержащих продуктов. Основной обмен

Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях, т.е. лежа с расслабленными мышцами, при температуре комфорта, натощак. Согласно закону поверхности, сформулированному в 19 веке Рубнером и Рише, величина основного прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, со­стояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. У детей его величина относительно веса тела больше, чем в зрелом возрасте, а у пожилых наоборот меньше. В холодном климате или зимой он возрастает, летом снижается. При гипертиреозе он значительно увеличивается, а гипотиреозе снижается. В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин 1550.

Общий обмен энергии

Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически динамического действия пищи. Рабочая прибавка это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих:

1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.

2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.

3. Лица занятые частично механизированным трудом (шофера). 2500-3700 ккал/сут. .

1. Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут. Специфически динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%. Физиологические основы питания.

2. Режимы питания. В зависимости от возраста, пола, профессии потребление белков, жиров и углеводов должно составлять:

В зависимости от возраста, пола, проф.

потребление белков, жиров и углеводов должно составлять:

М 1-1У групп

ЖМУ групп

Белки

96-108 г

82-92 г77-102 г

Жиры

90-120 г

Углеводы

382-552 г

303-444 г

В прошлом веке Рубнер сформулировал закон изодинамии, согласно которому пищевые вещества могут взаимозаменяться по своей энергетической ценности. Однако он имеет относительное значение, так как белки, выполняющие пластическую роль, не могут синтезироваться из других веществ. Это же касается незаменимых жирных кислот. Поэтому требуется питание сбалансированное по всем питательным веществам. Кроме того необходимо учитывать усвояемость пищи. Это соотношение всосавшихся и выделившихся с калом питательных веществ. Наиболее легко усваиваются животные продукты. Поэтому животный белок должен составлять не менее 50% суточного белкового рациона, а жиры не более 70% жирового.

Под режимом питания подразумевается кратность приема пищи и распределение ее калорийности на каждый прием. При трехразовом питании на завтрак должно приходится 30% калорийности суточного рациона, обед 50%, ужин 20%. При более физиологичном четырехразовом, на завтрак 30%, обед 40%, полдник 10%, ужин 20%. Интервал между завтраком и обедом не более 5 часов, а ужин должен быть не менее чем за 3 часа до сна. Часы приема пищи должны быть постоянными.

Обмен воды и минеральных веществ

Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в воде составляет 20-40 мл/кг веса. С жидкостями поступает около 1200 мл воды, пищей 900 мл и 300 мл образуется в процессе окисления питательных веществ. Минимальная потребность в воде составляет 1700 мл. При недостатке воды наступает дегидратация и если ее количество в организме снижается на 20% наступает смерть. Избыток воды сопровождается водной интоксикацией с возбуждением ЦНС и судорогами.

Натрий, калий, кальций, хлор необходимы для нормального функционирования всех клеток, в частности обеспечения механизмов формирования мембранного потенциала и потенциалов действия. Суточная потребность в натрии и калии 2-3 г, кальции 0,8 г, хлоре 3-5 г. Большое количество кальция находится в костях. Кроме того он нужен для свертывания крови, регуляции клеточного метаболизма. Основная масса фосфора также сосредоточена в костях. Одновременно входит а состав фосфолипидов мембран, участвует в процессах метаболизма. Суточная потребность в нем 0,8 г. Большая часть железа содержится в гемоглобине и миоглобине. Оно обеспечивает связывание кислорода. Фтор входит в состав эмали зубов. Сера в состав белков и витаминов. Цинк является компонентом ряда ферментов. Кобальт и медь необходимы для эритропоэза. Потребность во всех этих микроэлементах от десятков до сотен мг в сутки.

Регуляция обмена веществ и энергии

Высшие нервные центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную систему и гипоталамо-гипофизарную систему. Симпатический отдел ВНС стимулирует процессы диссимиляции, парасимпатический ассимиляцию. В нем же находятся центры регуляции водно-солевого обмена. Но главная роль в регуляции этих базисных процессов принадлежит железам внутренней секреции. В частности инсулин и глюкагон регулируют углеводный и жировой обмены. Причем инсулин тормозит выход жира из депо. Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды натрий калиевый. Основная роль в регуляции энергетического обмена принадлежит тиреоидным гормонам. Они резко усиливают его. Они же главные регуляторы белкового обмена. Значительно повышает энергетический обмен и адреналин. Большое его количество выделяется при голодании.

ТЕРМОРЕГУЛЯЦИЯ

Филогенетически сложились два типа регуляции температуры тела. У холоднокровных или пойкилотермных организмов интенсивность обмена веществ небольшая, поэтому низка теплопродукция. Они неспособны поддерживать постоянство температуры тела и она зависит от температуры окружающей среды. Вредные сдвиги температуры компенсируются изменением поведения (зимняя спячка). У теплокровных животных интенсивность обменных процессов очень высока и имеются специальные механизмы терморегуляции. Поэтому они имеют независимый от окружающей температуры уровень активности. Изотермия обеспечивает высокую приспособляемость теплокровных. У человека суточные колебания температуры 36,5-36,9°С. Наиболее высока температура тела человека в 16 часов. Наименьшая в 4 часа. его организм очень чувствителен к изменениям температуры тела. При ее снижении до 27-3 0°С наблюдаются тяжелые

нарушения всех функций, а при 25° наступает холодовая смерть (имеются сообщения о сохранении жизнеспособности при 18° С). Для крыс летальной является температура 12° С (специальные методы 1° С). При повышении температуры тела до 40° также возникают тяжелые нарушения. При 42° может наступить тепловая смерть. Для человека зона температурного комфорта 18-20°. Существуют и гетеротермные живые существа, которые могут временно снижать температуру тела (животные впадающие в спячку).

Терморегуляция это совокупность физиологических процессов теплообразования и теплоотдачи, обеспечивающих поддержание нормальной температуры тела. В основе терморегуляции лежит баланс этих процессов. Регуляция температуры тела посредством изменения интенсивности обмена веществ называется химической терморегуляцией. Термогенез усиливает непроизвольная мышечной активность в виде дрожи, произвольная моторной активность. Наиболее активно теплообразование идет в работающих мышцах. При тяжелой физической работе оно возрастает на 500%. Образование тепла усиливается при интенсификации обменных процессов, это называется не дрожательным термогенезом и обеспечивается за счет бурого жира. Его клетки содержат много митохондрий и специальный пептид, стимулирующий распад липидов с выделением тепла. Т.е. происходит разобщение процессов окисления и фософрилирования.

Теплоотдача служит для выделения избытка образующегося тепла и называется физической терморегуляцией. >'0на осуществляется посредством теплоизлучения, посредством которого выделяется 60% тепла, конвекции (15%),

теплопроводности (3 °/о), испарения воды с поверхности тела и из легких (20%). Баланс процессов теплообразования и теплоотдачи обеспечивается нервным» и гуморальными механизмами. При отклонении температуры тела от нормальной величины, возбуждаются терморецепторы кожи, сосудах, внутренних органах, верхних дыхательных путях. Этими рецепторами являются отростки сенсорных нейронов, а также тонкие волокна типа С. Холодовых рецепторов в коже больше, чем тепловых и они расположены более поверхностно. Нервные импульсы от этих нейронов по спиноталамическим трактам поступают в гипоталамус и кору больших полушарий. Формируется ощущение холода или тепла. В заднем гипоталамусе и препоптической области переднего находится центр терморегуляции. Нейроны заднего, в основном обеспечивают химическую терморегуляцию. Переднего физическую. В этом центре имеется три типа нейронов. Первым являются термочувствительные нейроны. Они расположены в препоптической области и реагируют на изменение температуры крови проходящей через мозг. Такие же нейроны имеются в спинном и продолговатом мозге. Вторая группа, является интернейронами и получает информацию от температурных рецепторов и терморецепторных нейронов. Эти нейроны служат для поддержания установочной точки, т.е. определенной температуры тела. Одна часть таких нейронов получает информацию от холодовых, другая от тепловых периферических рецепторов и терморецепторных нейронов. Третий тип нейронов - эфферентные. Они находятся в заднем гипоталамусе и обеспечивают регуляцию механизмов теплообразования. Свои влияния на эффекторные механизмы, центр терморегуляции осуществляет через симпатическую и соматическую нервную системы, железы внутренней секреции. При повышении температуры тела возбуждаются тепловые рецепторы кожи, внутренних органов, сосудов и терморецепторные нейроны гипоталамуса. Импульсы от них поступают к интернейронам, а затем эффекторным. Эффекторными являются нейроны симпатических центров гипоталамуса. В результате их возбуждения активируются симпатические нервы, которые расширяют сосуды кожи и стимулируют потоотделение. При возбуждении холодовых рецепторов наблюдается обратная картина. Частота нервных импульсов идущих к кожным сосудам и потовым железам уменьшается, сосуды суживаются, потоотделение тормозится. Одновременно расширяются сосуды внутренних органов. Если это не приводит к восстановлению температурного гомеостаза, включаются другие механизмы. Во-первых, симпатические нервная система усиливает процессы катаболизма, а следовательно теплопродукцию. Выделяющийся из окончаний симпатических нервов норадреналин стимулирует процессы липолиза. Особую роль в этом играет бурый жир. Это явление называется не дрожательным термогенезом. Во-вторых, от нейронов заднего гипоталамуса начинают идти нервные импульсы к двигательным центрам среднего и продолговатого мозга. Они возбуждаются и активируют а-мотонейроны спинного мозга. Возникает непроизвольная мышечная активность в виде холодовой дрожи. Третий путь - это усиление произвольной двигательной активности. Большое значение имеет соответствующее изменение поведения, которое обеспечивается корой. Из гуморальных факторов наибольшее значение имеют адреналин, норадреналин и тиреоидные гормоны. Первые два гормона вызывают кратковременное повышение теплопродукции за счет усиления липолиза и глико-лиза. При адаптации к длительному охлаждению усиливается синтез тироксина и трийодтиронина. Они значительно повышают энергетический обмен и теплопро­дукцию посредством увеличения количества ферментов в митохондриях.

