Контрольная работа: Движение тел

Название: Движение тел
Раздел: Рефераты по физике
Тип: контрольная работа

БИЛЕТ № 3

1. Движение материальной точки в поле тяжести земли описывается уравнениями . Нарисовать траекторию движения тела .

РЕШЕНИЕ:

Выразим время через х

T(x)=x/10

Подставим во второе уравнение:

Y(x)=20-4.9*(x/10)2

X 10 20 30 40 0

Y 1.51 0.4 20


2. Диск радиуса вращается относительнооси, проходящей через центр масс, с угловой скоростью . К ободу диска прикладывают касательную тормозящую силу . Масса диска . Через какой промежуток времени диск остановится?

РЕШЕНИЕ:

Вычислим угловое ускорение В, создаваемое касательной тормозящей силой Fk. Для чего нам необходимо вычислить момент силы Fk:

М=Fk*R

И момент инерции диска:

I=0.5*m*R2

Тогда выведем ускорение (угловое) b:

M=I*b

Выразим время до остановки t2:

W2=b*t2+W0


3. Определить ускорение тел, связанных нерастяжимой, невесомой нитью, перекинутой через невесомый блок, , , , внешняя сила . (см.рисунок).

РЕШЕНИЕ:

Рассмотрим силы, действующие на каждое тело, беря за положительное направление – направление движения.

Натело 3:

Т2-Ft3 =m3 a

T2= m3 a+ m3 g= m3 (a+g)

На тело 2:

Ft 2 +T1-T2= m2 a

m2 g+T1-T2= m2 a

T1= m2 (a-g)+ m3 (a+g)

На тело 1:

Ft 1 +F-T1= m1 a

m3 a+F-T1= m1 a

m1 a+F- m2 a+ m2 g- m3 a- m3 g = m1 a

m1 a+ m2 a+ m3 a= m1 a+F+ m2 g+ m3 g


4.

Тело массой соскальзывает без трения с наклонной плоскости, имеющей высоту . Какую скорость будет иметь тело у подножия наклонной плоскости?

РЕШЕНИЕ:

Так как м0 =0, то на оси ОХ на тело действует лишь проекция силы FТ на ось ОХ.

ma =FT *sina

a=

Путь S пройденный телом до конца наклонной плоскости:

S=h/sina

Зная выражение пути равноускоренного движения:

Выразим V:

так как V0 =0


5. Полная энергия тела возросла на . На сколько при этом изменилась его масса?

РЕШЕНИЕ:

Согласно теории относительности полная энергия тела определяется выражением:

E=m*c2 (1)

Где m – релятивистская масса тела, с – скорость света в вакууме (с=3*108 м/c)

Из выражения (1) получаем:

(2)

При увеличении полной энергии тела на DЕ масса тела, согласно (2), возрастает на величину:

Проверим размерность:

Подставим численные значения и произведем вычисления:


6.

Одинаковые по величине заряды q1 , q2 и q3 находятся в трех вершинах квадрата. Как направлена сила, действующая на заряд q2 со стороны двух других зарядов? Ответ обосновать.

РЕШЕНИЕ:

Из закона Кулона следует, что разноименные заряды притягиваются. Следовательно FR 1,2 , действующая со стороны первого заряда на второй заряд, направлена по линии, соединяющей эти два заряда от второго к первому. Аналогично и сила FR 2,3 направлена от второго к третьему. Так как заряды q1=q3 и расстояния Sq1q2=Sq2q3,

то по закону Кулона следует, что FR 1,2 по модулю равна FR 2,3

Используя принцип суперпозиции сил проведем векторное сложение FR 1,2 и FR 2,3

F= FR 1,2 + FR 2,3

Таким образом, сила F будет направлена по диагонали квадрата, как показано на рисунке.


7. Незаряженное металлическое тело М, смотри рисунок, внесли в электрическое поле положительного заряда , а затем разделили на две части и . Каким зарядом обладают части тела и после их разделения?

РЕШЕНИЕ:

После внесения незаряженного металлического тела М в электрическое поле положительного заряда q, в зону I согласно закону Кулона начнут притягиваться свободные отрицательно заряженные частицы тела М (электроны), а в зону II – положительно заряженные частицы (условно «дырки»). Таким образом после разделения тела М в его I части скопится отрицательный заряд, равный по модулю положительному заряду, скопившемуся в части II.


8. Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным.

РЕШЕНИЕ:

Пусть поверхностная плотность заряда равна s. Очевидно что вектор Е может быть только перпендикулярным заряженной плоскости. Кроме того очевидно, что в симметричных относительно этой плоскости точках вектор Е одинаков по модулю и противоположен по направлению. Такая конфигурация поля подсказывает, что в качестве замкнутой поверхности следует выбрать прямой цилиндр, где предполагается что s больше нуля. Поток сквозь боковую поверхность этого цилиндра равен нулю, и поэтому полный поток через всю поверхность цилиндра будет равным 2*Е*DS, где DS – площадь каждого торца. Согласно теореме Гаусса

2*Е*DS=s*DS,

где s*DS – заряд заключенный внутри цилиндра.

Откуда

Е=s/2*Ео.

Точнее это выражение следует записать так:

Еn=s/2*Eo,

где Еn – проекция вектора Е на нормаль n к заряженной плоскости, причем вектор n направлен от этой плоскости.

Тот факт, что Е не зависит от расстояния до плоскости, означает, что соответствующее электрическое поле является однородным.


9. Из медной проволоки изготовлена четверть окружности радиусом 56 см. По проволоке равномерно распределен заряд с линейной плотностью 0,36 нКл/м. Найдите потенциал в центре окружности.

