Реферат: Поляризация света при отражении

Название: Поляризация света при отражении
Раздел: Рефераты по физике
Тип: реферат

СОДЕРЖАНИЕ

ВВЕДЕНИЕ ........................................................................................................3

1. Поляризация света ……………………………………………………5

2. Поляризация света при отражении с учетом диэлектрической и

магнитной проницаемостей. Отражательная способность………...7

3. Отражательный прибор Нюрренберга и получение

поляризованного света ……………………………………………...16

ЗАКЛЮЧЕНИЕ …………………………………………….……………….18

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ …….……………….19

ПРИЛОЖЕНИЕ ……………………………………………………………..20


ВВЕДЕНИЕ

Актуальность заключается в том, что в данной работе рассматривается явление поляризации с учетом диэлектрической и магнитной проницаемостей. Традиционно в учебниках по оптике рассматривается в оптической области явление при значении . В связи с открытием новых материалов с возникает интерес к изучению явлений прохождения и отражения света на границе раздела сред с учетом .

Из указанной актуальности темы вытекает проблема , которую можно сформулировать следующим образом: необходимо изучение поляризации света при отражении с учетом диэлектрической и магнитной проницаемостей для более подробного усвоения темы исследования.

Объект исследования: явление на границе раздела сред, поляризация света.

Предмет исследования: поляризация света при отражении с учетом диэлектрической и магнитной проницаемостей.

Цель исследования : расчет компонент электрического и магнитного поля в отраженном свете.

Задачи:

1. Ознакомиться с литературой по проблеме исследования: специальной, технической.

2. Изучить явление поляризацию света при отражении в зависимости от диэлектрической и магнитной проницаемости.

3. Изучить влияние диэлектрической и магнитной сред на поляризацию света.

Методы исследования, используемые при выполнении данной курсовой работы: теоретический анализ и обобщение научно-технической литературы по теме исследования.

Методологической и теоретической базой являются научно-методические труды и теоретические работы по физике таких ученых, как Д.В. Сивухин, М. Борн, Э. Вольф, И.В. Савельев и Г.С. Ландсберг.

Курсовая работа состоит из введения, трех параграфов по исследуемой теме, заключения, списка использованной литературы и приложения.


1. Поляризация света

Обратимся сначала к изучению явления поляризации света.

Для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов, характеризующих электромагнитную волну. Обычно все рассуждения ведутся относительно светового вектора-вектора напряженности электрического поля (при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис. 1, а; луч перпендикулярен плоскости рисунка) .

Рис. 1

В данном случае равномерное распределение векторов объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов - одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора называется естественным. Неполяризованный (естественный) свет испускают большинство типовых источников, например лампы накаливания.

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное) направление колебаний вектора (рис. 1, б) , то мы имеем дело с частично поляризованным светом. Свет, в котором вектор колеблется только в одном направлении, перпендикулярном лучу (рис. 1,в) , называется плоско поляризованным (линейно поляризованным).

Плоскость, проходящая через направление колебаний светового вектора плоско поляризованной волны и направление распространения этой волны, называется плоскостью поляризации. Плоско поляризованный свет является предельным случаем эллиптически поляризованного света-света, для которого вектор изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу (рис. 2,а).

Рис. 2

Если эллипс поляризации вырождается в прямую (при разности фаз , равной нулю или ), то имеем дело с рассмотренным выше плоско поляризованным светом, если в окружность (при и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным светом (рис. 2,б и рис.2,в соответственно).


2. Поляризация света при отражении с учетом диэлектрической и магнитной проницаемости. Отражательная способность

Изучив, что представляет из себя поляризация света, рассмотрим теперь, как энергия поля падающей волны распределяется между двумя вторичными полями.

Интенсивность света равна

(1)

Поэтому количество энергии в первичной волне, которое попадает на единицу площади поверхности раздела за 1 сек, будет равно

(2)

Для отраженной волны энергия, покидающая единицу площади поверхности раздела за 1 сек, определяется подобным же выра­жением, а именно:

(3)

Отношения

(4)

называют соответственно отражательной и пропускателъной способно­стью.

Легко проверить, что в соответствии с законом сохранения энергии

(5)

Рассмотрим отражательную способность.

Отражательная способность зависит от поляризации падающей волны. Ее можно выразить через отражатель­ную способность для света, поляризованного парал­лельно и перпендикулярно плоскости падения.

Пусть вектор Е падающей волны образует с плоскостью падения угол . Тогда

(6)

Пусть, далее,

(7)

Тогда

(8)

где

(9)

Можно показать, что

(10)

где – пропускательная способность для света, поляризованного

парал­лельно;

– пропускательная способность для света, поляризованного

перпендикулярно;

Для нормального падения различие между параллельной и перпенди­кулярной компонентами исчезает, и из

и (4) находим

(11)

В приложении приведены таблица значений и график зависимости для нормального падения.

Отсюда следует, что

(12)

Аналогичные результаты получаются также для предельных значений и Это легко увидеть из (9), если учесть, что, согласно закону преломления, при . Следовательно, чем меньше раз­личие в оптической плотности обеих сред, тем меньше энергии уносится отраженной волной.

Знаменатели в (9) конечны, за исключением случая , где – угол преломления. Тогда и, следовательно, . В этом случае (рис. 3) отраженный и преломленный лучи перпендикулярны друг другу, а из закона преломления следует (так как теперь ), что

(13)

Рис. 3. К определению угла полной поляризации (угол Брюстера).

Угол , определяемый этим выраже­нием, называется углом полной поляри­ зации или углом Брюстера. Его важность была впервые отмечена в 1815 г. Давидом Брюстером (1781—1868 гг.). Если свет падает под этим углом, электрический вектор отраженной волны не имеет составляющей в плос­кости падения. Мы обычно говорим в этом случае, что свет поляризован «в плоскости падения». Таким образом, согласно традиционной термино­логии, плоскостью поляризации называется плоскость, в которой лежат магнитный вектор и направление распространения.

Полученный выше результат, часто называемый законом Брюстера, можно пояснить следующим, более прямым рассуждением. Поле падающей волны вызывает колебания электронов в атомах второй среды, которые совершаются в направлении электрического вектора прошедшей волны. Колеблющиеся электроны вызывают отраженную волну, которая рас­пространяется обратно в первую среду. Но линейно колеблющийся элек­трон излучает в основном в направлении, перпендикулярном к направле­ нию колебаний, так что в последнем направлении поток энергии излучения отсутствует. Отсюда следует, что когда отра­женный и прошедший лучи перпендикулярны друг другу, то в отраженном луче энергия колебании в плоско­сти падения равна нулю.

На рис. 5 показана зависимость отражательной способности стекла с по­казателем преломления 1,52 от угла падения . Нулевое значение на кривой в соответствует углу поляри­зации .

В оптическом диапазоне показатели преломления по отношению к воздуху обычно порядка 1,5, но в радиодиапа­зоне они значительно больше; поэтому там соответственно велики и углы по­ляризации. Например, для оптических длин волн показатель преломления воды примерно равен 1,3 и угол поляризации . В радиодиапазоне значение показа­теля преломления достигает примерно 9, а угол поляризации близок к .

Рис. 4. Зависимость отражательной способности от угла падения

а) ; б) ; в)

Легко видеть, что, согласно (8), кривая б на рис. 4 соответствует . Как сейчас будет показано, та же кривая представляет также отражательную способность для есте­ственного света, т. е. для света, испускаемого нагретым телом. Направление колебаний в естественном свете быстро изменяется беспорядочным, случайным образом. Соответ­ствующую отражательную способность можно получить путем усред­нения по всем направлениям. Так как средние значения и равны 1/2, то для средних значений и получим

(14)

Однако для отраженного света обе компоненты в общем случае неодина­ковы. В самом деле, используя (14), найдем

(15)

При этом говорят, что отраженный свет частично поляризован, и степень его поляризации Р можно определить следующим образом:

(16)

Отражательная способность определится теперь выражением

(17)

и поэтому она по-прежнему будет описываться кривой б на рис. 4. Степень поляризации теперь можно выразить в виде

выражением в фигурных скобках определяют иногда поляризованную часть отраженного света.

Аналогичные результаты можно получить и для проходящего света.

Для естественного света мы также найдем

(18)

Возвращаясь к случаю линейно поляризованного падающего света, мы видим, что отраженный свет останется линейно поляри­зованным, так как его фаза либо не изменяется, либо изменяется на (аналогично для прошедшего света). Однако направления колебаний в отраженном свете изме­няется относительно направления колебаний в падающем свете в про­тивоположные стороны. Это можно показать следующим образом.

Рис. 5. К определению знаков азимутальных углов

( i – падающий свет, r – отраженный свет, t – прошедший свет)

Угол, который мы обозначили через , т. е. угол между плоскостью колебаний и плоскостью падения, называют азимутом колебания. Мы будем считать его положительным, когда плоскость колебаний поворачивается по часовой стрелке вокруг направления распространения (рис. 5) . Можно предполагать, что азимут изменяется в пределах от до . Для падающей и отраженной электрических волн имеем

(19)

Используя формулы Френеля

найдем

(20)

Так как , то

(21)

Знак равенства в соотношении (21) справедлив лишь при нормальном или скользящем падении ( или ). Это не­равенство показывает, что при отражении угол между плоскостью колебаний и плоскостью падения увеличивается. На рис. 6 показано поведение и для n= 1,52 и . Мы видим, что когда равно углу Брюстера , то . В самом деле, согласно (20) (т. е. ) для при любом значении угла .

Рис. 6. Зависимость азимутальных углов от угла падения.


3. Отражательный прибор Нюрренберга и получение поляризованного света

Из закона Брюстера следует, что свет можно поляризовать, просто заставив его отразиться под углом Брюстера. Один из старейших приборов, основанный на таком принципе, – это так называемый отражательный прибор Нюрренберга (Нюрренберг, 1787 – 1862 гг.). Его основные части — две стеклянные пластинки (рис. 7) , на кото­рые лучи надают под углом Брюстера. Первая пластинка играет роль поляризатора, т. е. приспособления, создающего линейно поляризованный свет из неполяризованного света. Вторая служит анализатором, т. е. устройством, которое детек­тирует линейно поляризованный свет. Однако этот прибор обладает рядом недостатков; из них наиболее существенны сравнительно малая доля света, отраженного под углом Брюстера, и довольно сложный путь лучей через прибор. Предпочтительнее использовать устройства, которые поля­ризуют падающий свет без изменения направления его распространения. Это можно сделать, например, с помощью стопы тонких плоскопараллель­ ных пластинок. Если на стопу падает пучок неполяризованпого света, то при каждом преломлении он частично поляризуется, и поэтому можно достичь достаточно высокой степени поляризации даже при небольшом числе пластинок.

Рис. 7. Схема, иллюстрирующая принцип отражательного прибора Нюрренберга. P – поляризующая стеклянная пластинка; S –отражающее зеркало; i – падающий пучок; p – поляризованный пучок; r – пучок, отраженный от А.

Раньше поляризованный свет получали, как правило, с помощью двойного лучепреломления в кристаллах исландского шпата или кварца. Теперь наиболее удобный метод заключается в использовании так называемых поляроидных пленок. Их действие основано на свойстве, известном как дихроизм. Вещества, обладающие этим свойством, имеют различные коэффициенты поглощения для света, поляризованного в различных направлениях. Например, можно изго­товить пленки из поливинилового спирта с внедренным иодом, которые пропускают почти 80% света, поляризованного в одной плоскости, и менее 1% света, поля­ризованного в перпендикулярном направлении.

ЗАКЛЮЧЕНИЕ

Таким образом, можно сказать, что изучение темы поляризации света при отражении является актуальной, так как в мире появляются материалы, магнитная проницаемость которых , а так же и диэлектрическая проницаемость . И в связи с этим появляется большой интерес к изучению явлений прохождения и отражения света на границе раздела сред с учетом и .

Изучив предмет исследования, то есть поляризацию света при отражении с учетом диэлектрической и магнитной проницаемостей, цель данной работы была выполнена, а именно, в связи с ознакомлением с литературой по проблеме исследования, изучением явление поляризации света при отражении и изучением влияния диэлектрической и магнитной сред на поляризацию света, был произведен расчет компонент электрического и магнитного поля в отраженном свете, который отражен в таблице и графике зависимости в приложении данной работы. Для получения результата применялись следующие методы исследования: теоретический анализ и обобщение научно-технической литературы научно-методических трудов и теоретических работ по физике таких ученых, как Д.В. Сивухин, М. Борн, Э. Вольф, И.В. Савельев и Г.С. Ландсберг.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Ландсберг Г.С. Оптика / Г.С. Ландсберг – М.: Наука, 1976 – 926 с.

2. Першинзон Е.М. Курс общей физики. Оптика и атомная физика / Е.М. Першинзон, Н.Н. Малов, В.С. Эткин – М.: Просвещение, 1981 – 638 с.

3. Борн М. Основы оптики / М. Борн, Э.Вольф – М.: Наука, 1973 – 721 с.

4. Сивухин Д.В. Общий курс физики: Том IV. Оптика / Д.В. Сивухин – М.: 1980 – 752 с.

5. Савельев И.В. Курс общей физики: Том 3. Оптика, атомная физика, физика атомного ядра и элементарных частиц / И.В. Савельев – М.: Наука, 1970 – 537 с.

6. Портис А. Берклеевский курс физики. Физическая лаборатория / А. Портис – М.: Наука, 1972 – 541 с.

ПРИЛОЖЕНИЕ

Таблица значений вычисленных по формуле отражательной способности для нормального падения света, при µ=1 (ε=1):

ε(µ)

ε(µ)

0

1

5,5

0,161708

0,5

0,029437

6

0,176571

1

0

6,5

0,190569

1,5

0,010205

7

0,203777

2

0,029437

7,5

0,216264

2,5

0,050692

8

0,228094

3

0,071797

8,5

0,239323

3,5

0,092013

9

0,25

4

0,111111

9,5

0,26017

4,5

0,129057

10

0,269874

5

0,145898

10,5

0,279146

График зависимости :