Понижение температуры тела называется гипотермией, повышение гипертермией. Гипотермия возникает при переохлаждении. Гипотермия организма или мозга используется в клинике для продления жизнеспособности организма или мозга человека при проведении реанимационных мероприятий. Гипертермия возникает при тепловом ударе, когда температура повышается до 40-41°. Одним из нарушений механизмов терморегуляции является лихорадка. Она развивается в результате усиления теплообразования и снижения теплоотдачи. Теплоотдача падает из-за сужения периферических сосудов и уменьшения потоотделения. Теплообразование возрастает вследствие воздействия на центр терморегуляции гипоталамуса бактериального и лейкоцитарного пирогенов, являющихся липополисахаридами. Это воздействие сопровождается и лихорадочной дрожью. В период выздоровления нормальная температура восстанавливается за счет расширения сосудов кожи и проливного пота.

ФИЗИОЛОГИЯ ПРОЦЕССОВ ВЫДЕЛЕНИЯ

Функции почек. Механизмы мочеобразования В паренхиме почек выделяется корковое и мозговое вещество. Структурной единицей почки является нефрон. В каждой почке около миллиона нефронов. Каждый нефрон состоит из сосудистого клубочка, находящегося в' капсуле Шумлянского-Боумена, и почечного канальца. К капиллярам клубочка подходит приносящая артериола, а от него отходит выносящая. Диаметр приносящей больше, чем выносящей. Клубочки расположенные в корковом слое относятся к корковым, а в глубине почек - юкстамедуллярными. От капсулы Шумлянского-Боумена отходит проксимальный извитой канадец, переходящий в петлю Генле. В свою очередь она переходит в дистальный извитой мочевой канадец, который открывается в собирательную трубочку. Образование мочи происходит с помощью нескольких механизмов.

