Курсовая работа: Проектирование усилителя низкой частоты

Название: Проектирование усилителя низкой частоты
Раздел: Рефераты по физике
Тип: курсовая работа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра автоматики и промышленной электроники

Курсовая работа

по курсу

“Аналоговая схемотехника”

“Проектирование усилителя низкой частоты”

Выполнил: студент

Гр. ЭС-91

Руководитель: Дудник А.Б.

Сумы - 2002

Содержание

Введение

1. Выбор принципиальной схемы

2. Расчет выходного каскада

3. Расчет предоконечного каскада

4. Расчет входного каскада

5. Уточнение параметров схемы и расчет обратной связи

6. Расчет элементов связи

Литература


Введение

Усилителями называют устройства, в которых сравнительно маломощный входной сигнал управляет передачей значительно большей мощности из источника питания в нагрузку. Наибольшее распространение получили усилители, построенные на полупроводниковых усилительных элементах (биполярных и полевых транзисторах); в последние годы усилители преимущественно используются в виде готовых неделимых компонентов - усилительных ИМС. Простейшая ячейка, позволяющая осуществить усиление, называется усилительным каскадом.

Электрические сигналы, подаваемые на вход усилителей, могут быть чрезвычайно разнообразны; это могут быть непрерывно изменяющиеся величины, в частности гармонические колебания, однополярные и двухполярные импульсы. Как правило, эти сигналы пропорциональны определенным физическим величинам. В установившихся режимах многие физические величины постоянны либо изменяются весьма медленно (напряжение и частота сети, частота вращения двигателя, напор воды на гидроэлектростанции). В переходных и особенно аварийных режимах те же величины могут изменяться в течение малых промежутков времени. Поэтому усилитель должен обладать способностью усиливать как переменные, так и постоянные или медленно изменяющиеся величины. Такие усилители являются наиболее универсальными и распространенными. По традиции их называют усилителями постоянного тока (УПТ), хотя такое название и не вполне точно: УПТ усиливают не только постоянную составляющую (приращение сигнала) и в подавляющем большинстве случаев они являются усилителями напряжения, а не тока. В УПТ нельзя связывать источник и приёмник сигнала через трансформаторы и конденсаторы, которые не пропускают постоянной составляющей сигнала. Это условие вызывает некоторые трудности при создании УПТ, но оно же обусловило ещё большее распространение УПТ с появлением микроэлектроники: УПТ не содержат элементов, выполнение которых в составе ИМС невозможно (трансформаторы и конденсаторы большой ёмкости).

Наряду с применением основного типа усилителей - УПТ - в ряде случаев оказывается целесообразным использование усилителей с ёмкостной связью. Применение ёмкостной связи между каскадами усилителей в настоящее вышло из употребления, так как конденсаторы с большой ёмкостью невыполнимы в виде элементов ИМС.

Достоинством усилителей с ёмкостной связью является отсутствие дрейфа нуля: конденсаторы не пропускают постоянной составляющей, в том числе напряжение дрейфа.

1. Выбор принципиальной схемы

Находим максимальную мощность Pвх сигнала на входе усилителя, которую можно получить при равенстве входного сопротивления Rвх усилителя и внутреннего выходного сопротивления Rген источника сигнала:

(1.1)

где eген - величина ЭДС источника сигнала;

Rген - внутреннее сопротивление источника сигнала.

Требуемый коэффициент усиления по мощности всего усилителя:

(1.2)

где a p = (1,1¸1,3) - коэффициент запаса по мощности;

- мощность, выделяемая в нагрузку.

Выразим коэффициент усиления в децибелах по формуле:

(1.3)

Определим ориентировочное число каскадов, считая, что каждый каскад может обеспечивать усиление мощности примерно на 20дб .


(1.4)

Составим структурную схему (рисунок 1.1):


Рисунок 1.1 - Структурная схема усилителя: ВхК - входной каскад, обеспечивающий главным образом согласование с источником сигнала; ПК - промежуточный каскад; ПОК - предоконечный каскад; ВК - выходной сигнал, работающий непосредственно на нагрузку

Составив структурную схему, можно рассчитать выходной и входной каскады.