РЕШЕНИЕ:

Так как заряд линейно распределен по проволоке для нахождения потенциала в центре воспользуемся формулой:

Где s - линейная плотность заряда, dL – элемент проволоки.


10. В электрическом поле, созданном точечным зарядом Q, по силовой линии из точки расположенной на расстоянии r1 от заряда Q в точку, расположенную на расстоянии r2 , перемещается отрицательный заряд -q. Найдите приращение потенциальной энергии заряда -q на этом перемещении.

РЕШЕНИЕ:

По определению потенциал – это величина, численно равная потенциальной энергии единичного положительного заряда в данной точке поля. Следовательно потенциальная энергия заряда q2 :

Отсюда


11. Два одинаковых элемента с э.д.с. 1,2 В и внутренним сопротивлением 0,5 Ом соединены параллельно. Полученная батарея замкнута на внешнее сопротивление 3,5 Ом. Найдите силу тока во внешней цепи.

РЕШЕНИЕ:

Согласно закону Ома для всей цепи сила тока во внешней цепи:

Где E` - ЭДС батареи элементов,

r` - внутреннее сопротивление батареи, которое равно:

ЭДС батареи равна сумме ЭДС трех последовательно соединенных элементов:

E`=E+E+E=3E

Следовательно:


12 В электрическую цепь включены последовательно медная и стальная проволоки равной длины и диаметра. Найдите отношение количеств тепла выделяющегося в этих проволоках.

РЕШЕНИЕ:

Рассмотрим проволоку длиной L и диаметром d, изготовленную из материала с удельным сопротивление p. Сопротивление проволоки R можно найти по формуле

Где s= – площадь поперечного сечения проволоки. При силе тока I за время t в проводнике выделяется количество теплоты Q:

При этом, падение напряжения на проволоке равно:

Удельное сопротивление меди:

p1=0.017 мкОм*м=1.7*10-8 Ом*м

удельное сопротивление стали:

p2=10-7 Ом*м

так как проволоки включены последовательно, то силы тока в них одинаковы и за время t в них выделяются количества теплоты Q1 и Q2:

Отсюда:


12. В однородном магнитном поле находится круговой виток с током. Плоскость витка перпендикулярна силовым линиям поля. Докажите, что результирующая сил, действующих со стороны магнитного поля на контур, равна нулю.

РЕШЕНИЕ:

Так как круговой виток с током находится в однородном магнитном поле, на него действует сила Ампера. В соответствии с формулой dF=I[dL,B] результирующая амперова сила, действующая на виток с током определяется:

Где интегрирование проводится по данному контуру с током I. Так как магнитное поле однородно, то вектор В можно вынести из-под интеграла и задача сволится к вычислению векторного интеграла . Этот интеграл представляет замкнутую цепочку элементарных векторов dL, поэтому он равен нулю. Значит и F=0, то есть результирующая амперова сила равна нулю в однородном магнитном поле.


13. По короткой катушке, содержащей 90 витков диаметром 3 см, идет ток. Напряженность магнитного поля, созданного током на оси катушки на расстоянии 3 см от нее равна 40 А/м. Определите силу тока в катушке.

РЕШЕНИЕ:

Считая, что магнитная индукция в точке А есть суперпозиция магнитных индукций, создаваемых каждым витком катушки в отдельности:

Для нахождения Ввитка воспользуемся законом Био-Савара-Лапласа.

Где, dBвитка – магнитная индукция поля, создаваемая элементом тока IDL в точке, определяемой радиус-вектором r Выделим на конце элемент dL и от него в точку А проведем радиус-вектор r. Вектор dBвитка направим в соответствие с правилом буравчика.

Согласно принципу суперпозиции:

Где интегрирование ведется по всем элементам dLвитка. Разложим dBвитка на две составляющие dBвитка(II) – параллельную плоскости кольца и dBвитка(I) – перпендикулярную плоскости кольца. Тогда

Заметив, что из соображений симметрии и что векторы dBвитка(I) сонаправленные, заменим векторное интегрирование скалярным:

Где dBвитка(I) =dBвитка*cosb и

Поскольку dl перпендикулярен r

Сократим на 2p и заменим cosb на R/r1

Выразим отсюда I зная что R=D/2

согласно формуле связывающей магнитную индукцию и напряженность магнитного поля:

В=Мо*Н,

тогда по теореме Пифагора из чертежа:


14. В однородное магнитное поле в направлении перпендикулярном силовым линиям влетает электрон со скоростью 10۰106 м/с и движется по дуге окружности радиусом 2,1 см. Найдите индукцию магнитного поля.

РЕШЕНИЕ:

На электрон, движущийся в однородном магнитном поле будет действовать сила Лоренца, перпендикулярная скорости электрона и следовательно направленная к центру окружности:

Так как угол между v и И равен 900 :

Так как сила Fл направлена к центру окружности, и электрон двигается по окружности под действием этой силы, то

Выразим магнитную индукцию:


15. Квадратная рамка со стороной 12 см, изготовленная из медной проволоки, помещена в магнитное поле, магнитная индукция которого меняется по закону В=В0 ·Sin(ωt), где В0 =0,01 Тл, ω=2·π/Т и Т=0,02 с. Плоскость рамки перпендикулярна к направлению магнитного поля. Найдите наибольшее значение э.д.с. индукции, возникающей в рамке.

РЕШЕНИЕ:

Площадь квадратной рамки S=a2 . Изменение магнитного потока dj, при перпендикулярности плоскости рамки dj=SdB

ЭДС индукции определяется

Е будет максимальна при cos(wt)=1

=0.46 мк В