1. Клубочковая ультрафильтрация. Находящийся в полости капсулы капиллярный клубочек состоит из 20-40 капиллярных петель. Фильтрация происходит, через слой эндотелия капилляра, базальную мембрану и внутренний слой эпителия капсулы. Главная роль принадлежит базальной мембране. Она представляет собой сеть, образованную тонкими коллагеновыми волокнами, которые играют роль молекулярного сита. Ультрафильтрация осуществляется благодаря высокому давлению крови в капиллярах клубочка - 70 - 80 мм.рт.ст. Его большая величина обусловлена разностью диаметра приносящей и выносящей артериол. В полость капсулы фильтруется плазма крови со всеми растворенными в ней низкомолекулярными веществами, в том числе низкомолекулярными белками. В физиологических условиях не фильтруются крупные белки и другие большие коллоидные частицы плазмы. Остающиеся в плазме белки создают онкотическое давление 25-30 мм.рт.ст., которое удерживает часть воды от фильтрации в полость капсулы. Кроме того, ему препятствует гидростатическое давление фильтрата, находящегося в капсуле величиной 10-20 мм.рт.ст. Поэтому скорость фильтрации определяется эффективным фильтрационным давлением. В норме оно составляет: Рэфф.=Рдк. -(Роем.- Ргидр.)= 70 - (25 + 10) = 35 мм.рт.ст. Скорость клубочковой фильтрации равна 110-120 мл/мин. Поэтому в сутки образуется 180 л фильтрата или первичной мочи. 2. Канальцевая реабсорбция. Вся образующаяся первичная моча поступает в канальцы и петлю Генле, где подвергается реабсорбции 178 л воды и растворенных в ней веществ. Вместе с водой в кровь возвращаются не все они. По способности к реабсорбции все вещества первичной мочи делятся на три группы:

1. Пороговые. В норме они реабсорбируются полностью. Это глюкоза, аминокислоты.

2. Низкопороговые. Реабсорбируются частично. Например, мочевина.

3. Непороговые. Они не реабсорбируются. Креатинин, сульфаты. Последние 2 группы создают осмотическое давление и обеспечивают канальцевый диурез, т.е. сохранение определенного количества мочи в канальцах, Реабсорбция глюкозы и аминокислот происходит в проксимальном извитом канальце и осуществляется с помощью транспортной системы сопряженной с натри­ем. Они транспортируются против концентрационного градиента. При сахарном диабете содержание глюкозы в крови становится выше порога выведения и глюкоза появляется в моче. При почечном диабете нарушается система транспорта глюкозы в эпителии канальцев и она выделяется с мочой, несмотря на нормальное содержание в крови. Реабсорбция других пороговых и непороговых веществ происходит путем диффузии. Облигатная реабсорбция основных ионов и воды происходит в проксимальном канальце, петле Генле. Факультативная в дистальном канальце. Они образуют поворотно-противоточную систему, так как в них происходит взаимный обмен ионов. В проксимальном канальце и нисходящем колене петли Генле происходит активный транспорт большого количества ионов натрия. Он осуществляется натрий-калиевой АТФазой. За натрием в межклеточное пространство происходит пассивная реабсорбция большого количества воды. В свою очередь эта вода способствует дополнительной пассивной реабсорбции натрия в кровь. Одновременно с ними реабсорбируются и гидрокарбонат анионы. В нисходящем колене петли и дистальном канальце реабсорбируется относительно небольшое количество натрия, а вслед за ним и вода. В этом отделе нефрона ионы натрия реабсорбируются с помощью сопряженного натрий-протонного и натрий-калиевого обмена. Ионы хлора переносятся здесь из мочи в тканевую жидкость с помощью активного хлорного транспорта. Низкомолекулярные белки реабсорбируются в проксимальном извитом канальце.

3. Канальцевая секреция и экскреция. Они происходят в проксимальном участке канальцев. Это транспорт в мочу из .крови и клеток эпителия канальцев веществ, которые не могут фильтроваться. Активная секреция осуществляется -тремя транспортными системами. Первая транспортирует органические кислоты, например парааминогиппуровую. Вторая органические основания. Третья этилендиаминтетраацетат (ЭДТА). Экскреция слабых кислот и оснований происходит с помощью не ионной диффузии. Это их перенос в недиссоциированном состоянии. Для осуществления экскреции слабых кислот необходимо, чтобы реакция канальцевой мочи была щелочной, а для выведения щелочей кислой. В этих условиях они находятся в недиссоциированном состоянии и скорость их выделения возрастает. Таким путем таюке секретируются протоны и катионы аммония. Суточный диурез составляет 1,5-2 л. Конечная моча имеет слабокислую реакцию с рН=5,0 - 7,0. Удельный вес не менее 1,018. Белка не более 0,033 г/л. Сахар, кетоновые тела, уробилин, билирубин отсутствуют. Эритроциты, лейкоциты, эпителий единичные клетки в поле зрения. Цилиндрический эпителий 1. Бактерий не более 50.000 в 1 мл. Регуляция мочеобразования.

