Контрольная работа: Расчёт и оценка надёжности электрических сетей

Название: Расчёт и оценка надёжности электрических сетей
Раздел: Рефераты по физике
Тип: контрольная работа

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«Амурский государственный университет»

(ГОУВПО «АмГУ»)

Кафедра энергетики

РАСЧЁТНО-ГРАФИЧЕСКАЯ РАБОТА

на тему: "Расчёт и оценка надёжности электрических сетей"

по дисциплине "Надежность электроэнергетических систем и сетей"

Благовещенск 2006


Задание 1

Рассчитать надёжность схемы внутреннего электроснабжения насосной станции двумя методами.

Рисунок 1 – Исходная схема к расчёту надёжности


1) Определим расчётные случаи по надёжности, предварительно составив расчётную схему для рассматриваемой сети (рис. 2). Разъединители учитываем в модели выключателя.


В данной сети расчётными будут являться случаи: полное погашение подстанции и потеря трансформатора.

2) Определим показатели надёжности каждого элемента.

Таблица 1-Показатели надёжности элементов сети

Элементы

, 1/год

Тв , ч

, 1/год

Тр , ч

акз

ао.п.

Выключатели

0,009

20

0,14

8

0,005

0,003

Разъединители

0,01

7

0,166

3,7

-

-

Шины

0,03

7

0,166

5

-

-

Силовые трансформаторы

0,014

70

0,75

28

-

-

Трансформаторы

0,016

50

0,25

6

-

-

Кабельная линия

0,075

16

1

2

-

-

Насосы

1,2 МВт

0,1

90

0,25

164

-

-

4 МВт

0,2

140

0,25

384

-

-

Релейные защиты, отключающие выключатели расчётной схемы:

- для ВЛ-10: дистанционная ПЗ 2, т. к. не имеем данных для токовой трёхступенчатой защиты;

- для СТ: дифференциальная и газовая защиты;

- на схеме «мостик» со стороны 10 кВ введено АВР;

- шины 10 кВ защищены дифференциальной защитой шин.

Укажем показатели надёжности для релейных защит в таблице 2.

Таблица 2 – Показатели надёжности для выделенных защит

Релейная защита

q

Дистанционная ПЗ2

0,018

ДЗТ

0,0044

Газовая защита

0,00525

ДЗШ

0,0096

3) Составляем схему замещения согласно правилам:

1 Нерезервируемые элементы соединяются последовательно;

2 Резервируемые элементы соединяются параллельно.

Укажем варианты схемы в соответствии с расчётными случаями, найденными ранее:

Первый вариант – полное погашение подстанции.

Рисунок 3


Второй вариант – потеря трансформатора (частичное ограничение мощности).


Рисунок 4


4) Рассмотрим первый вариант.

Находим вероятности отказа для различных элементов:

Выключатели:

,

где акз – относительная частота отказа выключателя при отключении КЗ;

а – коэффициент, учитывающий наличие (а = 1), отсутствие АПВ (а = 0);

КАПВ – коэффициент успешного действия АПВ;

qi – вероятность отказа смежных элементов;

аоп – частота отказов при оперативном отключении;

Nоп число оперативных отключений: ;

Топ – время оперативных переключений. Принимаем его равным 1 часу.

Разъединители:

Шины:


Силовые трансформаторы:

Трансформаторы:

Кабельная линия:

Насосы:

Эквивалентирование схемы показано в приложении А.

Как видно из него, qэкв = 0,0087, pэкв = 0,91.

Вероятность отказа схемы с учетом средств автоматики рассмотрим для участка схемы, показанного на рисунке 5.


Рисунок 5


Вероятность отказа рассчитываем по формуле полной вероятности:

где - условная вероятность отказа системы, при отсутствии отка-

зов средств автоматики или qэкв ;

- условная вероятность при условии неуспешного автоматического отключения повреждённого элемента и отсутствии отказа во включении резервного,

= 0,5;

- условная вероятность при условии успешного автоматического отключения повреждённого элемента и отказа во включении резервного =0,5;

- условная вероятность при условии неуспешного автоматического отключения повреждённого элемента и отказа во включении резервного = 0,5;

– вероятность безотказной работы при автоматическом отключении поврежденного элемента;

– вероятность безотказной работы при автоматическом включении резервного элемента;

q(A1) – вероятность отказа работы при автоматическом отключении поврежденного элемента

;

q(A2) – вероятность отказа работы при автоматическом включении резервного элемента;

Получаем вероятность отказа схемы с учетом РЗиА:


Задание 2

Записать систему дифференциальных уравнений на основе графа перехода из состояния в состояние для трёх параллельно соединённых элементов и показать чему равны стационарные КГ , КП .

Рисунок 6


Решение :

Сэквивалентируем элементы во второй и третьей ветвях до одного элемента (рис. 7). На этом же рисунке покажем все возможные состояния, в которых могут находиться элементы схемы (р – работа, о – отказ).

Рисунок 7



Составим граф перехода со всеми возможными переходами из одного состояния в другое (рис. 8). Интенсивность восстановления μ на рисунке не показываем для того, чтобы его не загромождать. μ будут иметь обратные направления по отношению к параметру потока отказов ω, индекс у них будет тот же, что и у ω.

Рисунок 8 - Граф перехода


Система дифференциальных уравнений для полученного графа будет иметь вид:

Для стационарного состояния эта система имеет следующее решение:

Для стационарного состояния коэффициенты готовности КГ и простоя КП находятся по формулам:

Для нашего случая:

Из полученных выражений для вероятностей состояний системы определяются коэффициент готовности системы КГ.С и коэффициент вынужденного простоя КП.С .

КГ.С = P1 +P2 +P3 +P4 +P5 +P6 +P7

КП.С = P8

Задание 3

Определить кратность резервирования для схемы при условии, что есть резервные насосы 4 МВт и 1,2 МВт и определить при этом вероятность безотказной работы насосной станции.

Решение :

Из условия видим, общее число насосов равно n = 6, в работе находятся четыре, r = 4. Число резервных элементов – (n-r) = 2.

Кратность резервирования в этом случае определится по формуле:


Как видим из формулы, чем большая кратность резервирования, тем лучше, т. к. чем больший резерв имеется в системе, тем безопасней её работа, а значит и надёжность работы такой системы выше.

Вероятность безотказной работы системы с постоянным резервом при заданных условиях рассчитывается по формуле:

где - число сочетаний из n-элементов по r:.

Приняв из задания 1 qэкв = 0,0087, pэкв = 0,91, получим значение для вероятности безотказной работы насосной станции: