Учебное пособие: Концепции современного естествознания2
Название: Концепции современного естествознания2 Раздел: Рефераты по биологии Тип: учебное пособие | ||||||||||||||||||||||||||||||||
В.М.Найдыш Концепции современного естествознания Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по гуманитарным специальностям ГАРДАРИКИ Москва, 2001 УДК 50(075.8) ББК 20 Н20 Рецензенты: доктор философских наук, профессор В.Н. Князев ; кафедра философии и методологии науки МГУ им. М.В. Ломоносова Найдыш В.М. Н20 Концепции современного естествознания: Учеб. пособие. -- М.:Гардарики,2001.-476с. ISBN 5-8297-0001-8 (в пер.) Естествознание, являясь основой всякого знания, всегда оказывало на развитие гуманитарных наук значительное воздействие своими методами, методологическими и мировоззренческими установками и представлениями, образами и идеями. Особенно мощным является такое воздействие в настоящую эпоху. Фундаментальная подготовка специалистов в гуманитарных областях знания уже немыслима без ознакомления их с историей и современным состоянием естествознания. Представлена широкая панорама как истории естествознания, так и основных элементов современной естественно-научной картины мира, мировоззренческих и методологических представлений, формирующихся в нашу эпоху в недрах естествознания. Адресована студентам, аспирантам, преподавателям гуманитарных факультетов и вузов страны. В оформлении переплета использован фрагмент картины Рене Магритта «Стрела Зенона» (1964) УДК 50(075.8) ББК 20 ISBN 5-8297-0001-8 ©УИЦ «Гардарики», 1999 © Найдыш В.М., 1999 Наука — это многогранное и вместе с тем целостное образование, отдельные компоненты которого, в том числе естественные и гуманитарные науки, в своих глубинных мировоззренческих и методологических основаниях теснейшим образом связаны между собой. Вся история познания свидетельствует о наличии мощных токов знании, идей, образов, представлений от естественных наук к гуманитарным и от гуманитарных к естественным, о теснейшем взаимодействии между науками о природе и науками об обществе и человеке. Особенно важную роль это взаимодействие играло в периоды научных революций, т.е. глубинных преобразований способов познания, принципов и методов научной деятельности. Естествознание всегда оказывало значительное воздействие на развитие гуманитарных наук как своими методологическими установками, так и общемировоззренческими представлениями, образами и идеями. Особенно мощным это воздействие стало сейчас — в эпоху научно-технической революции, радикального изменения отношения человека к миру, к природе, глобальных интеграционных процессов как в науке, так и в духовной культуре в целом. Подготовка современного специалиста-гуманитария с широким базовым образованием уже немыслима без ознакомления его с историей и современным состоянием естественно-научного познания. Все это делает необходимым введение в учебные планы подготовки специалистов по гуманитарным отраслям науки курса «Концепции современного естествознания», который призван дать широкую панораму как истории естествознания, так и общих элементов современной естественно-научной картины мира, мировоззренческих и методологических представлений, формирующихся в нашу эпоху в недрах естествознания. Опыт преподавания курса «Концепции современного естествознания» показывает, что его изучение способствует выработке у студентов ориентиров, установок и ценностей рационалистического отношения к миру, природе, обществу, человеку. Это очень важно именно в наше время, когда накатывается новая очередная историческая волна мифологизации культуры, массовое сознание ремифологизируется, в нем все чаще ставятся под сомнение достижения, ценности и возможности научного познания мира, когда происходит всплеск интереса к мистицизму, расцвет квазинаучного мифотворчества, паракультурных форм сознания, оккультизма, магии, астрологии, спиритизма; когда бегство от материализма к мистике, от науки к мифу стало модой для отечественного и зарубежного безбрежного скептицизма. В этих условиях приобретает особую значимость утверждение идеалов научно-рационального отношения к действительности, на которых построена вся наша цивилизация. Ведь безбрежный скептицизм, так же как и безбрежный догматизм, является мощным тормозом экономического, общественного и культурного развития. Таким образом, основные цели и задачи нашего курса следующие: понимание специфики гуманитарного и естественно-научного типов познавательной деятельности, необходимости их глубокого внутреннего согласования, интеграции на основе целостного взгляда на окружающий мир; более глубокое понимание отличия и единства научно-рационального и художественно-образного способов духовного освоения мира; осознание исторического характера развития научного познания, исторической необходимости в периодической смене научных картин мира, научных революций, существа социокультурной детерминации познавательной деятельности; формирование ясного представления о современной физической картине мира как о системе фундаментальных знаний об основаниях целостности и многообразия природы, которые определяют облик современного естествознания; формирование представлений о современной астрономической картине мира, которая самым непосредственным образом определяет содержание современного научного миропредставления и мировоззрения; получение представлений о современной биологической картине мира, о преемственности природных систем, их развития от неживых к живым (к клетке, организму, человеку, биосфере и обществу); осознание содержания современных глобальных экологических проблем в их связи с основными законами естествознания; формирование представлений о принципах универсального эволюционизма и синергетики и их возможных приложениях к анализу процессов, протекающих не только в природе, но и обществе; ознакомление с методологией естественно-научного познания, принципами теоретического моделирования объекта в естествознании, возможностями перенесения методологического опыта естествознания в гуманитарные науки; формирование представлений о радикальном качественном отличии науки от разного рода форм квазинаучного мифотворчества, эзотеризма, оккультизма, мистицизма и др. Отличительная особенность авторского отношения к курсу «Концепции современного естествознания» состоит в том, что изложение содержания современной естественно-научной картины мира в нем органически сочетается с освещением основных вех истории естествознания, с характеристикой предшествующих естественно-научных картин мира. Естествознание как отрасль научного познания Наука — это один из древнейших, важнейших и сложнейших компонентов человеческой культуры. Это и целый многообразный мир человеческих знаний, который позволяет человеку преобразовывать природу и приспосабливать ее для удовлетворения своих все возрастающих материальных и духовных потребностей. Это и сложная система исследовательской деятельности, направленная на производство новых знаний. Это и социальный институт, организующий усилия сотен тысяч ученых-исследователей, отдающих свои знания, опыт, творческую энергию постижению законов природы, общества и самого человека. Наука теснейшим образом связана с материальным производством, с практикой преобразования природы, социальных отношений. Большая часть материальной культуры общества создана на базе науки, и прежде всего достижений естествознания. Научная картина мира всегда была и важнейшей составной частью мировоззрения человека. Научное понимание природы, особенно в настоящую эпоху, существенно определяет и содержание внутреннего духовного мира человека, сферу его представлений, ощущений, переживаний, динамику его потребностей и интересов. Культура — одна из важнейших характеристик человеческой жизнедеятельности. Каждый индивид представляет собой сложную биосоциальную систему, функционирующую за счет взаимодействия с окружающей средой. Необходимые, закономерные связи индивида с окружающей средой определяют его потребности, т.е. такие вещи природной и культурной среды, которые необходимы человеку для его нормального функционирования, жизнедеятельности и развития. Большинство потребностей человека удовлетворяется посредством труда. Система человеческой культуры — это мир вещей, предметов, созданных человеком для удовлетворения его потребностей. Таким образом, под культурой в самом широком смысле этого слова принято понимать все то, что создано человеком (его деятельностью, трудом), человечеством в ходе его истории, в отличие от природных процессов и явлений, т.е. главная отличительная черта системы человеческой культуры состоит в том, что она созидается человеческим трудом. А процесс труда всегда осуществляется при непосредственном участии и направляющем воздействии сознания человека, его мышления, знаний, чувств, воли. Значит, культура — это «опредмеченный» мир человеческой духовности. Культура есть продукт человеческой деятельности, а деятельность есть способ бытия человека в мире. Результаты человеческого труда постоянно накапливаются, и потому система культуры исторически развивается и обогащается. Многими поколениями людей создан целый грандиозный, колоссальный мир человеческой культуры. Все, что созидается и используется человеком в производстве (сельскохозяйственном и промышленном), на транспорте, сооружено строителями, все, что достигнуто человечеством в правовой, политической, государственной деятельности, в системах образования, медицинского, бытового и других видов обслуживания, в науке, искусстве, религии, философии, наконец, — все это принадлежит миру человеческой культуры. Поля и фермы, выращенные человеком леса и парки, промышленные (фабрики, заводы и т.п.) и гражданские (жилые дома, учреждения и др.) постройки, транспортные коммуникации (дороги, трубопроводы, мосты и т.д.), линии связи, политические, правовые, образовательные и другие учреждения, научные знания, художественные образы, религиозные доктрины и философские системы — все это вещи человеческой культуры. Сейчас на Земле не просто найти такое место, которое бы в той или иной мере не было освоено человеческим трудом, которое не затронули бы деятельные руки человека, на котором не было бы печати человеческого духа. Мир культуры окружает каждого. Каждый человек как бы погружен в море вещей, предметов человеческой культуры. Более того, индивид становится человеком постольку, поскольку он усваивает (выработанные предыдущими поколениями людей) формы деятельности по производству и использованию предметов культуры. В семье, в школе, в высшем учебном заведении, на работе, в общении с другими людьми мы осваиваем систему предметных форм культуры, «распредмечиваем» ее для себя. Только на этом пути человек изменяет сам себя, развивает свой внутренний духовный мир, свои знания, интересы, навыки, умения, мировоззрение, ценности, потребности и др. Чем выше степень освоения человеком достижений культуры, тем больший вклад он может внести в ее дальнейшее развитие. В.2. Материальная и духовная культура Понятие культуры очень широкое. Оно охватывает по сути бесконечное множество самых разнообразных вещей и процессов, связанных с деятельностью человека и ее результатами. Многообразную систему современной культуры в зависимости от целей деятельности принято подразделять на две большие и тесно связанные области — материальную культуру и духовную культуру. Явления человеческого сознания, психики (мышление, знания, оценки, воля, чувства, переживания и т.д.) относятся к миру идеальных вещей, идеального, духовного. Сознание, духовное — это важнейшее, но лишь одно из свойств той сложной системы, какой является человек. Обеспечение жизнедеятельности человека — необходимое условие существования его сознания, мышления, духа. Для того чтобы мыслить, человек должен сначала просто существовать как живой, деятельный, нормальный организм. Иначе говоря, человек должен материально существовать для того, чтобы проявилась его способность к производству идеальных, духовных вещей. Материальная жизнь людей — это область человеческой деятельности, которая связана с производством предметов, вещей, обеспечивающих само существование, жизнедеятельность человека и удовлетворяющих исходные потребности людей (в пище, одежде, жилье и др.). В ходе всей человеческой истории многими поколениями создан грандиозный мир материальной культуры. Особенно контрастно он проявляется в условиях городов. Составные элементы материальной культуры—дома, улицы, заводы, фабрики, транспорт, коммунальная инфраструктура, учреждения быта, снабжения продуктами питания, одеждой и др. — являются важнейшими показателями характера и уровня развития общества. По остаткам материальной культуры археологам удается достаточно точно определить этапы исторического развития, своеобразие исчезнувших обществ, цивилизаций, государств, народов, этносов. Понятием «духовная культура» характеризуются духовная жизнь людей, ее результаты и средства. Духовная культура связана с деятельностью, направленной на удовлетворение не материальных, а духовных потребностей человека, т.е. потребностей в развитии, совершенствовании внутреннего мира человека, его сознания, психологии, мышления, знаний, эмоций, переживаний и др. Существование духовных потребностей в конце концов и отличает человека от животного. Эти потребности удовлетворяются в ходе не материального, а духовного производства, в процессе духовной деятельности. Продуктами духовного производства являются идеи, понятия, представления, научные гипотезы, теории, художественные образы, сюжеты художественных произведений, моральные нормы и правовые законы, политические взгляды и программы, религиозные воззрения и др., которые воплощаются в своих особых материальных носителях. В качестве таких носителей выступают: язык (универсальный и исторически первый материальный носитель мысли), книги (древности — папирусы, рукописи), произведения искусства (картины, архитектурные сооружения, скульптуры и др.), графики, чертежи и др. В народе говорят: не хлебом единым жив человек. Другими словами, жизнь человека состоит не только и не столько в удовлетворени материальных (т.