2. Расчет выходного каскада

+ Eп

- Eп

Рисунок 2.1 - Бестрансформаторный выходной каскад

Выбор выходных транзисторов.

Амплитудное значение коллекторного напряжения транзистора VT3 (VT4) (см. рис.2.1):

(2.1)

где Uн - эффективное значение напряжения на нагрузке в В .

Амплитуда импульса коллекторного тока транзистора VT3 (VT4):


(2.2)

Мощность, выделяемая каскадом в нагрузке:

(2.3)

Необходимое напряжение источника питания:

(2.4)

где k1 = (1,01¸1,1) - коэффициент запаса по напряжению;

rнас = (0,1¸1) - внутреннее сопротивление транзистора в режиме насыщения.

Выберем напряжение источника питания равным 15В .

Ориентировочная мощность, рассеиваемая на коллекторе транзистора:

(2.5)

По следующим неравенствам выбираем транзисторы VT3 (VT4):

(2.6)

По справочнику [11] выбран транзистор KT817Б со следующими параметрами:

- максимально допустимая постоянная рассеиваемая мощность на коллекторе;

- максимально допустимое постоянное напряжение между коллектором и эммитером;

- максимально допустимый постоянный ток коллектора;

- коэффициент передачи тока базы минимальный;

- максимально допустимая температура перехода;

- тепловое сопротивление подложка-корпус;

- обратный ток коллектора.

Выходные и входные характеристики изображены на рисунках 3 и 4.

После предварительного выбора транзисторов VT3 и VT4 нужно проверить их мощностные показатели при наибольшей температуре окружающей среды по формуле:

(2.7)

где - номинально допустимая постоянная рассеиваемая мощность коллектора при максимальной температуре коллекторного перехода, Вт ;

где tв - верхнее значение диапазона рабочих температур, ° С.

Поскольку , то выбранные транзисторы подходят.

Выбор режима работы по постоянному току и построение линий нагрузки. Ток покоя коллектора I0 k3 транзисторов VT3 и VT4:

(2.8)

где Ik о max (50° C) =1500мкА берётся в справочнике [11].

I0 k3 < Ik доп - это значит, что транзисторы выбраны правильно.

На семействе выходных характеристик транзисторов VT3 (VT4) строятся нагрузочные прямые по переменному току с координатами (см. рис.2.2):

А (I0k3 ; E п ); В (I0k3 +Ikm3 ; E п -Ukm3 ); (2.9)

А (30мА ; 15В ); В (0.88А ; 1.74В );

Соответствующие значения токов переносятся на входные характеристики (рис.2.3): Uб m3 =0,54В - амплитудное значение напряжения на базо-эмиттерном переходе; U0б3 =0,6В - напряжение покоя базы; Uб3 max =1,14В - максимальное значение напряжения на базо-эмиттерном переходе; Iб m3 =57мА - амплитудное значение тока базы; I0б3 =1,78мА - ток покоя базы; Iб3 max =55.22мА - максимальное значение тока базы.

Входное сопротивление базо-эмиттерного перехода транзисторов VT3 (VT4):

(2.10)

Номинал резисторов R3 и R4 для мощных транзисторов:

(2.11)

Мощность, выделяемая на резисторах R3 и R4 :

(2.12)

Выбор предвыходных транзисторов и режимов работы их по постоянному току. Построение линии нагрузки

Ток покоя эмиттера транзисторов VT1 (VT2) (см. рис.1.1):

(2.13)

Амплитудное значение тока эмиттера транзисторов VT1 (VT2):

(2.14)

Принимается . По следующим неравенствам выбираются транзисторы VT1, VT2:

По справочнику [11] выбраны транзисторы KT814Б (p-n-p) и КТ815Б (n-p-n) со следующими параметрами:

Для построения линии нагрузки по переменному току транзисторов VT1 (VT2) выбираются следующие координаты точек A’ и A”:

, (2.15)

.

Переносим точки A’ и A" на входные характеристики транзисторов VT1 (VT2) (рис.2.4).

По графику (рис.2.4) определяются следующие параметры:

- амплитудное значение напряжения на базе;

- амплитудное значение тока базы;

- ток покоя базы транзистора;

- напряжение покоя базы.

Определение основных параметров выходного каскада

Выходное сопротивление базо-эмиттерного перехода транзистора VT1 (VT2):

(2.16)

Входное сопротивление верхнего плеча выходного каскада на VT1 и VT3:


(2.17)

Входное сопротивление нижнего плеча выходного каскада на VT2 и VT4:

(2.18)

Амплитудное значение входного напряжения:

- верхнего плеча (VT1,VT3):

(2.19)

- нижнего плеча (VT2,VT4):

(2.20)

Требуемое падение напряжения Uод на диодах VD1, VD2 при токе

(2.21)

равно:

(2.22)

По справочнику [4] выбираются диоды. Прямой ток (средний) должен быть больше 0,14мА , прямое напряжение должно быть больше 1,815В . Выбирается диод Д7Г со следующими параметрами:

- Средний прямой ток 8мА ;

-При токе 0,27мА на диоде происходит падение напряжения равное 0.7В , поэтому необходимо брать 3 диодов.

Сопротивление резисторов R1 и R2 делителя

(2.23)

Мощность, выделяемая на резисторах R1 и R2 :

(2.24)

Входное сопротивление верхнего плеча каскада с учетом R1 и R2 :

(2.25)

Входное сопротивление нижнего плеча каскада:

(2.26)

Коэффициент усиления по напряжению:

- верхнего плеча:

(2.27)

- нижнего плеча:

(2.28)

- среднее значение:

(2.29)

Коэффициент полезного действия всего каскада:

(2.30)

Мощность на выходе каскада:

(2.31)

Поправка к схеме



Рисунок 2.5 - Уточнённый бестрансформаторный выходной каскад

Выбирается транзистор VT0 КТ3102А со следующими параметрами:

Мощностные показатели при наибольшей температуре окружающей среды (см. формулу 2.7):


Поскольку , то выбранный транзистор подходит.

Определяются следующие токи:

Нахождение сопротивления Rэ и Cэ :

(2.32)

(2.33)

Мощность, выделяемая на резисторе Rэ :

(2.34)

Определение сопротивлений R’ и R”:


(2.35)

(2.36)

Мощность, выделяемая на резисторах R и R :

(2.37)

Уточнённое значение мощности рассеивания одним транзистором VT3 (или VT4):

(2.38)

Тепловое сопротивление корпус-среда:

(2.39)

Площадь радиатора:

(2.40)

где KT =0,0012¸0,014 Вт ×см2 ×град-1 - коэффициент теплоотдачи.


3. Расчет предоконечного каскада

Сквозной коэффициент усиления:

(3.1)

Рисунок 3.1 - Схема предоконечного каскада

Поскольку Kскв очень большой, то на входе нужны: предоконечный и входной - каскады с общим эммитером.

Выбирается транзистор VT КТ3102Е со следующими параметрами:


Принимается

Тогда

Допускается, что напряжение в точке В UB =24В . Тогда напряжение в точке А будет

.

Сопротивление резисторов R1 и R2 делителя:

(3.2)

Мощность, выделяемая на резисторах R1 и R2 :

(3.3)

Сопротивление R4 :

(3.4)

Мощность, выделяемая на резисторе R4 :

(3.5)

Сопротивление Rэ :

(3.6)

где UR э =UB /10=3В .

Мощность, выделяемая на резисторе Rэ :

(3.7)

(3.8)

Напряжение база-эмиттер:

(3.9)

Здесь

Из уравнения (3.6) определяется rб :

(3.10)

Входное сопротивление каскада:

(3.11)

Сопротивление Rk :

(3.12)

Мощность, выделяемая на резисторе Rк :

(3.13)

Выходное сопротивление каскада (учитывая, что rk >> Rk ):

(3.14)

Определение амплитудных токов на базе и коллекторе:

(3.15)

(3.16)

Тогда

(3.17)

(3.18)

Коэффициент усиления по напряжению предоконечного каскада:

(3.19)

4. Расчет входного каскада

Схема входного каскада представлена на рис.5.1.

Рисунок 5.1  Схема входного каскада

Выбирается транзистор VT КТ3102Г со следующими параметрами:

Принимается Тогда


Напряжение в точке А будет

.

Сопротивление резисторов R1 и R2 делителя:

(5.1)

Мощность, выделяемая на резисторах R1 и R2 :

(5.2)

Сопротивление Rэ :

(5.3)

Мощность, выделяемая на резисторе Rэ :

(5.4)

(5.5)

Напряжение база-эмиттер:


(5.6)

Здесь

Из уравнения (3.6) определяется rб :

(5.7)

Входное сопротивление каскада:

(5.8)

Сопротивление Rk :

(5.9)

Мощность, выделяемая на резисторе Rк :

(5.10)

Выходное сопротивление каскада (учитывая, что rk >> Rk ):

(5.11)

Определение амплитудных токов на базе и коллекторе:

(5.12)

(5.13)

Тогда

(5.14)

(5.15)

Коэффициент усиления по напряжению предоконечного каскада:

(5.16)

5. Уточнение параметров схемы и расчет обратной связи

Сквозной коэффициент усиления по напряжению получился равным

(6.1)

где - коэффициент усиления по напряжению предоконечного каскада;

- коэффициент усиления по напряжению промежуточного каскада;

- коэффициент усиления по напряжению входного каскада.

Сравнивая полученный сквозной коэффициент усиления по напряжению (6.1) с необходимым (3.1), можно сделать вывод, что в схему надо добавить ещё один промежуточный каскад. Этот каскад будет аналогичным рассчитанному ранее промежуточному каскаду в пункте 4 (иметь те же параметры). Коэффициент усиления по напряжению второго промежуточного каскада будет равен 10,76.

Теперь сквозной коэффициент усиления по напряжению будет

(6.2)

Для стабилизации режима покоя в каскад вводят обратную связь (ОС). Обратной связью называется передача информации (или энергии) с выхода устройства или системы на его вход.

Если на входе складываются сигналы разных знаков, то ОС является отрицательной (ООС). В этом случае на входе схемы действует разностный сигнал, который меньше входного. Выходной сигнал при этом уменьшается. Однако при применении ООС увеличивает стабильность выходной величины: ООС по напряжению стабилизирует напряжение, ООС по току стабилизирует ток и т.д.

В этом случае коэффициент усиления по напряжению усилителя принимает следующий вид:

(6.3)

где K - коэффициент усиления по напряжению (без обратной связи) участка схемы, охватывающего обратную связь. В данном случае он равен коэффициенту усиления по напряжению всего усилителя (без обратной связи):

(6.4)

Коэффициент j :

(6.5)

где R’ выбирается 10Ом , а RОС - порядка 10кОм.

Таким образом коэффициент усиления по напряжению усилителя, охватывающего ООС, уменьшается в (1+ jK) раз. Коэффициент усиления по напряжению усилителя необходимо уменьшить в

раз.

Можно записать:

Откуда j =6/K .

Тогда

(6.6)

В результате определяется требуемый коэффициент усиления по напряжению усилителя будет равен:

(6.7)

Сквозной коэффициент усиления по напряжению получился равным

(6.1)

где - коэффициент усиления по напряжению предоконечного каскада;

- коэффициент усиления по напряжению промежуточного каскада;

- коэффициент усиления по напряжению входного каскада.

Сравнивая полученный сквозной коэффициент усиления по напряжению (6.1) с необходимым (3.1), можно сделать вывод, что в схему надо добавить ещё один промежуточный каскад. Этот каскад будет аналогичным рассчитанному ранее промежуточному каскаду в пункте 4 (иметь те же параметры). Коэффициент усиления по напряжению второго промежуточного каскада будет равен 10,76.

Теперь сквозной коэффициент усиления по напряжению будет

(6.2)

Для стабилизации режима покоя в каскад вводят обратную связь (ОС). Обратной связью называется передача информации (или энергии) с выхода устройства или системы на его вход.

Если на входе складываются сигналы разных знаков, то ОС является отрицательной (ООС). В этом случае на входе схемы действует разностный сигнал, который меньше входного. Выходной сигнал при этом уменьшается. Однако при применении ООС увеличивает стабильность выходной величины: ООС по напряжению стабилизирует напряжение, ООС по току стабилизирует ток и т.д.

В этом случае коэффициент усиления по напряжению усилителя принимает следующий вид:

(6.3)

где K - коэффициент усиления по напряжению (без обратной связи) участка схемы, охватывающего обратную связь. В данном случае он равен коэффициенту усиления по напряжению всего усилителя (без обратной связи):

(6.4)

Коэффициент j :

(6.5)

где R’ выбирается 10Ом , а RОС - порядка 10кОм.

Таким образом коэффициент усиления по напряжению усилителя, охватывающего ООС, уменьшается в (1+ jK) раз. Коэффициент усиления по напряжению усилителя необходимо уменьшить в

раз.

Можно записать:

Откуда j =6/K .

Тогда

(6.6)

В результате определяется требуемый коэффициент усиления по напряжению усилителя будет равен:

(6.7)

6. Расчет элементов связи

Распределение фазовых сдвигов:


Для входного каскада:

(7.1)

Для предоконечного и промежуточных каскадов:

(7.2)

(7.3)

Для выходного каскада:

(7.4)

(7.5)

R1 , R2 , R5 , R6 , R9 , R10 , R13 , R14

ВС-1-0,125-6,2кОм-10%

R3 , R7 , R11 , R15

ВС-1-1-68Ом-10%

R4 , R8 , R12 , R16

ВС-1-0,5-30Ом-10%

R17

ВС-1-0,125-3,9МОм-10%

R18 , R19 ,

ВС-1-0,125-240кОм-10%

R20

ВС-1-0,125-13кОм-10%

R21 , R22

ВС-1-0,125-1кОм-10%

Rн

ВС-1-20-11Ом-10%

Rф

ВС-1-1-62Ом-10%

Rос

ВС-1-0,125-22кОм-10%

R

ВС-1-20-10Ом-10%

С1

К50-6-50В-2мкФ- (-20¸+80)%

С2 , С4 , С6 , С8

К50-6-10В-10мкФ- (-20¸+80)%

С3 , С5 , С7

К50-6-16В-5мкФ- (-20¸+80)%

С9

К50-9-3В-0,5мкФ- (-10¸+100)%

С10

К75-42-1600В-0,0033мкФ-10%

С11

К50-6-10В-50мкФ- (-20¸+80)%

Сф

К50-22-50В-1500мкФ- (-20¸+50)%

VT1-VT5

KT-3102A

VT6

КТ-814Б

VT7

KT-815Б

VT8,VT9

KT-817Б

VD1-VD6

Д2Ж

Литература

1. Аронов В.А., Баюков А.В. и др. Полуроводниковые приборы: Транзисторы. Справочник. - М.: Энергоиздат, 1982.

2. Гальперин Н.В. Практическая схемотехника в промышленной электронике. - М.: Радио и связь, 1987.

3. Гершунский Б.С. Справочник по расчету электронных схем. - М.: Наука, 1983.

4. Гитцевич А.Б., Зайцев А.А. и др. Полупроводниковые приборы. Диоды выпрямительные, стабилитроны, тиристоры: Справочник. - М.: КубК-а, 1996.

5. Горбачев Г.Н., Чаплыгин Е.Е. Промышленная электроника. - М.: Энергоатомиздат, 1988.

6. Гусев В.Г., Гусев Ю.М. Электроника. - М: Радио и связь, 1985.

7. Гутников В.С. Интегральная электроника в измерительных устройствах. - М.: Энергоатомиздат, 1988.

8. Доршков А.В., Полонский А.Д. Методические указания к курсовому проекту “Проектирование усилителя низкой частоты". - Сумы: СФТИ, 1993.

9. Дьяконов М.Н., Карабанов В.И. и др. Справочник по электрическим конденсаторам. - М.: Радио и связь, 1983.

10. Забродин Ю.С. Промышленная электроника. - М.: Энергоатом-издат, 1988., 1982.

11. Лавриненко В.Ю. Справочник по полупроводниковым приборам. - М.: Радио и связь, 1984.

12. Манаев Е.И. Основы радиоэлектроники. - М.: Энергоатомиздат, 1985.