Реферат: Несимметричные сульфиды
Название: Несимметричные сульфиды Раздел: Рефераты по химии Тип: реферат | |||||||||||||||||||||||||
Отдел образования администрации Центрального района реферат По теме: несимметричные сульфиды на основе Галанская галина,Евсюкова Ирина и Кривошапкин Иван, научный руководитель: ст. преподаватель Новосибирск – 2000 СОДЕРЖАНИЕ 1. Введение............................................................................................................................ 2. Пространственно-затрудненные фенолы и стабилизация полимерных материалов............................................................................................................................................... 2.1. Старение полимеров......................................................................................................... 2.2. Пространственно-затрудненные фенолы, как ингибиторы радикальных процессов в полимерах. 3. Методы получения органических сульфидов..................................................... 4. Пути синтеза несимметричных сульфидов на основе 4-(g-хлорпропил)-2-трет.-бутилфенола.................................................................................................................. 4.1. Получение 4-(g-хлорпропил)-2-трет.-бутилфенола (хлорид Ф-13).............................. 4.2. Синтез 4-(g-меркаптопропил)-2-трет.-бутилфенола.................................................... 4.3. Синтез 2,2'– метиленбис-[4-(g-меркаптопропил)-6-трет.-бутилфенола]...................... 4.4. Синтез несимметричных сульфидов алкилированием 4-(g-меркаптопропил)-2-трет.-бутилфенола и 2,2`метиленбис-[4-(g-меркаптопропил)-6-трет.- бутилфенол] алкилгалогенидами в щелочном виде.......................................................................................................................................... 5. Практическая часть...................................................................................................... 5.1. Наработка 4-(g-хлорпропил)-2-трет.-бутилфенола (хлорид Ф-13)............................... 5.2. Получение 4-(g-меркаптопропил)-2-трет.-бутилфенола.............................................. 5.3. Получение 2,2'-метиленбис-[4-(g-меркаптопропил)-6-трет.-бутилфенола]......................... 5.4. Взаимодействие 2,2'-метиленбис-[4-(g-меркаптопропил)-6-трет.-бутилфенола] с бромистым бутилом (н-C4 H9 Br) в щелочной среде............................................................................................. 5.5. Взаимодействие 2,2'-метиленбис-[4-(g-меркаптопропил)-6-трет.-бутилфенола] с йодистым этилом (C2 H5 J) в щелочной среде................................................................................................. 5.6. Взаимодействие 4-(g-меркаптопропил)-2-трет.-бутилфенола с йодистым этилом (C2 H5 J) в щелочной среде................................................................................................................................ 5.7. Взаимодействие 4-(g-меркаптопропил)-2-трет.-бутилфенола с бромистым бутилом (н-C4 H9 Br) в щелочной среде............................................................................................................... 6. Выводы............................................................................................................................ 1. ВведениеПолимерные вещества внедрились во все сферы человеческой деятельности – технику, здравоохранение, быт. Ежедневно мы сталкиваемся с различными пластмассами, резинами, синтетическими волокнами. Полимерные материалы обладают многими полезными свойствами: они высокоустойчивы в агрессивных средах, хорошие диэлектрики и теплоизоляторы. Некоторые полимеры обладают высокой стойкостью к низким температурам, другие - водоотталкивающими cвойствами и так далее. Недостатками многих высокомолекулярных соединений является склонность к старению и, в частности, к деструкции – процессу уменьшению длины цепи и размеров молекул. Деструкция может быть вызвана механическими нагрузками, действий света, теплоты, воды и особенно кислорода и озона. Процесс уменьшения цепи идёт за счёт разрушения связей С-С и образования радикалов, которые в свою очередь, способствуют дальнейшему разрушению полимерных молекул. Перед учёными стоит проблема продления срока службы полимерных изделий. Для предотвращения старения в полимерные материалы вводят различные добавки (стабилизаторы). В качестве ловушек свободных радикалов, образующихся при деструкции полимерных материалов, используют фенольные стабилизаторы. Фенольные стабилизаторы более эффективны, так как, улавливая свободные радикалы, образуют более устойчивые связи с ними, предотвращая дальнейшую деструкцию углеродной цепи. Кроме того, они обладают комплексным защитным действием (например, предотвращают разрушающее действие кислорода и высоких температур, или кислорода и радиации). Фенольные стабилизаторы выгодно отличаются от других добавок тем, что не изменяют цвет полимерных материалов, в состав которых вводятся. В настоящее время в промышленном производстве полимеров требуются новые фенольные добавки с широким спектром стабилизирующих свойств и низкой себестоимостью. Несмотря на актуальность проблемы, исследований по разработке и получению фенольных стабилизаторов ведется мало. В связи с этим целью нашей работы был синтез новых серосодержащих пара-функционально-замещенных пространственно-затрудненных фенолов на основе 4-(g-хлорпропил)-2-трет.-бутилфенола и 2,2'-метиленбис-[4-(g-хлорпропил)-6-трет.-бутилфенола]. Основными задачами, которые требовалось решить в ходе исследования, являлись: 1. Изучить проблему старения полимеров и способов его предотвращения путем введения в материал фенольных стабилизаторов. 2. Ознакомиться с распространенными методами получения сульфидов. 3. Проверить возможности синтеза несимметричных сульфидов взаимодействием меркаптанов (4-(g-меркаптопропил)-2-трет.-бутилфенола и 2,2'-метиленбис-[4-(g-меркаптопропил)-6-трет.-бутилфенола]) с алкилгалогенидами в этиловом спирте. 2. Пространственно-затрудненные фенолы и стабилизация полимерных материалов2.1. Старение полимеровПолимерные материалы в значительной мере подвержены воздействию условий окружающей среды (свет, тепло, действие озона, радиация, механические нагрузки).Под влиянием этих факторов снижается эластичность, ухудшается электроизоляционные свойства и др. Эти явления, называемые в совокупности старением, приводят к необратимым изменениям свойств полимерных материалов и сокращают срок службы изделий из них. При эксплуатации большинство полимеров находится в контакте с кислородом воздуха, т.е. в окислительной среде. Реакции окислительной деструкции являются наиболее распространенными из реакций, протекающих при старении в естественных условиях, и представляют собой радикально-цепной окислительный процесс. Этот процесс активируется различными внешними воздействиями – тепловым, радиационным, механическим, химическим. Характерная особенность радикально-цепных окислительных процессов – возможность их резкого замедления путем введения небольшого количества ингибитора (стабилизатора). Выделяют следующие типы стабилизаторов: · антиоксиданты или антиокислители (защищающие полимерные вещества от разрушающего действия кислорода); · антиозонаты (защищающие полимерные вещества от разрушающего действия озона); · светостабилизаторы (защищающие полимерные вещества от разрушающего действия ультрафиолетовых лучей); · термостабилизаторы (защищающие полимерные вещества от разрушающего действия высокой температуры); · антирады (защищающие полимерные вещества от разрушающего действия радиационного излучения). Как известно, основу макромолекулы большинства полимеров общего назначения составляет углеродная цепь типа: где: R = H, alk, ar. В общем виде механизм ингибированного окисления углеводородов молекулярным кислородом может быть представлен следующей схемой: Механизм ингибированного окисления углеводородов (0) RH ® R• (1) R• + O2 ® ROO• (2) ROO• + RH ® ROOH + R• (3) ROOH ® RO• + HO• (4) R• + R• ® R-R (5) ROO• + R• ® ROOR (6) ROO• + ROO• ® ROH + R"COR + O2 (7) ROO• + InH ® ROOH + In• (8) In• + RH ® InH + R• (9) In• + In• ® In-In (10) In• + ROO• ® InOOR В целом процесс окисления зависит от величины константы скорости реакции продолжения цепи (k2) и концентрации перекисных радикалов. Соответствующие гидроперекиси являются первичными продуктами окисления, дальнейший распад которых приводит к различным кислородсодержащим веществам и часто сопровождается разрывом углерод-углеродной цепи. Присутствующий в окисляющейся системе ингибитор (InH), как правило, реагирует c радикалами ROO• (реакция 7), либо прерывая цепь окисления, либо уменьшая концентрацию этих радикалов, что приводит к снижению скорости окисления. Естественно, что чем менее активен получающийся из ингибитора радикал, тем меньше вероятность протекания реакции 8. Следовательно, тормозящее действие любого ингибитора окисления зависит, с одной стороны, от скорости реакции перекисных радикалов с ингибитором, а с другой – от активности получающегося из ингибиторов радикала. Малоактивные радикалы In• обычно не способны продолжать цепь (реакция 8) и рекомбинируют друг с другом (реакция 9). Таким образом, относительная активность радикала In• непосредственно в процессе окисления должна определяться отношением констант скоростей реакций k2/k7, которое характеризует максимальную возможность торможения процесса окисления при использовании данного ингибитора (сила ингибитора). Чем меньше это отношение, тем больше возможное тормозящее действие ингибитора. 2. 2. Пространственно-затрудненные фенолы, как ингибиторы радикальных процессов в полимерах.В качестве стабилизаторов могут быть использованы различные органические сульфиды, в том числе пространственно-затруднённые фенолы типа:
Пространственно-затрудненные фенолы (и получающиеся из них феноксильные радикалы) полностью удовлетворяют требованиям, предъявляемым к сильным антиоксидантам, и являются эффективными ингибиторами процессов окисления различных органических материалов. Подобные фенолы, как правило, реагируют с радикалами ROO•, прерывая цепь окисления. Эффективность пространственно-затрудненных фенолов как ингибиторов окисления существенно зависит от их структуры. Определяющим фактором в этом случае является строение о-алкильных групп и характер пара-заместителя. Ниже приведено соотношение k2/k7, характеризующее эффективность некоторых пространственно-затрудненных фенолов при ингибированном окислении тетралина при 50°С.
Введение в пара-положение молекулы пространственно-затрудненного фенола электрондонорных заместителей увеличивает его антиокислительную активность, а электронакцепторных - уменьшает:
Эффективность большинства стабилизаторов класса пространственно-затрудненных фенолов значительно повышается в композиции с веществами, разрушающими гидроперекиси и предотвращающими возможность вырожденного разветвления цепи окисления сульфидами, фосфитами, аминами, тиолами. При использовании антиоксидантов помимо рассмотренных выше закономерностей, определяющих эффективность ингибитора, необходимо дополнительно учитывать следующие факторы: совместимость стабилизатора с защищаемым материалом, степень окрашивания полимера и особенности продукта его окисления, летучесть. 3. Методы получения органических сульфидовКак стабилизаторы могут использоваться симметричные и несимметричные сульфиды. Наиболее распространённым способом получения симметричных органических сульфидов является взаимодействие алкилгалогенидов с сульфидом натрия Na2 S в органических растворителях. Более высокие выходы достигаются при использовании протонных (спирты: этиловый, изопропиловый и другие) или апротонных (диметилформамид) растворителях. 2 R–Hal + Na2 S ® R–S–R + 2 NaHal Когда R = R’, то получаются симметричные сульфиды. Получение несимметричных сульфидов можно осуществить взаимодействием тиолов с алкилгалогенидами в присутствии щелочей. Сначала образуется тиолят-анион: R – SH + OH` ® R – S` + H2 O Далее возможны два варианта: R – S` + R’ – Hal ® R – S – R’ или R – Hal + R’ – S` ® R – S – R’ Выбор зависит от многих факторов. Меркаптаны (алкантиолы), имеющие небольшую молекулярную массу, достаточно летучи (имеют отвратительный запах!), ядовиты и отсутствуют в продаже. Для получения тиолов (меркаптанов) более эффективны и чаще используются в лабораторных условиях непрямые методы синтеза, с последующим разложением или восстановлением промежуточных продуктов. Из прямых синтезов наиболее доступным является нуклеофильного замещения атомов галогена на гидросульфид анион HS` . В лабораторных условиях из гидросульфидов с высоким выходом и хорошего качества получают гидросульфид аммония NH4 HS. Получение соответствующих алкилгалогенидов из спиртов в лабораторных условиях не представляет особой сложности. 4. Пути синтеза несимметричных сульфидов на основе
|