е. в конце концов биологических) потребностей сколько в активности его внутреннего, духовного мира. Потребляя продукты духовной культуры (когда мы читаем книгу, смотрим в музее картину или в кинотеатре кинофильм, слушаем музыку и т.д. мы обогащаем, развиваем свой внутренний, духовный мир — мир знаний, образов, ценностей, переживаний. При этом мы создаем условия для совершенствования не только духовной, но в конечном итоге и материальной деятельности. Человек не только потребляет продукты духовной культуры, созданные другими людьми. Он может и призван создавать новые элементы духовной культуры. Вершиной духовной деятельности человека является его собственное участие в создании новых элементов духовной культуры. В таком случае человек становится ТВОРЦОМ культуры, а его деятельность — творческой. В создании новых элементов духовной культуры проявляется высшее предназначение человека. Анализ системы духовной культуры как целого позволяет выделить следующие основные компоненты духовной культуры: политическое сознание, правосознание, мораль, искусство, религия, философия и, наконец, наука. Каждый из этих компонентов имеет свой определенный предмет, свой специфический способ отражения,выполняет в жизни общества конкретные социальные функции, содержит в себе (в разных пропорциях) познавательные и оценочные моменты — систему знаний и систему оценок. Человек не только знает что-то, но он всегда оценивает то, что он знает. Иначе говоря, он судит о том, насколько глубоки его знания хорошо или плохо он знает тот или иной предмет, насколько эффективна его деятельность, деятельность его коллег и т.п. Такие компоненты духовной культуры, как мораль, религия являются по cyти своей ценностными, но содержащими и некоторый познавательнь элемент. В большей степени познавательный элемент присущ политическому сознанию и правосознанию. Примерно в одинаковых пропорциях познавательное и ценностное представлено в философии. Наука же является преимущественно познавательной формой духовной деятельности, хотя и она, конечно, содержит в определенной мере и ценностные элементы, которые проявляют себя не столько в результате, сколько в процессе познания. В.З. Наука как компонент духовной культуры Наука является одним из важнейших основных компонентов духовной культуры. Ее особое место в духовной культуре определяется значением познания в способе бытия человека в мире, в практике, материально-предметном преобразовании мира. Материально-предметное, практическое изменение мира невозможно без познания мира. Познание является внутренним, неотъемлемым моментом практической деятельности. Практика и познание взаимно дополняют и опосредуют друг друга. Познание порождается практикой человека и в конечном счете нацелено на ее совершенствование. Познание может быть донаучным, вненаучным и научным. Наука представляет собой лишь одну из исторических форм познания мира. Долгое время познание развивалось в донаучных формах (мифология, религия и др.). Вместе с тем некоторый познавательный момент несомненно свойствен (был всегда и присутствует сейчас) и ненаучным формам духовной культуры — искусству, политическому сознанию, правосознанию, морали и даже религии. Донаучное и вненаучное обыденное, житейское знание позволяет лишь констатировать и поверхностно описывать состояния предметов, вещей, фиксировать некоторые факты. Научное знание предполагает не только описание, но и объяснение фактов, выявление всего комплекса причин, порождающих явление. Наука ориентирована на получение такого нового знания, истинность которого не просто утверждается, но и доказывается, обосновывается, ориентирована на строгую, последовательную организацию знания, на его систематизацию, получение достоверных предсказаний и др. Наука стремится, к максимальной точности, объективности. Результаты научного познания (теории, понятия и др.) организованы таким образом, чтобы исключить все личностное, привнесенное исследователем от себя. Одна из главных особенностей науки состоит в том, что она нацелена на отражение объективных сторон мира, т.е. на получение таких знаний, содержание которых не зависит ни от человека, ни от человечества. Наука стремится прежде всего построить объективную картину мира, т.е. отразить его так, как он существует как бы «сам по себе», независимо от человека. Никакой другой компонент духовной культуры (ни искусство, ни идеология, ни религия и т.д.) такой цели перед собой не ставит. В разных отраслях познания переход от донаучного знания к научному происходил в разное время и был связан с осознанием идеи доказательности и обоснования знания, с определением предмета познания, соответствующих ему исходных понятий и методов, с открытием фундаментальных законов, позволяющих объяснять множество фактов, с формулированием базовых принципов, на которых создается фундаментальная теория, и др. В математике и астропомии такой переход совершился еще в античности, физике — в XVII, в химии — в XVIII в., биологии — в XIX в. и т.д. Наука представляет собой исторически сложившуюся систему познания объективных законов мира. Результатом научной деятельности выступает система развивающегося доказательного и обоснованного знания. Научное знание, полученное на основе проверенных практикой методов познания, выражается в различных формах: понятиях, категориях, законах, гипотезах, теориях, научной картин мира и др. Оно дает возможность предвидения и преобразовани действительности в интересах общества и человека. В.4. Проблема культур в науке: от конфронтации к сотрудничеству Современная наука — сложная и многообразная система отдельных научных дисциплин. Науковеды насчитывают их несколько тысяч, которые можно объединить в две следующие сферы: фундаментальные и прикладные науки. Фундаментальные науки имеют своей целью познание объективных законов мира как они существуют «сами по себе» безотносительно к интересам и потребностям человека. К фундаментальным относятся: математические науки, естественные науки (механика, астрономия, астрофизика, физика, химическая физика, физическа химия, химия, геохимия, геология, география, биохимия, биология антропология и др.), социальные науки (история, археология, этнография, экономика, статистика, демография, науки о государстве и праве, история искусства и др.), гуманитарные науки (психология и ее отрасли, логика, лингвистика, филология и др.). Фундаментальные науки потому и называются фундаментальными, что своими основополагающими выводами, результатами, теориями они определяют содержание научной картины мира. Прикладные науки нацелены на разработку способов применения полученных фундаментальной наукой знаний объективных законов мира для удовлетворения потребностей и интересов людей. К прикладным наукам относятся: кибернетика, технические науки (прикладная механика, технология машин и механизмов, сопротивление материалов, техническая физика, химико-технологические науки, металлургия, горное дело, электротехнические науки, ядерная энергетика, космонавтика и др.), сельскохозяйственные науки (агрономические, зоотехнические); медицинские науки; педагогическая наука и т.д. В прикладных науках фундаментальное знание приобретает практическое значение, используется для развития производительных сил общества, совершенствования предметной сферы человеческого бытия, материальной культуры. Каждая наука характеризуется собственными особенностями познавательной деятельности. Науки различаются предметом познания, средствами и методами познания, формами результата познания, теми системами ценностей, идеалами, методологическими установками, стилями мышления, которые функционируют в данной науке и определяют отношение ученых и к процессу познания, и к социально-культурному фону науки. Совокупность таких систем ценностей, идеалов, методологических установок, стилей мышления, присущих отдельным наукам и их комплексам, иногда называют научной культурой; говорят, например, о культуре гуманитарного познания, культуре естественно-научного познания, культуре технического знания и т.п. Характер научной культуры многое определяет и в проблемах организации науки, и в проблемах отношения науки и общества. Здесь и вопросы нравственной ответственности ученого, особенности «этики науки», отношение науки и идеологии, науки и права, особенности организации научных школ и управления научными исследованиями и т.п. Наиболее контрастны такие различия «научных культур» между культурами гуманитарного и естественно-научного познания. Широко распространены представления о «двух культурах» в науке — естественно-научной культуре и гуманитарной культуре. Английский историк и писатель Ч. Сноу написал книгу о «двух культурах», которые существуют в современном индустриальном и постиндустриальном обществе, — естественно-научной и гуманитарно-художественной *. Он сокрушается по поводу огромной пропасти, которая наблюдается между ними и с каждым годом все возрастает. Ученые, посвятившие себя изучению гуманитарных и точных отраслей знания, все более и более не понимают друг друга. По мнению Сноу, это — очень опасная тенденция, которая грозит гибелью всей человеческой культуре. Несмотря на излишнюю категоричность и спорность некоторых суждений Сноу, в целом нельзя не согласиться с существованием данной проблемы и оценкой ее важности. * Сноу Ч . Две культуры. М., 1973. Действительно, существуют немалые различия между естественно-научным и гуманитарным познанием. Естествознание ориентировано на повторяющееся, общее и универсальное, абстрактное; гуманитарное познание — на специальное, конкретное и уникальное, неповторимое. Цель естествознания — описать и объяснить свой объект, ограничить свою зависимость от общественно-исторических факторов и выразить знание с позиций вневременных принципов бытия, выразить не только качественные, но и количественные характеристики объекта. Цель гуманитарных наук — прежде всего понять свой объект, найти способы конкретно-исторического, личностного переживания, толкования и содержания объекта познания и своего отношения к нему и т.д. В 60—70-е гг. в массовом сознании, в молодежной, студенческой среде эти различия отражались в формах разного рода диспутов между «физиками», ориентированными на строго рационалистические и надличностные каноны естествознания («только физика — соль, остальное все — ноль»), и «лириками», воспитанными на идеалах гуманитарного познания, включающих в себя не только объективное отражение социальных процессов и явлений, но и субъективно-личностное их переживание и толкование. В проблеме, поставленной Ч. Сноу, есть два аспекта. Первый связан с закономерностями взаимодействия науки и искусства, второй — с проблемой единства науки. Сначала о первом из них. Художественно-образный и научно-рациональный способы отражения мира вовсе не исключают абсолютно друг друга. Ученый должен обладать способностью не только к понятийному, но и к образному творчеству, а значит, обладать тонким художественным вкусом *. Так, многие ученые прекрасно разбираются в искусстве, живописи, литературе. Играют на музыкальных инструментах, стремятся к глубокому переживанию прекрасного. Более того, само научное творчество выступает для них как некий вид искусства. В любых, даже исключительно абстрактных отраслях физико-математического естествознания, познавательная деятельность содержит в себе художественно-образные моменты. Поэтому справедливо говорят иногда о «поэзии науки». С другой стороны, художник, деятель искусства творит не произвольные, а типические художественные образы, предполагающие процесс обобщения, познания действительности. Таким образом, познавательный момент органично присущ искусству, вплетен в производство способов образного переживания мира. Интуиция и логика присущи как науке, так и искусству. В системе духовной культуры наука и искусство не исключают, а предполагают и дополняют друг друга там, где речь идет о формировании целостной гармонической личности, о полноте человеческого мироощущения. * Фейнберг Е.Л. Две культуры. Интуиция и логика в искусстве и науке. М., 1992. Второй аспект данной проблемы связан с единством науки. Наука в целом — это многогранное и вместе с тем системное образование, все отдельные компоненты которого (конкретные науки) теснейшим образом связаны. Между различными науками имеет место постоянное взаимодействие. Развитие науки требует взаимного обогащения, обмена идеями между различными, и даже кажущимися на первый взгляд далекими, областями знания. Например, в XX в. биология получила мощнейший импульс для своего развития именно в результате применения математических, физических и химических методов исследования. С другой стороны, биологические знания помогают инженерам создавать новые типы автоматических устройств и проектировать новые поколения авиационной техники. Единство наук определяется в конечном счете материальным единством мира. Естествознание, являясь основой всякого знания, всегда оказывало влияние на развитие гуманитарных наук (через методологические установки, общемировоззренческие представления, образы, идеи и др.). Особенно значительно это воздействие в век современной научно-технической революции. Естественно-научные методы познания все в большей мере используются в общественных и гуманитарных науках. Например, в исторических исследованиях они дают надежную основу для уточнения дат исторических событий, открывают новые возможности для быстрого анализа громадной массы источников, фактов и др. Широко применяются естественно-научные методы и принципы в психологии. Без применения методов естественных наук были бы немыслимы выдающиеся достижения современной науки о происхождении человека и общества. Новые перспективы взаимообогащения естественно-научного и гуманитарного знания открываются с созданием новейшей теории самоорганизации — синергетики. Одна из всеобщих закономерностей исторического развития науки — диалектическое единство дифференциации и интеграции науки. Образование новых научных направлений, отдельных наук сочетается со стиранием резких граней, разделяющих различные отрасли науки, с образованием интегрирующих отраслей науки (кибернетика, теория систем, информатика, синергетика и др.), взаимным обменом методами, принципами, понятиями и т.