Почки имеют высокую способность к саморегуляции. Чем ниже осмотическое давление крови, тем выраженное процессы фильтрации и слабее реабсорбция и наоборот. Нервная регуляция осуществляется посредством симпатических нервов, иннервирующих почечные артериолы. При их возбуждении суживаются выносящие артериолы, кровяное давление в капиллярах клубочков, а как следствие эффективное фильтрационное давление, растут, клубочковая фильтрация ускоряется. Таюке симпатические нервы усиливают реабсорбцию глюкозы, натрия и воды. Гуморальная регуляция осуществляется группой факторов.

1. Антидиуретический гормон (АДГ). Он начинает выделяться из задней доли гипофиза при повышении осмотического давления крови и возбуждения осморецепторных нейронов гипоталамуса. АДГ взаимодействует с рецепторами эпителия собирательных трубочек, которые повышают содержание циклического аденозинмо-нофосфата в них цАМФ активирует протеинкиназы, которые увеличивают проницаемость эпителия дистальных канальцев и собирательных трубочек для воды. В результате реабсорбция воды возрастает и она сохраняется в сосудистом русле.

2. Альдостерон. Стимулирует активность натрий-калиевой АТФазы поэтому увеличивает реабсорбцию натрия, но одновременно выведения калия и протонов в канальцах. В результате возрастает содержание калия и протонов в моче. При недостатке адьдостерона организм теряет натрий и воду.

3. Натрийуретический гормон или атриопептид. Образуется в основном в левом предсердии при его растяжении, а также в передней доле гипофиза и хромаффинных клетках надпочечников. Он усиливает фильтрацию, снижает реабсорбцию натрия. В результате возрастают выведение натрия и хлора почками, повышает суточный диурез.

4. Паратгормон и кальцитонин. Паратгормон усиливает реабсорбциюкальция, магния и снижает обратное всасывание фосфата. Кальцитонин уменьшает реабсорбцию этих ионов.

5. Ренин-ангиотензин-альдостероновая система. Ренин это протеаза, которая вырабатывается юкстагломерулярными клетками артериол почек. Под влиянием ренина от белка плазмы крови а2-глобулина-ангиотензина отщепляется ангиотензин I. Затем ангиотензин I превращается ренином в ангиотензин II. Это самое сильное сосудосуживающее вещество. Образование и выделение ренина почками вызывают следующие факторы:

а) Понижение артериального давления.

б) Снижение объема циркулирующей крови.

в) при возбуждении симпатических нервов, иннервирующих сосуды почек. Под влиянием ренина суживаются артериолы почек и уменьшается проницаемость стенки капилляров клубочка. В результате скорость фильтрации снижается. Одновременно ангиотензин II стимулирует выделение альдостерона надпочечниками. Альдостерон усиливает канальцевую реабсорбцию натрия и реабсорбцию воды. Происходит задержка воды и натрия в организме. Действие ангиотензина сопровождается усилением синтеза антидиуретического гормона гипофиза. Увеличение воды и хлорида натрия в сосудистом русле, при прежнем содержании белков плазмы, приводит к выходу воды в ткани. Развиваются почечные отеки. Это происходит на фоне повышенного артериального давления.

6. Калликреин-кининовая система. Является антагонистом ренин-ангиотензиновой. При снижении почечного кровотока в эпителии дистальных канальцев начинает вырабатываться фермент калликреин. Он переводит неактивные белки плазмы кининогены в активные кинины. В частности брадикинин. Кинины расширяют почечные сосуды, увеличивают скорость клубочковой ультрафильтрации и уменьшают интенсивность процессов, реабсорбции. Диурез возрастает.

7. Простагландины. Они синтезируются в мозговом веществе почек простаглан-динсинтетазами и стимулируют выведение натрия и воды. Нарушения экскреторной функции почек возникают при острой или хронической почечной недостаточности. В крови накапливаются азотсодержащие продукты обмена - мочевая кислота, мочевина, креатинин. Повышается содержания в ней

калия и снижается натрия. Возникает ацидоз. Это происходит на фоне повышения артериального давления, отеков и снижения суточного диуреза. Конечным итогом почечной недостаточности является уремия. Одним из ее проявлений является прекращение мочеобразования анурия. Невыделительнные функции почек:

1.Регуляция постоянства ионного состава и объема межклеточной жидкости организма. Базисным механизмом регуляции объема крови и межклеточной жидкости является изменение содержания натрия. При увеличении его количества в крови увеличивается прием воды и происходит ее задержка в организме. Т.е. наблюдается положительный натриевый и водный баланс. В этом случае изотоничность жидких сред организма сохраняется. При низком содержании хлорида натрия в рационе выведение натрия из организма преобладает, т.е. имеет место отрицательный натриевый баланс. Но благодаря почкам устанавливается и отрицательный водный баланс и/ выведение воды начинает превышать ее потребление. В этих случаях через 2-3 недели устанавливается новый натрио-водный баланс. Но выведение натрия и воды почками будет или больше или меньше исходного. При увеличении объема циркулирующей крови (ОЦК) или гиперволемии повышается артериальное и эффективное фильтрационное давление. Одновременно начинает в предсердиях начинает выделяться натрийуретический гормон. В результате выведение натрия и воды почками возрастает. При снижении объема циркулирующей крови или гипо-волемии артериальное давление падает, уменьшается эффективное фильтрационное давление и включается ряд дополнительных механизмов, обеспечивающих сохранение натрия и воды в организме. В сосудах печени, почек, сердца и каротидных синусах имеются периферические осморецепторы, а в гипоталамусе осморецепторные нейроны. Они реагируют на изменение осмотического давления крови. Импульсы от них идут в центр осморегуляции, находящийся в области супраоптического и паравентрикулярного ядер. Активируется симпатическая нервная систе­ма. Сосуды, в том числе и почек, суживаются. Одновременно начинается образование и выделение гипофизом антидиуретического гормона. Выделяющиеся надпочечниками адреналин и норадреналин также суживают приносящие артериолы. В результате фильтрация в почках уменьшается, а реабсорбция усиливается. Одновременно активируется ренин-ангиотензиновая система. В этот же период развивается чувство жажды. Соотношение содержания ионов натрия и калия регулируется минералокортикоидами, кальция и фосфора партгормоном и кальцитонином.

2. Участие в регуляции системного артериального давления. Они осуществляют эту функцию посредством поддержания постоянства объема циркулирующей крови, а также ренин-ангиотензиновой и калликреин-кининовой систем.

3. Поддержание кислотно-щелочного равновесия. При сдвиге реакции крови в кислую сторону в канальцах выводятся анионы кислот и протоны, но одновременно реабсорбируются ионы натрия и гидрокарбонат анионы. При алкалозе выводятся катионы щелочей и гидрокарбонат анионы.

1. Регуляция кроветворения. В них вырабатываются эритропоэтин. Это кислый гликопротеин, состоящий из белка и гетеросахарида. Выработку эритропоэтина стимулирует низкое напряжение кислорода в крови.

2. Мочевыведение

Моча постоянно вырабатывается в почках и по собирательным трубочкам поступает в лоханки, а затем мочеточникам в мочевой пузырь. Скорость наполнения пузыря около 50 мл/час. В это время, называемое периодом наполнения, мочесипус-кание или затруднено или невозможно. Когда в пузыре накапливается 200-300 мл мочи возникает рефлекс мочеиспускания. В стенке пузыря имеются рецепторы растяжения. Они возбуждаются и импульсы от них по афферентным волокнам тазовых парасимпатических нервов поступают в центр мочеиспускания. Он расположен в 2-4 крестцовых сегментах спинного мозга. От импульсы поступают в таламус, а затем кору. Возникают позывы на мочеиспускание, и начинается период опорожнения пузыря. От центра мочеиспускания, по эфферентным парасимпатическим тазовым нервам, начинают поступать импульсы к гладким мышцам стенки пузыря. Они сокращаются и давление в пузыре растет. В основании пузыря эти мышцы образуют внутренний сфинктер. Благодаря особому направлению гладкомышечных волокон в нем, их сокращение приводит к пассивному раскрытию сфинктера. Одновременно открывается наружный мочиспучкательный сфинктер, образованный поперечнополосатыми мышцами промежности. Они иннервируются ветвями срамного нерва. Пузырь опорожняется. С помощью коры регулируется начало и течение процесса мочеиспускания. В то же время может наблюдаться

психогенное недержание мочи. При накоплении в пузыре более 500 мл мочи может возникать защитная реакция непроизвольное мочеиспускание. Нарушения, циститы, задержка мочи.