Доклад: Закономерность распределения простых чисел в ряду натуральных чисел
Название: Закономерность распределения простых чисел в ряду натуральных чисел Раздел: Рефераты по математике Тип: доклад | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
IX математический симпозиум. Закономерность распределения простых чисел в ряду натуральных чисел. г. Волжский. 05-11 октября 2008 года. Белотелов В.А. Нижегородская обл. г. Заволжье vbelotelov@mail. ru Простые числа? – Это просто!? Узнав о важной роли простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании и о том, что нужна закономерность распределения ПЧ в ряду натуральных чисел, не являясь математиком, всё же рискнул заняться решением этой задачи. Результат ниже. Для начала выписал ряд ПЧ. Конечно же, это было сделано с целью заметить, хоть какую бы, закономерность. С этой же целью были вычислены разности между соседними числами ряда ПЧ. Было замечено, что иногда появлялась последовательность разностей 6-4-2-4-2-4-6-2. Там, где эта последовательность нарушалась, были введены составныё числа (СЧ). Результат представлен в таблице 1, СЧ в которой подчёркнуты. Числа 2, 3, 5, являясь ПЧ, из рассмотрения всё же были убраны. Это первое исключение из правил. Вторая вольность заключалась введением в рассмотрение числа 1, зная, что единица не является простым числом. Целью же было найти закономерность среди ПЧ + СЧ, а потом уже найти закономерность среди ПЧ. Стратегия поиска закономерности ПЧ заключалась в следующей логической формуле: (закономерность ПЧ+СЧ) – (закономерность СЧ) = закономерность ПЧ. Из ПЧ + СЧ, представленных в таблице 1, была составлена система из восьми арифметических прогрессий. Результат представлен в таблице 2. Разности всех восьми прогрессий равны 30 и их первые члены равны соответственно 1, 7, 11, 13, 17, 19, 23, 29, а сами ряды обозначены через R1, R7,R11, R13, R17, R19, R23, R29. СЧ, как и в таблице 1, подчёркнуты и сверху расписаны в виде произведений двух чисел. Можно сформулировать правило, по которому в любой из восьми арифметических прогрессий распределены СЧ. Если в арифметической прогрессии, какой – либо член an можно представить в виде двух сомножителей fxp, то последующие члены этой прогрессии an+mf являются произведением fx(p+md), а члены an+kp произведением px(f+kd), где m и k любые натуральные числа, а в – разность этой прогрессии. Данное правило не нуждается в доказательстве, т. к. фактически следует из определения арифметической прогрессии. Но для обеспечения закономерности ПЧ имеет большое значение. Во - первых, оно запрещает поиск рядов ПЧ, подчиняющихся одной арифметической прогрессии, т. к. любое простое число an можно представить в виде anх1, и тогда в любом ряде через число членов an, появляется составное число anх(1+d). Во – вторых, в любой арифметической прогрессии появление дополнительных составных чисел возможно только в сочетании с разностью именно этой прогрессии. Это правило можно сформулировать для любого числа сомножителей, но в данном случае интерес представляет число сомножителей равное двум. В качестве примера рассмотрим в ряде R1 четвёртый член равный 91=7х13. Ближайшим членом в ряде R1 кратным семи является число 301, отстоящее от числа 91 на семь номеров, соответственно, число 301 принадлежит ряду СЧ. Число 301 является произведением 7х43 (301=7х43), и с номера этого числа равного 11, каждое сорок третье число, тоже делится на 43 и, соответственно, принадлежит к ряду СЧ. Дальше это можно не описывать, т. к. это хорошо видно в таблице 2. Расписав таблицу 2 в виде математических символов, удалось получить систему из восьми формул, расписанных в виде разности сумм, см. таблицу 3. Во всех восьми формулах системы, члены с рядами двойных сумм служат фильтрами, удаляющими СЧ из ряда ПЧ+СЧ, и задают работу фильтров в виде матриц. В таблице 4 изображено распределение номеров СЧ в ряде R1, определяемых вторым членом формулы. Это матрица, в которой и по столбцам и по строкам арифметические прогрессии. В формулах индексы и обозначают столбцы и строки подобных матриц, сами же и дополнительными индексами не отягощаю. Без и описать работу матриц не смог, а формальная фраза, что в выражениипод суммой произведений подразумеваются всевозможные их комбинации в зависимости от значений a1 и с1, будет неверна. Ибо все члены с номерами при >1 и >1 из формулы выпадают. Система формул арифметических прогрессий, позволяющая вычислять ПЧ, получилась достаточно громоздкой, но закономерность обозначена. Данная статья была подготовлена для публикации в научном журнале с математическим уклоном. Пока шёл поиск данного журнала, путём несложных умозаключений, была составлена система рядов арифметических прогрессий с разностью 10. Результат в таблице 5 и 6. Всё было расписано по образцу и подобию предыдущего материала. В таблице 7 изображена матрица для номеров второго члена формулы 1 таблицы 6. Не начав переписывать статью заново, в связи с открытием новой системы уравнений, опять же путём размышлений, были расписаны арифметические прогрессии с разностью 2 и 1, т.е. при разности единица ПЧ были напрямую увязаны с натуральным рядом. Результат в таблице 8 и 9. Всё расписано, как и в случаях с системами уравнений арифметических прогрессий разностей 30 и 10. И после этого наступил момент истины. Оказалось, что подобных уравнений можно составить бесконечное множество. Навскидку – это арифметические прогрессии с разностью 1, 2, 4, 6, 10, 12, 18, 20, 30, 36, 60, и т.д. Даже в перечисленном до разности 60 указаны не все. Обобщающий вывод: ПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающий ряды ПЧ+СЧ.
3х3
2х2 1, 2, 3, 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25 , 26 , 27 , 28 , 29, 30 , 31, 32 , 33 , 34 , 35 , 36 , 37, 38 , 39 , 40 , 41, 42 , 43, 44 ,45 , 46 , 47, 48 , 49 , 50 , 51 , 52 , 53, 54 , 55 , 56 . 57 , 58 , 59, 60 , 61 …
5х5 7х7 5х11 5х17 7х13 5х23 11х11 7х19 5х29 1, 7, 13, 19, 25 , 31, 37, 43, 49 , 55 , 61, 67, 73, 79, 85 , 91 , 97, 103, 109, 115 , 121 , 127, 133 , 139, 145 , 5х7 5х13 7х11 5х19 7х17 5х25 5, 11, 17, 23, 29, 35 , 41, 47, 53, 59, 65 , 71 , 77 , 83, 89, 95 , 101, 107, 113, 119 , 125 , 131, 137, 143. 149 …
Закономерность распределения простых чисел (дополнение). Белотелов В.А. Нижегородская обл. г. Заволжье vbelotelov@mail. ru Там где даны в качестве примера разности арифметических прогрессий и указан их ряд 1, 2, 4, 6, 10, 12, 18, 20, 30, 36, 60. На самом деле пропусков в ряду быть не должно. Ряд разностей арифметических прогрессий имеет вид – 1, 2, 3, 4, 5, 6…. ® ¥. Я написал предыдущий ряд разностей по принципу личной симпатии. Подстраховался от критики, ежели бы у кого-то не получилось составить систему уравнений, например, с разностью в = 7, ибо для нетренированных рук могут возникнуть трудности. И ещё. Формулы членов матриц составных чисел (СЧ), которые описываются в системах уравнений двойными суммами. Для этого требуется всего лишь в значения переменных двойных сумм вставить их аналитические выражения через переменные и - столбцы и строки матриц. Тогда формула любого члена матриц СЧ таблицы 4, примет вид (30I - 17) (30j - 23). Аналогично для таблицы 7 - (10I - 3) (10 j - 7). Для таблицы 8, ряда нечётных чисел - (2I + 1) (2 j + 1). Для таблицы 9, ряда натуральных чисел - (I + 1) ( j + 1). Заостряю внимание на том факте, что это уже не номера членов СЧ в рядах простых чисел ПЧ + СЧ, а численные значения этих номеров. И подобных уравнений СЧ можно составить по числу систем арифметических прогрессий, и даже значительно больше, т.е. бесконечное множество. Всё же для наглядности распишу систему уравнений таблицы 3 предыдущей работы.
и - столбцы и строки матриц, индексами не снабжаю. И уж больно симпатичная система из 2-х уравнений с разностью арифметических прогрессий d=6.
Напишу только формулы составных чисел 1 – для верхнего ряда (6I - 1) (6 j - 1), (6k + 1) (6e +1). 2 – для нижнего ряда (6I + 1) (6 j - 1). А написал с единственной целью сравнить формулы разных систем простых чисел. В системе c в = 30 число 91 – это (30 - 17) (30 - 23), при = 1, = 1. В системе c в = 10 это же число – (10 - 3) (10 - 7), при = 2, = 1. В системе c в = 6 ……………… – (6+ 1) (6+ 1), при = 1, = 2. В системе c в = 4 ……………… – (4 - 1) (4+ 1), при = 2, = 3. В системе c в = 2 ……………… – (2+ 1) (2+ 1), при = 3, = 6. В системе c в = 1 ……………… – (+ 1) (+1), при = 6, = 12.
|