п. Наука в целом становится все более сложной единой системой с богатым внутренним расчленением, где сохраняется качественное своеобразие каждой конкретной науки. Таким образом, не конфронтация различных «культур в науке», а их тесное единство, взаимодействие, взаимопроникновение является закономерной тенденцией современного научного познания. В.5. Структура естественно -научного познания Понятие метода и методологии . Большую роль в научном познании играет научный метод. Чтобы понять, что такое научный метод, рассмотрим сначала, что такое метод вообще. В широком смысле метод — это способ организации средств (инструментов, приемов операций и др.) теоретической и практической деятельности. Любое разумное действие подчиняется определенным регулятивным принципам, от выбора которых существенно зависит результат деятельности. Метод оптимизирует деятельность человека, вооружает его наиболее рациональными способами организации деятельности. Понятие метода тесно связано с понятием методологии. Методология -это наука о закономерностях, которым подчиняется метод деятельности, о происхождении, сущности методов, их эффективности. Meтодология призвана выработать принципы создания наиболее совершенных методов в каждой форме деятельности. Научное познание — это особая форма человеческой деятельности. Как каждая деятельность, познание также опирается на определенный набор средств деятельности, средств познания. Научный метод — это способ организации средств познания (приборов, инструментов, приемов, предметных и теоретических операций и др.) для достижения научной истины, система регулятивных принципов познавательной деятельности. Научный метод рационализирует и оптимизирует научное познание. По словам одного из основоположников методологии естествознания XVII в. Ф. Бэкона, научный метод подобен фонарю, освещающему дорогу бредущему в темноте путнику. Объясняя значение научного метода, Ф. Бэкон любил приводить еще один афоризм: даже хромой, идущий по дороге, опережает того, кто бежит без дороги. Только верный метод может привести к получению истинного знания, подлинной картины познаваемого предмета. Научный метод выступает и как форма опосредования познания и практики. Метод объединяет теорию и практику, так как аккумулирует обобщенный практикой исторический опыт познания мира Такой опыт и позволяет методу направлять процесс познания, по строение научных теорий. В естествознании исторически сложилось и в настоящее время применяется много научных методов познания: наблюдение, эксперимент, индукция, дедукция, анализ, синтез, формализация, измерение, сравнение, идеализация, моделирование, аксиоматизация, гипотетико-дедуктивный метод, метод математической гипотезы, генетический метод и др. Обычно методы подразделяют на эмпирические и теоретические в соответствии с двумя основным уровням научного познания. Уровни и формы научного познания . В структуре естественнонаучного познания четко выделяются два уровня познавательной деятельности — эмпирический и теоретический, каждый из которых характеризуется особенными формами организации научного знания и его методами. К эмпирическому уровню относятся приемы, методы и формы познания, связанные с непосредственным отражением объекта, материально-чувственным взаимодействием с ним человека. На этом уровне происходит накопление, фиксация, группировка и обобщение исходного материала для построения опосредованного теоретического знания. К эмпирическому уровню относятся такие методы, как наблюдение, различные формы экспериментирования, предметное моделирование, описание полученных результатов, измерение и др. На эмпирическом уровне познания складываются основные формы знания — научный факт и закон. Закон — высшая цель эмпирического уровня познания — является результатом напряженной мыслительной деятельности по обобщению, группировке, систематизации фактов, в которой применяются различные приемы мышления (аналитические и синтетические, индуктивные и дедуктивные и др.). Закон отражает устойчивое, повторяющееся в явлении. Если на эмпирическом уровне познания законы объекта выделяются и констатируются, то на теоретическом уровне они объясняются. Мало сформулировать законы объекта, надо показать, что именно эти, а не какие-либо другие законы должны характеризовать данный объект. Такая задача и решается на теоретическом уровне познания. К теоретическому уровню относятся все те формы и методы познавательной деятельности и способы организации знания, которые характеризуются той или иной степенью опосредованности и обеспечивают создание, построение и разработку научной теории (логически организованного знания о законах, необходимых связях и отношениях предметной области данной науки). Сюда относятся теория и такие ее элементы и составные части, как научные абстракции, идеализации и мысленные модели; научная идея и гипотеза; различимые методы оперирования с научными абстракциями и построения теорий, логические средства организации знания и т.д. Теория — это высшая форма познания. Естественно-научные теории нацелены на описание некоторой целостной предметной области, объяснение эмпирически выявленных закономерностей и предсказание новых закономерностей. Теория обладает особым высшим достоинством — возможностью получать знание об объекте, не вступая с ним в непосредственный чувственный контакт. В структуру научной теории входят идеальные объекты, исходные понятия, принципы и законы, правила логического вывода. Cyществуют разные типы научных теорий: фундаментальные, прикладные, частные, феноменологические и др. В становлении теории большую роль играет выдвижение научной идеи, в которой высказывается предварительное и абстрактное представление о возможном содержании сущности предметной области теории. Затем формулируется ряд гипотез, в которых абстрактное представление конкретизируется в ряде четких принципов. Следующий этап становления теории — эмпирическая проверка гипотез и обоснование той из них, которая больше всего соответствует эмпирическим данным. Только после этого можно говорить о перерастании удачной гипотезы в научную теорию. Создание теории — высшая и конечная цель фундаментальной науки реализация которой требует максимального напряжения и высшего взлета творческих научных сил. Являясь результатом многократного обобщения знания и aбcтрагирования действительности, теория находится в очень непростых отношениях со своим объектом. Современные теории в физико-тематическом естествознании являются абстрактными и формализованными конструкциями, связи которых с реальными объектами проследить очень сложно. Поэтому любая такая теория должна подняться логико-гносеологической процедурой, обратной aбcтрагированию, — процедурой интерпретации. Методологические установки познания . Важным компонентом научной деятельности являются методологические установки познания. Наиболее общие методологические принципы в каждой науке называются методологическими установками данной науки. Они выполняют функцию регулятивной основы познавательной деятельности, направляют, ориентируют и контролируют построение эмпирических обобщений и теоретических схем. По своему содержанию методологические установки — это система представлений об общих свойствах объекта познания, процесса исследования этого объекта и о том, каким (по форме) должен быть результат исследования. В ходе исторического развития любой науки рано или поздно изменяется объект ее познания, а значит, в определенной степени изменяется и процесс познания. Поэтому система методологических установок характеризует конкретно-исторические особенности естественно-научного познания. Методологические установки соединяют познавательный и ценностный аспекты познания в некое качественно новое целое. Через методологические установки познания каждая наука включается в систему культуры в целом. Та естественная наука, методологические установки которой в данную историческую эпоху являются типичными и определяющими для всех остальных естественных наук, становится лидером естествознания. Начиная с XVII в. долгое время лидером естествознания выступала физика. В XX в. эта роль постепенно переходит к биологии. Методологические установки являются составной частью ядра, основания конкретно-исторического способа познания. Кроме того, понятие «методологические установки познания» теснейшим образом связано с понятием «научная картина мира». Та часть содержания методологических установок познания, которая связана с характеристикой общих черт предмета познания данной науки, является одним из непосредственных истоков научной картины мира. Что такое «научная картина мира»? Научная картина мира — это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественно-научных понятий, принципов, методологических установок. Различают общенаучную картину мира, картины мира наук, близких по предмету исследования (например, естественно-научная картина мира), картины мира отдельных наук (физическая, астрономическая, биологическая и др.). В структуре научной картины мира можно выделить два главных "компонента: понятийный и чувственно-образный. Понятийный представлен философскими категориями (материя, движение, пространство, время и др.) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений, детерминизма и др.), общенаучными понятиями и законами (например, закон сохранения и превращения энергии), а также фундаментальными понятиями отдельных наук (поле, вещество, Вселенная, биологический вид, популяция и др.). Чувственно-образный компонент научной картины мира — это совокупность наглядных представлений о тех или иных объектах и их свойствах (например, планетарная модель атома, образ Метагалактики в виде расширяющейся сферы и др.). Главное отличие научной картины мира от ненаучных картин мира (например, религиозной) состоит в том, что научная картина мира строится на основе определенной фундаментальной научной теории, которая служит обоснованием этой картины мира. Научная картина мира как форма систематизации знания отличается от научной теории. Если научная картина мира отражает объект, отвлекаясь, от процесса получения знания, то научная теория содержит в себе не только знания об объекте, но и логические средства проверки истинности. Научная картина мира играет эвристическую роль в процессе построения частных научных теорий. Понятие способа познания . Понятия «наука», «отдельная отрасль науки», «отдельная наука» достаточно общие и абстрактные. Конкретный анализ исторического развития и функционирования научного познания предполагает введение понятия способа познания. Способ познания — это исторически определенная и целостная система (эмпирических и теоретических) средств исследовательской деятельности, призванная отражать содержание определенного целостного «среза» объективной реальности (предмета, объекта познания). Основные компоненты способа познания: фундаментальная теория (принципы, правила логического вывода и доказательства, совокупность выведенных следствий, утверждений и др.), Массив эмпирических данных (фактов, закономерностей), которые должны быть обобщены теорией; идеалы, ценности, методы познания; система методологических установок познания в данной науке. Основанием, ядром способа познания выступают принципы фундаментальной теории в единстве с методологическими установками познания. История каждой отдельной науки (физики, астрономии, биологии и др.) может быть представлена как история формирован эволюционного развития и революционной смены ее конкретно-исторических способов познания. Эволюционные и революционные периоды развития науки. В истории естествознания четко выделяются эволюционные и революционные периоды развития. К великим научным революциям можно причислить коперниканскую революцию, ньютонианскую революцию, дарвиновскую революцию, революцию в естествознании на рубеже XIX—XX вв. и др. Революции в естествознании связаны с изменениями способа познания. Научная революция — это закономерный и периодически повторяющийся в истории науки процесс качественного перехода от одного способа познания к другому, отражающий более глубинные связи и отношения природы. В ходе научной революции происходит, выделение качественно нового типа объектов, резкое изменение системы методологических установок познания, идеалов познания, критериев оценки результатов познания, имеет место критика старых и утверждение новых ценностей познания. Научная революция имеет свою структуру, основные этапы развития *. * См.: Найдыш В.М. Научная революция и биологическое познание: философско-методологический анализ. М., 1987. Первый этап научной революции — формирование непосредственных предпосылок (эмпирических, теоретических, ценностных) нового способа познания в недрах старого. Оно осуществляется в русле образования и попыток разрешения некоторой проблемной ситуации в науке. Такая проблемная ситуация развивается от осознания потребности в новом способе познания до формирования идеи о содержании его основания. Второй этап научной революции нацелен на непосредственное развитие оснований нового способа познания. Он начинается с выдвижения идеи (т.е. с того, чем заканчивается первый этап), продолжается ее развитием вплоть до формулирования принципов фундаментальной теории и завершается выработкой методологических установок познания. Третий этап научной революции — утверждение качественно нового способа познания. При этом старый, исходный способ познания превращается в подчиненный момент нового способа познания. В реальной практике научного познания на данном этапе осуществляются проверка, применение, подтверждение новой фундаментальной теории, уточнение ее соответствия предшествующему теоретическому знанию и данным нового эмпирического базиса, а также новым методологическим установкам познания. Этапом утверждения оснований нового способа познания, превращения его в устойчивую стабильную делостность завершается период научной революции и начинается период эволюционного развития науки. На эволюционном этапе своего развития наука опирается на сложившийся в ходе научной революции новый способ познания (парадигму, фундаментальную теорию), основания которого принимаются учеными уже без существенной критики как новый, мощный и действенный инструмент познания. Основные исторические периоды развития естествознания 1. НАКОПЛЕНИЕ РАЦИОНАЛЬНЫХ ЗНАНИЙ В СИСТЕМЕ ПЕРВОБЫТНОГО СОЗНАНИЯ Как мы уже отмечали, наука — это определенная историческая форма незнания. Она складывается в древнегреческой цивилизации в первом тысячелетии до н.э. как результат длительного развития познавательной деятельности в эпоху первобытной родовой общины и первых цивилизаций Древнего Востока. Накопление донаучных рациональных знаний о природе началось еще в первобытную эпоху. Следует отметить, что познавательная деятельность, духовное освоение мира, духовное творчество — важнейшие обстоятельства, которые окончательно вырвали человека из-под влияния биологических факторов эволюции, из биологического мира. О громадной жажде познания первобытных людей свидетельствуют археологические и этнографические данные. Как писал выдающийся исследователь духовной культуры первобытных племен К. Леви-Строс, «жажда объективного познания образует один из наименее учитываемых аспектов мышления тех, кого мы называем «примитивными». Если оно (это мышление) редко направляется к реальностям того же уровня, к каковым привязана современная наука, то подразумевает все же сопоставимые интеллектуальные действия и методы наблюдения. В обоих случаях мир является объектом мысли, по меньшей мере настолько же, как и средством удовлетворения потребностей» *. Многие данные говорят о том, что потребность познания — одна из фундаментальных потребностей человека, начиная с эпохи верхнего палеолита. * Леви-Строс К. Первобытное мышление. М., 1994. С. 114—115. Для того чтобы представить себе картину первобытного познания, необходимо прежде всего учесть, что духовный мир первобытного человека, первобытное сознание, т.е. сознание человека эпохи первобытной родовой общины, было двухуровневым: 1) уровень обыденного, повседневного, стихийно накапливающегося знания; 2) уровень мифотворчества (мифологии) как некоторой «дотеоретической» формы систематизации обыденного, повседневного знания. 1.1. Повседневное, стихийно-эмпирическое знание Первобытное обыденное, повседневное сознание было достаточно емким по содержанию. Оно включало очень много конкретных знаний о той среде, в которой человек жил, боролся за свое существование, совершенствовал (хотя и медленно) орудия труда. Первобытный человек поразительно тонко знал окружающую его местность. Так, приморские народы — смелые мореплаватели, прекрасно знали морские течения и направления ветров, расположение островов и архипелагов, великолепно ориентировались по звездному небу, находя свой путь в океане. Люди, жившие в тайге, отлично знали ее законы, природу, повадки животных, могли уходить на промысел зверя в тайгу на долгое время, безошибочно ориентироваться в ней и т.д. На поздних этапах эпохи первобытной родовой общины появились первые способы воспроизведения географического пространства, зачаточные формы географических карт. Наиболее ранней формой были вырезанные на оружии, копьеметалках и др. изображения центров тотемического культа, расположенных на территории общины. Географические схемы, вычерчивавшиеся часто просто на земле, изображали стоянки, водоемы, места кочевок, тотемических святилищ и др. Особенно интересной формой древних географических карт были словесные географические карты и карты-песни, в которых последовательно назывались (распевались) горы, скалы, тропинки, водоемы и расстояния в днях пути между ними. В практической повседневной деятельности человек постепенно накапливал разнообразные знания не только о географической местности, в которой он проживал, но и о животных, растениях, о самом себе. Наскальные и пещерные рисунки верхнего палеолита позволяют сделать вывод, что в те далекие времена люди не только xopoшо различали большое число видов животных, но и были хорошо знакомы с их анатомией: сохранились рисунки головы быка с отходящим от нее позвоночным столбом, слона, у которого в области груди изображено сердце, и др. Первобытный человек хорошо знал повадки животных, что позволило ему позднее перейти к одомашниванию животных (доместикации). Первым таким животным была собака, оказывавшая существенную помощь на охоте. (Развитие доместикации позднее привело к переходу от присваивающего хозяйства к производящему.) Первобытный человек хорошо ориентировался и в свойствах растений, особенно лечебных и токсических. На основе векового опыта народов были накоплены достаточно точные и ширные знания о лекарственных свойствах растений. Например американские индейцы хорошо знали жаропонижающие, наркотические, психотропные средства, анестетики, а аборигены Австралии хорошо знали и употребляли в пищу свыше 200 видов растений, 4 которых использовалось еще и в лечебных целях. Первобытный человек не только накапливал знания о флоре и фауне, но и пытался их классифицировать. Так, ботанический словарь племени хануну (Филиппины) достигает двух тысяч названий; тысячи видов насекомых объединены в 108 групп, и каждая имеет свое название *. У первобытных племен Австралии также были развиты сложные системы классификаций родства. * По словам Леви-Строса, «на нынешнем этапе познания цифра 2000 выглядит вполне соответствующей в качестве порядка величины, нечто вроде порога, вблизи которого находятся этнозоологические или этноботанические возможности памяти и способности к определению, основанные на устной традиции» (Леви-Строс К. Указ. соч. С. 233). Первобытный человек хорошо знал и анатомию человека. В далекой древности зародилась и первобытная медицина, вырабатывались разнообразные средства лечения и самолечения, даже приемы примитивной хирургии: перевязка, лечение ран и переломов, вывихов, вплоть до хирургических операций на черепе. Первобытная культура синкретична, в ней еще тесно переплетаются познавательная, эстетическая, предметно-практическая и другие виды деятельности. Интересна, например, следующая история. В одной из почти безжизненных центральноавстралийских пустынь заблудилась группа путешественников-европейцев. Ситуация в тех условиях трагическая. Однако проводник, абориген, успокоил путешественников, заявив примерно следующее: «В этой местности я раньше никогда не был, но знаю ее... песню». Следуя словам песни, он вывел путешественников к источнику. Этот пример ярко иллюстрирует глубинные истоки единства науки, искусства и повседневного обыденного опыта. Одна из особенностей развития первобытного сознания — формирование способности отражать и выражать количественные характеристики действительности. Становление категории количества, способности количественного исчисления предметов являлось важнейшей чертой развивающегося первобытного сознания. И действительно, ведь счет выступает, в сущности, первой теоретической деятельностью рассудка, абстрактной способностью мышления. Развитие способности счета — главный показатель уровня развития абстрагирующей, обобщающей, теоретической стороны человеческого сознания. Проблема происхождения первоначальной способности человека к счету — одна из интереснейших в проблематике первобытной культуры. Загадочность этого явления неоднократно использовалась в качестве главного аргумента для разного рода мистических трактовок истории человеческого мышления. Достижения археологии, антропологии, истории и других наук (особенно в XX в.) позволяют воспроизвести в общих чертах картину процесса становления количественных представлений и систематического счета в первобытном обществе *. * См.: Фролов Б.А. Числа в графике палеолита. Новосибирск, 1974. Прежде всего следует указать на три главные предпосылки становления количественных представлений, способности счета. Первая — это повседневная практическая деятельность человека многообразие действий человека по разделению целого на части (изготовление орудий труда, разделение добычи, туш животных и др.) и сложение некоторого целого из частей (строительство жилища, составные орудия и т.п.). Такие повседневные практические действия повторялись первобытным человеком многократно, являясь необходимой стороной его повседневной жизнедеятельности. Вторая важная предпосылка — природные ритмы , в особенности взаимосвязи ритмов человеческого организма (включая и его физиологические ритмы) с ритмами природной среды. И третья важная предпосылка — познавательная процедура сравнения , выделения качественно определенных характеристик природных предметов и соотнесение их между собой. Процедура сравнения исторически сложилась на базе психики высших приматов еще в условиях первобытного стада. В процессе своего исторического становления долгое время первобытный человек ориентировался в окружающей среде, имея возможность отражать и фиксировать лишь качественные (а не количественные) свойства предметов. При этом, очевидно, важную роль играла образная память. Для нормальной жизнедеятельности в узких рамках потребностей и возможностей нижнепалеолитического хозяйства (на достаточно длительном историческом промежутке времени — около 2 млн лет) было вполне достаточно выделения и запоминания качественных признаков вещей. (По этнографическим cвидетельствам, оленеводы Северной Азии, не умея пересчитать количество оленей в стаде, состоящем из нескольких сотен голов, тем не менее знали индивидуальные признаки каждого оленя в стаде.) Исторически первой формой становления количественных представлений являлась, очевидно, абстрактная фиксация качественного своеобразия некоторого множества, состоящего из отдельных предметов, свойства которых хорошо усвоены субъектом. Так, первобытный оленевод сразу же определял отсутствие в стаде оленей нескольких особей, индивидуальные признаки которых ему хорошо известны. Важнейший этап (и условие) выработки понятия о счете связан с ситуациями, в которых человек вынужден соотносить элементы одного множества однотипных вещей (предметов) с элементами другого, качественно иного множества. Цель такого соотнесения — констатация равенства (или неравенства) этих множеств (групп) предметов. Такие процедуры постоянно возникали в условиях уравнительного распределения внутри общины, а также в условиях межобщинного обмена (например, аборигены Австралии меняли определенное число рыб на определенное число съедобных кореньев). Революционным по своей значимости шагом в развитии систем счета (понятия количества) стало введение в процедуру соотнесения элементов двух различных множеств некоторого третьего множества, являющегося опосредующим звеном между двумя исходными (т.е. подлежащими сравнению). В качестве такого третьего опосредующего звена могли выступать самые различные естественные вещи, например, природные предметы: четыре части света, простейшие парные отношения (тепло и холод, день и ночь, восход и заход и др.), раковины, палочки, камешки и др. Для измерения времени наиболее удобны природные ритмы, их совпадение с ритмами человеческого организма, ритмами хозяйственной жизни. Такая опосредующая система должна быть удобной для коллективного пользования, т.е. понятна и приемлема для всех членов первобытных родовых общин. Этнографическими исследованиями зафиксировано множество примеров использования племенами Австралии и Африки приемов счета, построенных на подобного рода «естественных» системах отсчета. Заметим, что в каждой родовой общине складывались свои системы счета. Следующий исторический этап развития количественных понятий (систем счета) связан с заменой естественных посредников искусственными. В качестве их выступали зарубки, нарезки, насечки на палках, костях или других предметах, узелки, полосы краски и т.п. Так исторически формируется система искусственных «предметов-посредников», выражающая собой значения абстрактных количественных отношений. Этот этап развития счета хорошо изучен археологией, историей первобытного общества, этнографией. Известно достаточно много знаково-символических изображений эпохи верхнего палеолита, имевших, по-видимому, математическое значение. Одна из характерных особенностей данного этапа состояла в том, что он непосредственно способствовал зарождению древнейших астрономических представлений, первобытной астрономии. И наконец, завершение становления систем счета (количественных представлений действительности) связано с разработкой понятия числа. Абстрактное понятие числа выражает количественные отношения уже независимо от реального содержания, от конкретных, вещественных признаков совокупностей предметов. Весьма интересен вопрос о зарождении астрономических знаний. В последнее время в понимании истоков первобытной астрономии произошли значительные изменения. Ранее истоки развития астрономии связывали лишь с древними цивилизациями Востока (IV- III тыс. до н.э.). Но за последние 20—30 лет археологами накоплен значительный материал, позволяющий утверждать, что еще в палеолите происходило накопление астрономических знаний. В верхнепалеолитических стоянках в разных частях Европы и Азии найдены наскальные изображения, браслеты, пряжки, изделия из бивня мамонта и т.п., которые содержат ритмически повторяющиеся нарезки и ямки. Анализ этих изображений показал, что их структура и подразделения соответствуют лунным циклам, т.е. они представляют собой древнейшие формы первобытного календаря (10 лунных месяцев около 280 суток). Например, браслеты устроены так, что особым образом выделяется число 7. (Ведь 7 суток — длительность одной фазы Луны.) Еще в эпоху мустье (около 100—40 тыс. лет назад) зародилась традиция наблюдения за небесными явлениями, порожденная практикой сезонных промыслов. На стоянках неандертальцев (в пещерах (результаты этих наблюдений фиксировались в разного рода астральных рисунках (круг, крест, группы ямок и др.). В верхнем палеолите (40—10 тыс. лет назад) астральные рисунки усложняются, отражая довольно сложные закономерности поведения Луны, Солнца и др. Около 20 тыс. лет назад существовали определенные приемы счет времени по Луне и Солнцу. Большое значение в фиксации регулярно повторяющихся небесных явлений имело совпадение ритмов природных процессов и общественной жизни, ритмов природы и физиологии человеческого организма. При этом зачатки биологических, астрономических и математических знаний возникают в синкретическом единстве. Календарь для людей верхнего палеолита был не самоцелью, средством решения практических задач, концентрировавшихся вокруг промысла, быта и воспроизводства родовой общины. Ритмика природы (астрономических явлений), ритмика организма человек и ритмика производственной деятельности первобытного социального коллектива связывались между собой. Периоды интенсивного промысла требовали единой регламентации поведения членов родовой общины. Эти периоды чередовались с периодами снятия запретов и сезонными празднествами, т.е. с другой формой поведения. Жизнь охотничьей общины была тесно связана также с циклическими изменениями живой природы, одним из которых были сроки беременности основных видов промысловых животных. Для первобытного человека фундаментальными основами бытия выступали циклическая динамика промысловой, производственной деятельности и динамика воспроизводства человеческого коллектива. Причем природные ритмы выступали наиболее удобным мерилом (единицей отсчета), позволяющим разграничивать качественно различные периоды жизнедеятельности первобытного человека. Процессы воспроизводства человека (само существование первобытного коллектива) и процессы воспроизводства животных (как главного предмета промысловой деятельности) соотносились с динамикой, цикличностью в движении небесных тел. В этом отождествлении, пожалуй, и кроются корни олицетворения небесных тел в образах животных. Сейчас у нас широко известны традиции восточного календаря связывать каждый год с названием одного из зодиакальных созвездий, обозначаемых именами животных. Образные (как правило, зооморфные) обозначения многих созвездий сложились еще в палеолите. Об этом свидетельствует, в частности, одинаковые наименования ряда созвездий у народов Австралии, индейцев Америки, коренного населения Сибири и в античном Средиземноморье. Астрономическое познание зарождалось не только в единстве с биологическим, но и в единстве с математическим знанием. Число не имело тогда еще своего самостоятельного, абстрактного значения. Оно обязательно связывалось с неким конкретным природным процессом, множеством. Отсюда, в частности, и истоки числовой магии, мистификации чисел в их связи с какими-либо природными событиями, процессами. Интересно, например, отметить, что число 7 («магическая семерка») вообще имело в первобытной культуре особое значение: оно связывалось с лунными ритмами (которые трактовались как «рождение» и «умирание» Луны на небе); со структурой Космоса (четыре стороны света + три части «мирового дерева», т.е. корень, ствол, верхушка); с ритмами деятельности самого человека. Фундаментальные свойства физиологии и психики человека также нашли свое отражение в формировании первичных абстракций и количественных понятий первобытного человека. В частности, важная роль числа 7 в астральных мифах и ритуалах палеолита определяется закономерностями психики человека: в экспериментальной психологии постоянство границ оперативной памяти и внимания определяется обычно числом 7 (или 7 ± 2). Кроме того, целая серия прямоугольных фигур в искусстве палеолита имеет пропорции 1:0,62. Это соотношение то же, что и экспериментально установленное в психологии пороговое отношение в процессе восприятия (закон Вебера — Фехнера). Среди множества разнообразных систем счета (после длительногo предварительного их отсева) в итоге преимущественно закрепляется десятеричная система. Это, безусловно, нельзя считать случайным: 10 лунных месяцев беременности, что для эпохи матриархата было очень важным природным ритмом; 10 пальцев рук как главного естественного орудия труда, связывающего предмет труда и цели деятельности человека, и др. Таким образом, в системе сознания первобытной родовой общины на уровне повседневного стихийно-эмпирического знания был накоплен значительный массив первичных сведений о мире, сложились важные исходные абстракции (и среди них — абстракция количества), разработаны системы счета, календари, зафиксированы простейшие биологические, астрономические, медицинские и другие закономерности. Рациональное знание, накопленное в эпоху первобытной родовой общины, было тем пьедесталом, на котором надстраивалась и развивалась протонаука древнего мира. Мифологическая картина мира . Высшим уровнем первобытного сознания являлась мифология. Мифология — это некоторый «дотеортический» способ обобщения, систематизации стихийно-эмпирических, обыденных знаний. Миф есть прежде всего способ обобщения, мира в форме наглядных образов . В первобытности отдельные стороны, аспекты мира обобщались не в понятиях, как сейчас, а в чувственно-конкретных, наглядных образах. Совокупность связанных между собой таких наглядных образов и выражала собой мифологическую картину мира. В качестве оснований, связывающих между собой наглядные образы в мифологии, выступали аналогии с самим человеком, с кровно-родственными связями первобытной общины. Человек переносил окружающую его действительность собственные черты. В мифе очеловечивалась природа. Для мифа природа есть поле действия человеческих сил (антропоморфизм). В мифологическом сознании мир мыслился как живое, одушевленное существо, живущее по законам родовой общины; мир представлялся некоторой общинно-родовой организацией. Картина мира выступала аналогией картины того рода, в котором сложился данный миф. В мифологическом сознании человек не выделяет себя из окружающей среды. Для мифа характерно неразличение объекта и мысли о нем; вещи и слова; вымысла, фантазии и действительности; вещи и свойств; пространственных и временных отношений; правды и «поэзии» и др. Миф нес в себе не только определенное обобщение и понимание мира, но и переживание мира, некоторое мироощущение. Миф всегда сопровождается переживаниями, открытыми чувственно-эмоциональными состояниями. В мифе обобщались и выражались желания, ожидания, страдания человека, его эмоциональные порывы. Для мифа свойственны не только высокая эмоционально-аффективная напряженность, но и значительный динамизм воображения, иконическая полнота воспроизведения содержания памяти, синкретичность и полифункциональность наглядно-чувственных образов. Своеобразие мифологии в том, что она не нацелена на выявление объективных закономерностей мира. Миф выполняет функцию установления идеального (не осознаваемого как реальное) равновесия между родовым коллективом и природой. В мифе нет различия между реальным и сверхъестественным. И поэтому миф как бы достраивает реальные родовые отношения в общине идеальными мифологическими образами, заполняя ими «пропасть» между человеком и природой. Этим самым между природой и человеком как бы поддерживается некоторая гармония, равновесное отношение. В мифологическом понимании мира случайное, хаотическое, единичное, неповторимое не противостоит необходимому, закономерному, повторяющемуся. В мифологии выделение черт предмета определяется не его объективными характеристиками, а субъективной позицией хранителя мифа (шамана, колдуна и др.), в русле его индивидуальных ассоциаций. Способ обобщения строится на основе подражания увиденному. Главным средством обобщения выступают умозаключения по аналогии (учитывающие не столько объективные мерты предмета, сколько субъективные особенности ситуации поведения). В мифологии имеет место неполная обратимость логических операций (если А + В = С , то для первобытного сознания (С-В ) может быть и не равно А). Как следствие этой черты — нечувствительность мифа к логическим противоречиям. Таким образом, мыслительная деятельность на уровне мифологического сознания качественно отлична от понятийно-мыслительной деятельности эпохи цивилизации. Основные черты наглядно-образного мифологического мышления: • преобладание умозаключений по аналогии; • обобщение на основе подражания; • недецентрированность (или эгоцентризм) отражения; • неполнота обратимости логических операций и нечувствительность к логическому противоречию; • неразличение случайного, единичного, неповторимого и необходимого, общего, повторяющегося. К этим чертам можно добавить и еще ряд черт — трансдуктивный характер связи абстракций (наряду с дедукцией и индукцией); определение предмета по одной его несущественной характеристике; характеристика объекта не на основе выявления соподчинения и иерархической организации его свойств, а посредством простого соединения, связывания известных его свойств (вперемешку как существенных, так и несущественных) и др. Этнографические исследования показали, что в системе наглядно-образного мышления предметы классифицировались не путем логических операций, а через наглядные представления об участии предметов в практической ситуации. Так, в наглядно-образном мышлении, во-первых, имело место недоверие к исходной посылке силлогизма, если она не воспроизводит наглядный личный опыт; во-вторых, посылка силлогизма не имела для испытуемых всеобщего характера и трактовалась как частное положение; в-третьих, силлогизм легко распадался в испытуемых на три независимых, изолированных частных положения, не связанных в единую логическую систему; в-четвертых, вопросы, направленные на анализ личных качеств испытуемых, либо вовсе не воспринимались, либо относились к материальному положению или бытовым ситуациям, в которые был включен испытуемый. Мифологическое мышление еще не может обеспечивать логико-понятийное освоение объективных связей и отношений мира. Но в то же время миф есть и некоторое особое объяснение мира. Его особенность определяется прежде всего своеобразными трактовками причинности, пространства и времени. Объяснить какое-либо событие с точки зрения мифологии — значит рассказать о том, как оно произошло, как оно было сделано, сотворено в прошлом. Причинные связи (как и все другие) первобытный человек выделял в своей деятельности, но фиксировал их как связи между целями и результатами своей деятельности. Поэтому и саму причинность он представлял сначала лишь как волевое действие, акт некоторого созидания. В мифе существует также свое, особое мифологическое время и мифологическое пространство. Мифологическое время — это некое далекое прошлое, которое качественно отличается от настоящего, от современности. Вместе с тем мифологическое прошлое — это некая модель, образец современных событий. В мифе все современные события происходят по аналогии с событиями далекого мифологического времени. И только из этой аналогии могут быть объяснены. Мифологическое время легко переходит в мифологическое пространство и наоборот. Мифологическое пространство — это пространство родовой жизни, часть мира, в которой появился и функционирует данный род со своим определенным тотемом, т.е. родоначальником, в качестве которого выступает некая вещь — животное, растение или даже неорганический предмет. Время жизни рода и его тотем определяют мифологическое пространство рода. В этом пространстве можно легко перейти из прошлого в настоящее и наоборот — из настоящего в прошлое. Силы, породившие данный род, не исчезли, они продолжают существовать. И человек верит, что может легко перейти из пространства окружающих его физических вещей в пространство тех тотемных сил, которые сотворили в прошлом самого человека, его род, общину (в частности, от смерти к жизни и от жизни к смерти и др.). Таким образом, вся система мифологического объяснения построена на убеждении в реальности мифа, событий мифологического времени и пространства. Отсюда такая черта мифологического объяснения, как его беспроблемность: миф как некоторое миропонимание не нуждался в проверке и обосновании. Важно также отметить и повествовательность мифа. Мифологическое объяснение есть некоторое повествование, развернутый рассказ о совокупности и последовательности прошлых событий. Повествовательность мифа стала источником народных эпосов, а затем и эпического искусства. Но миф не был застывшей совокупностью образов. Миф предполагал определенный динамизм, который проявлялся в постоянном взаимодействии образов, их соотнесении. Важнейшей стороной взаимодействия мифологических образов выступало выявление их противоречивых сторон. Внешние отношения природной среды воспроизводятся мифом в виде бинарно-ритмических оппозиций. Среди них: пространственно-временные (день — ночь, верх — низ, право — лево, небо — земля и др.); социальные (мы — они, старшие — младшие и др.); на стыке природного и культурного миров (огонь — вода, вареное — сырое и др.), цветовые (красное — белое — черное и др.) и проч. Вещам окружающего человека мира (обрядам, предметам быта, одежде, жилью, орудиям труда, украшениям и др.) система мифов придавала определенную символическую значимость, ценность. В мифологическом сознании вещи носили иерархизированный характер. Мифы как бы накладывали на вещи социальные характеристики. Все значимые для человека вещи выступали реализацией некоторого мифического замысла. Миф выступал и как совокупность чувственных образов, и как неразрывно связанная с такими образами система ценностей . Мифологическая система ценностей определяла знаково-символический статус вещей, поступков людей. В мифе была отражена некоторая система протоморальных регулятивов, норм и ценностей. Миф, как и само первобытное общество, исторически изменялся. Ранние мифы — краткие, примитивные, сюжетно неразвернутые, очень простые по содержанию. Бинарно-ритмические оппозиции в самых древних мифах — простейшие, не имеют логических связей, переходов. В наиболее древних мифах мир, Земля, Вселенная часто изображались в облике животного; так, Земля мыслилась как огромный космический зверь. Это было так называемое зооморфное видение мира. В соответствии с ним Земля, Вселенная произошли из тела животного. В качестве такого животного выступали мамонт, бык, лошадь, черепаха, огонь, кит, птицы и т.п. Зверей рассматривали как демиургов (творцов) мира. Каждое из этих животных являлось тотемом, олицетворявшим данный род. Например, в древнеиндийских сочинениях присутствует изображение Вселенной в образе жертвенного коня: «Утренняя заря — это голова жертвенного коня, солнце — его глаз, ветер — его дыхание... небo — его спина, воздушное пространство — его брюхо, земля — его рот, страны света — его бока... дни и ночи — его ноги, звезды — его кости, облака — его мясо, пища в желудке — это песок, реки — его жилы, печень и легкие — горы, травы и деревья — его волосы» *. В северных народов Вселенная нередко изображалась в образе громадного лося. Леса рассматривались как шерсть огромного космическогo лося, животные — как паразиты на его теле, а птицы — как вьющиеся над ним комары. Устав от неподвижности, лось время от времени переступает с ноги на ногу, вызывая тем самым землетрясения. Можно привести множество зооморфных мифов, отдельные из которых имели распространение вплоть до сравнительно недавнего времени. * Брихадараньяка Упанишада. М., 1964. С. 67. Большое распространение в первобытных мифах имел также образ мирового дерева. Вселенная представлялась как громадное космическое мировое дерево. В таком дереве четко выявлялись три составные части, каждой из которых соответствовал свой самостоятельный мир. В качестве таких частей выступали: верхушка (где живут духи и боги), столб (скрепляющий огромную махину космоса) и корень (уходящий в землю, на которой живут люди). По такому чудесному дереву можно проникнуть в иные миры Вселенной; дерево — это путь, по которому боги могут спускаться на землю и возвращаться в божественный мир, на верхушку дерева. Образ мирового дерева не только выражал понимание древними людьми структурной организации Вселенной, но и воплощал идею плодородия (животворные водные ключи, плодородная земля, плоды, цветы и другие атрибуты плодородия). Образ мирового дерева был присущ, в частности, славянскому фольклору (сказкам, суевериям, преданиям, легендам). Н.В. Гоголь (большой знаток народных сказаний, легенд, фантастических образов) в повести «Майская ночь» устами героини воскрешает древний образ мирового дерева: «А говорят, однако же, есть где-то, в какой-то далекой земле, такое дерево, которое шумит вершиною в самом небе, и бог сходит по нем на землю ночью перед светлым праздником» *. * Гоголь Н.В. Собрание сочинений: В 6 т. М.. 1952. Т. 1. С. 57. Первобытная мифология развивалась в направлении развертывания, усложнения мифологических сюжетов, обогащения набора исходных образов, более явного выявления логических связей, переходов, а также постепенной замены образов животных и мирового дерева образами людей. Одной из сторон исторического развития мифа был процесс антропоморфизации мифологии, т.е. на смену Вселенной в образе животного или мирового дерева постепенно приходит Вселенная в образе человека. Мироздание в целом приобретает человеческий облик. Такие преобразования мифологии отражали глубинные сдвиги в общинных отношениях при переходе от ранней к поздней родовой общине. Все больше появляется мифов о гигантском космическом первочеловеке, из частей которого и был создан видимый мир. Так, в «Ведах», священных книгах Древней Индии, есть рассказ о Пуруше, первочеловеке, из частей которого появился мир, люди, касты людей и др. В поздних мифологиях усложняются бинарно-ритмические оппозиции. В них появляется все больше опосредующих звеньев, становятся более четкими и осмысленными переходы между ними. Одной из относительно поздних и сложных оппозиций является противопоставление Хаоса и Космоса, т.е. беспорядочного, случайного, неоформленного - закономерному, организованному, стройному, целостному. Эта оппозиция интересна тем, что ее постепенное разрешение приводит к формированию представления о закономерно организованной природе. Такое представление явилось важной предпосылкой становления естественно-научного познания. Вот, например, как изображали происхождение и развитие Космоса древние греки. Вначале существовал лишь вечный, безграничный, темный Хаос, заключавший источник жизни мира. Все возникло из безграничного Хаоса — весь мир и бессмертные боги. Из Хаоса произошла и богиня Земли Гея. Широко раскинулась она, могучая, давшая жизнь всему, что живет и растет на ней. Далеко же под Землей, в ее глубине родился мрачный Тартар — ужасная бездна, полная вечной тьмы. Из Хаоса, источника жизни, родилась и могучая сила, все оживляющая Любовь — Эрос. Так начал создаваться мир. Безграничный Хаос породил еще и вечный Мрак — Эреб и темную Ночь — Нюкту. А от Ночи и Мрака произошли вечный Свет—Эфир и радостный светлый День — Гемера. Свет разлился по миру, и стали сменять друг друга ночь и день. Могучая благодатная Земля породила беспредельное голубое Небо (Уран), и раскинулось Небо над Землей. Гордо поднялись к нему высокие Горы, рожденные Землей, и широко разилось вечно шумящее море. Уран (Небо) взял в жены благодатную землю. От их брака произошли: в первом поколении — Океан и Фетида — богиня всех рек; во втором поколении — Солнце — Гелиос; Луна — Селена; Заря — Аврора; звезды, которые горят на небе; все ветры (северный — Борей, восточный — Эвр, южный — Нот, западный — Зефир) и др. Таким образом, для мифологического сознания характерно перенесение общинно-родовых отношений на природные процессы. Поэтому поиски ответов на вопрос о том, как произошел мир, лежали в плоскости проблемы происхождения общины, рода. А искомые ответы сводились в конечном счете к аналогиям со сменой поколений в пределах рода, племени. В образах богов, героев войн, труда и ремеслa, других чувственно-образных персонификациях обобщались отдельные стороны жизнедеятельности родовой общины. Содержанием космогонических мифов выступали картины происхождения богов, смена поколений богов и их борьба между собой. Таким образом, мифологическая космогония выступала как родоплеменная теория. Магия. Первобытное сознание теснейшим образом связано с обрядом, ритуалом и магией. Магия — важная составная часть духовной культуры первобытного общества. Магия — это попытка воздействия на мир (на природу, на человека, на богов-духов) с помощью определенных ритуальных действий, обряда. Магия являлась одним из следствий разложения нижнепалеолитического (первобытное стадо) предметно-действенного сознания (см. раздел 14), на смену которому пришло более развитое мифологическое сознание. Но в духовной ультуре первобытной родовой общины связь сознания с деятельностъю не исчезла, она лишь стала не прямой, непосредственной, а отосредованной. Формой связи мифа и действия выступила магия. Магический обряд, ритуал — это (имеющая определенный смысл в системе данной мифологии) одновременно и составная часть, и репетиция действия. Вся жизнь первобытного человека была теснейшим образом связана с магическими действиями. Первобытный человек полагал, что успех любого действия зависит не столько от объективных условий, его личного мастерства, сколько от того, в каком отношении он находится с теми божественными силами, духами, которые лежат в основе мира, породили его и управляют им. Первобытный миф (в том числе и космогонический) не только рассказывался, но и воспроизводился ритуальными действиями (ритуальными плясками, обрядами, жертвоприношениями и т.п.), магическими обрядами. Собственно говоря, миф в значительной степени и выступал как способ объяснения этих ритуальных действий. Участники такого обряда-праздника «вытанцовывали» представления о жизни и смерти, об отношениях между людьми, между человеком и природой; они как бы приобщались к созиданию мира богами, животными, становились соучастниками творения Космоса из Хаоса. Для первобытного человека происхождение Космоса из Хаоса — это не только (и не столько) «теоретическая» проблема, но и проблема реальной, повседневной жизнедеятельности общины, рода. Иначе говоря, это проблема их реальной социальной практики. «Творение» мира не осталось где-то в далеком прошлом. Поступая определенным (т.е. ритуализированным) образом, человек может поддерживать связи с теми силами (существами), которые сотворили мир. Эти силы не исчезли, они продолжают действовать и сейчас, излучая свою «мощь». И человек в магическом обряде имеет возможность приобщаться к этому могуществу и его использовать. В магии первобытный человек видел важнейшее средство решения тех проблем, с которыми сталкивался. Причем магические процедуры рассматривались не как нечто вторичное, подготавливающее, предварительное для самого действия, а как важнейшая составная (часто — начальная) часть любого действия (охоты, рыболовства, военных действий и др.). Если первобытному человеку не удавалось выполнить такие предварительные магические процедуры (например, при подготовке к охоте), то он не приступал к самому действию. Магическое сознание опиралось на две главные «идейные» предпосылки: • в о - п е р в ы х, на представление о том, что подобное производит подобное (или следствие «похоже» на свою причину); • в о - в т о р ы х, на представление о том, что вещи, когда-либо бывшие в соприкосновении друг с другом, продолжают взаимодействовать и после того, как контакт между ними прекратился. Из первой предпосылки маг, колдун делал вывод, что он может произвести любое желаемое действие путем простого подражания ему. Из второй предпосылки для мага следовало, что все то, что он проделывает с предметом, окажет воздействие на людей, которые однажды с этим предметом были в соприкосновении. Наиболее верным способом решения магических проблем считалось тщательное соблюдение обрядности, традиционности действия. В этом кроются, между прочим, истоки консерватизма мифологического познания мира. Глубинной же базой преодоления консерватизма выступает развитие предметно-практической активности, возрастание преобразовательных возможностей человека *. * Эта закономерность проявилась уже в первобытном обществе. Как показали этнокультурные исследования, преодоление традиционализма, консерватизма успешнее шло в тех обществах, где поощрялся активный манипуляционный подход к физическому миру, где оценка действия осуществлялась с точки зрения его результата. И менее успешно консерватизм изживался в тех обществах, где в действии, поступке прежде всего усматривали определенное личностное отношение к тем или иным членам коллектива. С разложением первобытно-общинного строя магия не исчезла полностыо. Она послужила почвой для возникновения в дальнейшем различных ритуализированных действий типа колдовства, чародейства, волшебства, гадания (хиромантия,астрология, каббала и др.), магических заговоров и проч. Значительный магический компонент есть в любой религии. Магия послужила также одним из источников средневековой алхимии. Определенное воздействие магии в эпоху возрождения испытывала на себе и наука. 2. НАУКА В ЦИВИЛИЗАЦИЯХ ДРЕВНОСТИ Научным познание мира становится на новом уровне исторического развития, пришедшем на смену эпохе первобытной родовой общины — на уровне цивилизации. Переход от мифологического к научному познанию был сложным, многообразным, противоворечивым процессом, растянувшимся на многие тысячелетия. 2.1.1. Неолитическая революция В X—IX тыс. до н.э. наметился переход к качественно новому этапу развития каменного века, получившему название неолита — нового каменного века. Неолит характеризуется прежде всего значительным совершенствованием техники обработки камня. Усложнились операции по обработке камня — появились сверление, шлифование, распиливание и другие операции. С их использованием создавались совершенно новые специализированные и высокопроизводительные виды каменных орудий, а также орудий из дерева и кости. Была изобретена технология производства тканей и глиняной посуды. Появились и совершенствовались первобытные транспортные средства (сани, лыжи, лодки). Значительно повысилась производительность труда. Хотя в мезолите стало более интенсивным собирательство и были освоены приемы специализированной охоты, чему соответствовал, в частности, особый быт, позволявший создавать сезонные, периодически заселявшиеся поселения, тем не менее охота и собирательство постепенно исчерпывали свои возможности — им на смену пришли раннеземледельческие культуры. Все эти и другие связанные с ними изменения, включая и такой важный фактор, как накопление опыта и знаний, привели к кардинальному перевороту в системе материального производства, получившему название неолитической революции. Смысл этой революции в системе материального производства состоял в переходе от присваивающей экономики к производящей, т.е. от охоты и собирательства к земледелию и скотоводству. Люди научились сеять хлеб, который обеспечивал бесперебойное питание. В течение всего года, разводить скот, регулярно снабжавший человечка мясом (кроме того, молоком, сыром, шкурами, кожей, шерстью и др.). Жизнь родовой общины стала более обеспеченной, стабильной; люди стали меньше зависеть от природной среды, значительно повысилось общественное благосостояние. Неолитическая революция была первым звеном цепи последовательных преобразований системы общественной жизни, в результате которых в конечном счете возникла цивилизация, а вместе с ней и наука. По современным археологическим данным, первичными очагами земледелия и скотоводства являлись (в разное время) следующие области ойкумены: Передняя Азия, Северо-Восточная Африка, Юго-восточная Азия, Центральная Америка (Мезоамерика) и андийский регион Южной Америки. Наиболее древний из них—Передняя Азия, ее лесостепные и предгорные области. По имеющимся сейчас данным, первым злаком, который люди одомашнили, был ячмень. В X— VIII тыс. до н.э. его уже сеяли в Малой Азии, на западных склонах Иранского нагорья и Палестине. В малоазийском культурном комплексе Чатал-Хююк (вторая половина VII — первая половина VI тыс. До н.э.) культивировались уже 14 видов растений, среди которых главную роль играли пшеница, ячмень и горох. Но в горных условиях земледелие мало продуктивно. Только в результате миграционных движений в речные долины субтропического пояса земледелие получило простор для своего победного развития. За 4000 лет земледелие распространилось по всей западной части Старого Света. Основным орудием древних земледельцев была сначала палка-копалка для рыхления почвы. В дальнейшем (но не везде) к ней добавилась мотыга (палочно-мотыжное земледелие). Скотоводство сложилось на две тысячи лет позже, но тем не менее земледелие, по-видимому, никогда не было единственной формой хозяйства; на ранних этапах своего становления оно комбинировалось с охотой. Помощником человека на охоте выступала одомашненная еще в верхнем палеолите собака. В VII—VI тыс. до н.э. в Средней Азии, Северной Африке и на Балканах были одомашнены продуктовые животные, поставщики мяса (мелкий рогатый скот, свиньи, коза, овца и др.). Несколько позже были одомашнены крупный рогатый скот, тягловые животные (осел, верблюд, северный олень, лошадь), которые были основным источником механических усилий до появления первых машин. Переход первобытных общин к земледелию и скотоводству — достаточно длительный процесс, сопряженный со значительным изменением образа жизни — переходом к оседлости. Закономерно, что на первых порах новые формы хозяйства (земледелие и скотоводство) сочетались со старыми (охотой и собирательством), занимая подчиненное место как второстепенный уклад. Длительность такого сосуществования двух укладов (присваивающего и производящего) определялась конкретной (природной и социальной) обстановкой, в которой жила и трудилась родовая община. Переход к производящему хозяйству происходил быстрее там, где складывались неблагоприятные условия для охоты и собирательства, где кризисные ситуации, а также высокая плотность населения, не позволявшая использовать традиционные способы добычи пищи, ставили человека перед необходимостью радикально изменять обстоятельства жизнедеятельности, способствовали появлению культурных и социальных инноваций. В разных регионах земледелие возникало в различных природных и социально-культурных условиях. Поэтому и первичные системы земледелия были различными. Наиболее продуктивным было лиманное земледелие, развитие которого привело (в VII тыс. до н.э.) к ирригационному земледелию. В Двуречье в условиях искусственного орошения урожай ячменя был устойчивым и достигал достаточно высокого уровня — до 1200—1400 кг/га. В Древнем Шумере урожай с 1 га мог прокормить три семьи, а обработка такой площади занимала всего лишь 40—50 рабочих дней. Помимо лиманного получило развитие богарное земледелие (когда посевы производились накануне дождей). В некоторых регионах для повышения плодородия траву и кустарники предварительно поджигали — так закладывалось паловое земледелие, которое впоследствии в лесистых зонах привело к подсечно-огневому земледелию. Дальнейшее развитие земледелия было связано с его интенсификацией — освоением новых приемов земледелия (чередование посевов различных культур, применение удобрений, совершенствование рыхления почвы, появление огородничества, садоводства и т.п.), переходом от палочно-мотыжного земледелия к пашенному (V— IV тыс. до н.э.). Усложнение земледельческой техники и всего земледельческого производства привело к более широкому участию в нем мужской части населения общины. Более интенсивно стал применяться детский труд. Параллельно и в тесной связи с земледелием развивалось скотоводство. На ранних этапах оно характеризовалось, по-видимому, содержанием небольших поголовий в основном мелких животных (козы, овцы, свиньи и др.). В дальнейшем этот комплекс дополнился и животными более крупных видов (буйволы, ламы, крупный рогатый скот). Уход за скотом сводился к минимуму, скот находился преимущественно на вольном выпасе. В дальнейшем появилось стойловое содержание скота; и уже относительно поздно — кочевничество (номадизм). Доместикация животных содействовала развитию транспортных средств. Если еще в мезолите лодки стали универсальным видом транспорта, осваивались водные артерии, для передвижения широко использовались лыжи и санный транспорт, то в эпоху неолита для передвижения саней и волокуш начали использовать домашних животных (лошадь была одомашнена в IV тыс. до н.э., а верблюд — в V тыс. до н.э.). Уже на самых начальных стадиях скотоводства стихийно возникает искусственный отбор лучших особей на племя. В III тыс. до н.э. с появлением колесных повозок осуществился по пути революционный переворот в средствах транспорта. Скорость передвижения больших коллективов людей увеличилась почти в 10 раз (с 3,7 до 35—38 км/ч) и появилась возможность для далеких миграций значительных масс людей и даже целых этносов. Складываются предпосылки для возникновения развитых форм номадизма. Этот революционный переворот нашел отражение в мифологии кочевников — появились мифологические образы колесницы, запряженной лошадьми (Солнце как символ колеса, колесница бога Солнца и др.). Продолжает значительно изменяться и образ жизни земледельцев, их быт. Упрочилась оседлость. Совершенствовалось домостроительство — дома стали более прочными, долговременными, благоустроенными. Уже в VII тыс. до н.э. (культурный комплекс Иерихон А) внутренняя часть дома, построенного из сырцового кирпича, состоит из нескольких частей, разделенных перегородками. Одни из них предназначены для жилья, другие играют роль хозяйственных складов и закромов. Пол жилых помещений оштукатурен, зачастую окрашен или даже покрыт росписями, нередко укрыт циновками, которые плелись костяными орудиями. В разные цвета окрашены стены. Между домами располагались небольшие дворики, где находился очаг и приготовляли пищу. Из глины лепились фигурки людей и животных, которые и носили культовый характер, и украшали жилье. Рост благосостояния, материальной обеспеченности, надежность нового образа жизни, относительное жизненное благополучие по сравнению с кочевым охотничьим бытом, его зависимостью от стихии случайностей — все это нашло свое отражение и в первых письменных памятниках. Так, например, в «Авесте», священной книге древнеперсидской религии зороастризма, создававшейся во II тыс. до н.э., следующим образом восхваляется новый образ жизни: «Какое место на земле является наилюбезнейшим? — Поистине там, где праведный человек... воздвигает дом, наделенный огнем и млеком, женой, детьми и хорошими стадами, в этом доме тогда обилие скота, обилие детей, обилие огня и обилие всякого житейского добра, и там... где возделывают побольше хлеба, трав, растений и съедобных плодов, где орошают сухую почву или осушают почву слишком влажную» *. * Литература Древнего Востока. Иран. Индия, Китай. Турция. Тексты. М.,1984. С. 8. Важнейшим экономическим следствием перехода к системе производящего хозяйства явилось возникновение регулярного избыточного продукта. Первобытная родовая община была способна произвести лишь жизнеобеспечивающий продукт, необходимый для поддержания такого существования членов коллектива, при котором человеческий организм не претерпевал патологических изменений, а коллектив не вымирал. Избыточный продукт — это продукт, который превышает минимально необходимые потребности человека и поэтому может свободно отчуждаться, не обрекая общину на гибель. Появление избыточного продукта было,величайшим революционным актом в развитии производительных сил; оно создало предпосылки для коренного преобразования всей системы общественной жизни, перехода к цивилизации на основе общественного разделения труда, эксплуатации, возникновения частной собственности, классов, отделения духовного производства от материального, становления основных форм духовной культуры, в том числе и науки, естествознания *. * Кроме того, избыточный продукт, концентрация значительных пищевых ресурсов в общине, возросший обмен, а вместе с ним и расширение экзогамии привели к значительному росту народонаселения. Этот рост народонаселения часто характеризуют как первую демографическую революцию. Существуют данные о том; что в период с VIII по IV тыс. до н.э. численность населения нашей планеты увеличилась с 5 до 90 млн человек; в районах распространения земледельческих культур средняя плотность,населения по сравнению с эпохой присваивающего хозяйства возрастает с 5—7 человек до 1000 человек на 100 км2. Не удивительно, ведь возникшее в результате неолитической революции скотоводство было продуктивнее охоты в 20 раз, а земледелие — продуктивнее собирательства в 400-600 раз. Освоение металлургии стало мощным локомотивом развития производительных сил, позволившим упрочить, закрепить и развить те социально-экономические сдвиги, которые были достигнуты в ходе неолитической революции, и прежде всего становление ремесла. Применение металлов в материальном производстве, в быту, в средствах транспорта, в военной технике было величайшим, революционным по сути, переворотом в технической вооруженности человека, в развитии производительных сил. В истории развития металлургии очень много еще не вполне ясного, много спорных моментов. И тем не менее в общих чертах этот процесс можно изобразить следующим образом. Еще в палеолите, около 20 тыс. лет назад, в Костенках при производстве темно-вишневых красок путем обжига в костре железистых конкреций из местных песков мелового периода получали в качестве побочного продукта железо. Но общественной потребности в производстве металлов тогда еще не сложилось. Первый металл, который освоил человек, была медь. Исторически первой формой освоения меди была обработка самородной меди, сначала способом холодной ковки, а затем — горячей ковки и отжига. Следующий этап — получение меди из руд и литье. И лишь впоследствии — получение сплавов меди, прежде всего бронзы. Наиболее древний из зафиксированных археологами районов обработки меди — Передняя Азия. Кузнечная обработка самородной меди, добываемой из залежей Эргани (Юго-Восточная Анатолия), зафиксирована на уровне VII тыс. до н.э. Начиная с середины V тыс. до н.э. на Ближнем Востоке, в Иране появляются крупные литые медные изделия — топоры, кинжалы, серпы и др. Пo-видимому, в V тыс. до н.э. начинается плавка медных руд, происходит освоение рудного дела, разработка рудников. Во второй половине V — первой половине IV тыс. до н.э. сложилось бронзолитейное производство (сначала мышьяковистые, а затем и оловянистые бронзы. На первых порах основными медными и бронзовыми изделиями были не предметы хозяйственного назначения (чего, казалось бы, следовало ожидать), а предметы роскоши, престижа — бусины, иглы, пронизки, шилья и т.п., а также оружие. Для массового производства сельскохозяйственных орудий металла просто не хватало; кроме тогo, на ранних этапах становления металлургии престижное использование металлов было монополизировано знатью. Первые зафиксированные археологами железные вещи восходят к первой половине V тыс. до н.э. (Иран) и IV тыс. до н.э. (Египет) были изготовлены методом ковки из метеоритного железа. Освоение рудного железа относят ко второй половине IV — первой половине III тыс. до н.э. (Анатолия). Существует мнение, что рудное железо могло быть вторичным продуктом медного металлургического производства, в котором железная руда использовалась в качестве флюса. На первых порах развития черной металлургии железо ценилось очень дорого, считалось редким металлом и использовалось лишь для изготовления предметов роскоши. Только после открытия технологии науглероживания железа, что делало его значительно тверже, были освоены залежи железных руд (конец II тыс. до н.э., Восточное Средиземноморье), произошел переход к массовому производству железа. А это в свою очередь дало возможность коренным образом преобразовать технику, орудия сельскохозяйственного производства. Использование металлических орудий повышало производительность труда в несколько раз. Железные топоры позволили ускорить наступление человека на леса, облегчали освоение новых пространств и угодий. На основе железного лемеха был создан настоящий плуг и интенсифицировано сельскохозяйственное производство. Кроме того, исключительно важную роль начинает играть ремесленное производство, а также развитие горного дела, истоки которого уходят в эпоху неолита, когда была налажена шахтовая добыча кремния. Следует особо отметить, что для возникновения раннеклассовых отношений производство металла не являлось необходимостью. Раннеклассовые отношения во многих регионах мира сложились на основе дометаллургической, каменной технологии. Использование металлов было побочной, вторичной стороной становления производящего хозяйства, которая имела место далеко не везде; так, в Полинезии классовое общество сложилось вовсе без употребления металла. В эпоху раннеклассового общества металлы использовались не только для совершенствования предметов хозяйственного назначения, сколько для производства предметов роскоши, престижа, оружия и транспортных средств. Создание черной металлургии, массовое производство и широкое использование железа стало важным фактором ускорения процессов классообразования, развития частной собственности, преобразования раннеклассового общества в зрелое классовое общество. 2.1.2. Рационализация форм деятельности и общения Присваивающее хозяйство задавало тот тип отношения человека к миру, при котором человек являлся только пассивным потребителем даров природы, по сути, выступал лишь одним из звеньев существовавших в ту эпоху биогеоценозов. Только активное, преобразовательное отношение к природе могло открыть простор для развития производительных сил, общественных отношений, новых форм сознания. Активное производственное отношение к миру ставит человека в положение инициативного, деятельного полюса в системе отношений человек — мир. Использование сил природы здесь определяется уже не природой, но возможностями и потребностями человека: чем более активен, динамичен, инициативен субъект, тем в большей степени он может освоить объект, природные стихии, приспособить их к своим потребностям. Переход к производящему хозяйству — необходимое условие обособления человека как самостоятельной творческой и созидающей силы, формирующей свою культурно-историческую среду обитания, «чувственно-сверхчувственную» природу. Кроме того, переход к производящему хозяйству определил и новый тип отношений между людьми, новый тип духовности, качественно отличный от родового мифологического сознания, и новый тип трансляции культурных достижений от одного поколения другому. Базой для преодоления первобытного традиционализма, консервативности мифологического сознания, развития рациональной составляющей деятельности выступала необходимость во все больших масштабах контролировать и корректировать многообразные условия, процессы и результаты новых типов деятельности и форм общения. Ведь между целью и результатом деятельности возникает все больше опосредующих звеньев и факторов, без учета которых достижение цели не реально. Такие опосредующие звенья сами по себе становятся промежуточными целями деятельности, а потому должны быть зафиксированы сознанием в качестве устойчивых, определенных абстракций. Совершенствование системы деятельности, трудовых процессов, разведение во времени и пространстве целеполагания, целереализации и результата деятельности (что и имело место в системе производящего хозяйства) было важным, но далеко не достаточным условием его разрешения. Оно усложняло структуру сознания в той его сфepe, которая обслуживала формы деятельности, но не затрагивало теx аспектов функционирования сознания, которые обеспечивали процессы общения. Первое должно было дополняться вторым: сфера познания, регулирующая формы общения, также должна была перекраиваться с тем, чтобы отражать и воспроизводить ситуации опосредованного общения. Эта грандиозная историческая задача реализовывалась по мере становления и развития сначала форм обмена *, а затем и возникновения общественного разделения труда. * Обменом, называется переход продуктов человеческого труда от одного лица, являющегося собственником этого продукта, в собственность другого лица, возмещающийся некоторым встречным продуктом (или его знаком). В качестве такого знака в настоящее время чаще всего выступают деньги. В ходе исторического развития обмен приобретал разные формы, претерпел различные модификации. Исторически первой формой обмена выступал, по-видимому, дарообмен, обмен подарками (на основе взаимности и эквивалентности). Последний был сначала прежде всего способом установления личностных связей между индивидами, а впоследствии — способом повышения престижности, социального статуса внутри общины. Материальный интерес в даре не был преобладающим. Предметами обмена служили не только некоторые материальные ценности, но и талисманы, пиры, военная помощь, ритуалы, женщины и др. Дар носил коллективную природу. Дарил не индивид — в любом случае субъектом обмена выступал род. Дар предполагал обязательность ответного дара; отсутствие ответного дара, неспособность к ответному дару вела к потере престижа и репутации. В первобытном родовом коллективе, в котором господствовала общественная собственность на средства производства и предметы потребления, экономические отношения между его членами носили распределительный, а не обменный характер. Межобщинный обмен в обществах охотников, собирателей, рыболовов носил случайный, спорадический характер, поскольку каждая община в принципе обеспечивала сама себя пищей и всем необходимым. Глубинные истоки обмена лежат в системе первобытных распределительных отношений, а также личностных и престижных отношений внутри рода, конкретный смысл которых определялся образами и символами мифологического сознания. Такое распределение выполняло двойную функцию — являлось средством обеспечения индивидуализированных потребностей членов общины (в условиях коллективистского производящего хозяйства, первобытной кооперации каждый член общины получал свою долю в соответствии с его индивидуализированными потребностями) и одновременно средством выражения социального престижа в общине, укрепления внутриобщинных и межобщинных связей. Таким образом, в распределении уже были заложены предпосылки обмена. С появлением устойчивого избыточного продукта, а также специализации родов, семей, индивидов и общин на отдельных видах труда, возрастанием значения межличностных связей, роли социального престижа коллективистское распределение постепенно преобразуется в устойчивый экономический обмен. На базе разделения труда между различными общинами, специализации общин на производстве определенных видов продукции (растениеводства, скотоводства, ремесла) постепенно складывается высшая форма обмена — обмен товарами (товарообмен). Как известно, товаром называется вещь, созданная трудом человека и предназначенная для обмена на другой продукт труда. Обмен товаров возможен в силу того, что все товары имеют нечто общее — овеществленный в них абстрактный человеческий труд, который и является субстанцией их стоимости. На самых ранних этапах товарообмена вещи не создавались специально для обмена, а становились товаром лишь тогда, когда спорадически обменивались на другие вещи, как правило, созданные в другой общине. Впоследствии обмен становится более или менее систематическим. Часть продукта начинает производиться специально для обмена, т.е. на этом этапе зарождается товарное производство. На следующем историческом этапе развития товарообмена из массы товаров выделяется один, который становится всеобщим эквивалентом, т.е. через него выражается стоимость всех других товаров. В качестве всеобщего эквивалента выступали и скот, и слитки металла, и редкие камни, и др. Когда же роль всеобщего эквивалента закрепляется за каким-либо одним товаром, вытеснившим другие, такой товар становится деньгами. Чаще всего в качестве денег выступали редкие или драгоценные металлы (медь, серебро, золото и др.). Но полный простор для своего развития товарообмен получает только в системе общественного разделения труда. Каждый новый шаг в развитии форм обмена сопровождался и рубинными преобразованиями системы сознания: совершенствовались звенья идеального целеполагания, разводились целеполагание целереализация, усложнялись способы выработки абстракций; сами абстракции становились все более и более устойчивыми, независимыми от ситуаций непосредственного восприятия. Здесь историческим критерием наиболее развитых состояний служит денежный товарообмен, который невозможен без развитых форм абстрагирования мира: абстрактный труд мог выражаться в денежной форме стоимости только при условии того, что сам человек уже обладает достаточно развитой способностью к абстрактному моделированию ситуаций, как угодно далеко отнесенных в будущее. А поскольку в денежный товарообмен явно включается ситуация риска, то сознание не только должно проектировать будущее, но и быть способным достаточно эффективно блокировать эмоционально-аффективную регуляцию мотивационных состояний. Иначе говоря, здесь не только мотив определяет цель, но и цель, и возможности целереализации оказывают воздействие на мотивационную сферу. На этом пути развивается самосознание. Постепенно на смену первобытному типу непосредственного общения приходят новые типы общения, новые социальные отношения — те, которые присущи цивилизации. Человек достигает такого уровня, когда организация его деятельности и общения осуществляли с позиций не непосредственно-ситуационной включенности, а ясного осознания содержания любых возможных (в том числе будущих и не требующих непосредственного пространственного взаимодействия субъектов) ситуаций общения. Цивилизация строится на способности человека мысленно соотносить непосредственные условия своей деятельности и общения с такими же условиями других людей, которые осуществляются в любое время и в любом месте. С появлением такой способности формируется новый тип единства людей, который объединяет лиц не только незнакомых, но даже и никогда не находившихся (и не могущих находиться) в одно время в одном месте. Иначе говоря, человек, прежде чем стать цивилизованным, должен был научиться общаться не просто с другими, чужими ему людьми, но и свободно чувствовать себя в ситуации общения с воображаемым партнером, с его знаково-символическими, образными проявлениями. Знак вещи, ее образ и сама вещь должны были отделиться настолько, чтобы они воспринимались как отдельные сущности, хотя и связанные между собой. 2.1.3. Разделение труда и развитие духовной культуры Необходимой стороной становления цивилизации выступало развитие форм разделения труда *. Превращение обмена из случайной, спорадической в необходимую форму жизнедеятельности человеческих коллективов осуществлялось, по-видимому, путем развития сначала межобщинной, а затем и внутриобщинной специализации. В свою очередь развитие специализации способствовало значительному росту производительности труда, что закрепляло и развивало специализацию и разделение труда. Определенные виды производственной деятельности все больше закреплялись за отдельными общинами, семьями, товаропроизводителями. Так формировалось общественное разделение труда. * Разделение труда состоит, во-первых, в разделении трудового процесса на отдельные операции (технологическое разделение труда) и, во-вторых, в закреплении определенных видов деятельности за отдельными лицами или группами людей (естественное и общественное разделение труда). В первобытной родовой общине существовало естественное разделение труда: по половому (мужчины специализировались на охоте, женщины - на собирательстве) и по возрастному признакам (дети и старики имели свои особые, упрощенные производственные функции). Историческая наука XX в. существенно (по сравнению с представлениями XIX в.) углубила понимание этого вопроса. В неолите сложились различные виды специфического хозяйства и межобщинного обмена: · между племенами, которые в большей степени занимались охотой, рыболовством и собирательством, и племенами, которые в большей степени занимались земледелием и скотоводством и постепенно переходили к оседлому образу жизни; · между различными земледельческо-скотоводческими оседавшими племенами; · между земледельцами-скотоводами и рыболовами; · между рыболовами и охотниками; и др. Но первое крупное разделение труда вырастало не из любой формы межобщинного обмена, а из такой, которая была исторически перспективной, содействовала развитию товарного обмена, максимально стимулировала экономические интересы производителей, приводила к максимально возможному (в тех условиях) росту производительных сил и производительности труда, способствовала появлению регулярного (и возрастающего) устойчивого избыточного продукта. Таким условиям удовлетворяло межобщинное разделение труда, состоявшее в выделении земледельческо-скотоводческих племен из племен, занимавшихся охотой, собирательством, рыболовством и ведущих по преимуществу кочевой образ жизни. Последующие крупные общественные разделения труда состояли в отделении от земледелия кочевого скотоводческого хозяйства, а затем и ремесла. Ремесленное производство (обслуживание внешних заказчиков или рынка) нужно отличать от домашних промыслов (производство изделий в домохозяйстве для внутреннего потребления). Ремесло связано со специализацией, особым профессионализмом, индивидуализированными знаниями и навыками, которые часто хранились в тайне и передавались по наследству от отца к сыну. Становление ремесла из домашних промыслов земледельческих общин было достаточно длительным и многоэтапным процессом. На начальных этапах — появление работы на заказ; в дальнейшем — формирование рынка для обмена товаров и, наконец, окончательное отделение ремесленного производства. На начальных этапах ремесло, по-видимому, не оказывало существенного влияния на рост производительности сельскохозяйственного труда, поскольку было ориентировано преимущественно на производство престижных товаров, военного снаряжения, транспортных средств. Нацеленность на рост средств производства у ремесла появляется скорее всего в эпоху освоения металлургии, но не в самом ее начале. Современные археологические данные свидетельствуют, что бронзовые орудия начинает применяться в сельском хозяйстве только со второй половины II тыс. до н.э. Отделение ремесла имело очень важные последствия для становления цивилизации. Прежде всего отделение ремесла было тесно связано и с другими общественными процессами — так, от непосредственного участия в производстве пищи освобождались лица, специализировавшиеся на организации производства и управления, а также на выполнении идеологических функций. Иначе говоря, отделение ремесла от земледелия теснейшим образом сопрягалось с отделением физического труда от умственного. Кроме того, отделение ремесла от земледелия было важнейшим условием становления города, отделения города от деревни. Древнейший город возник не просто как поселение ремесленников на перекрестке торговых путей, но как средоточие всех существовавших в ту эпоху форм активности людей, как место концентрации цивилизационно продвинутых форм деятельности и общения, требующих абстрактного и динамического сознания. Именно такое сознание представлено ремесленниками и выделившимися из них купцами. Ремесленное производство обладает рядом принципиально новых черт. Которые ставят его в особое положение по сравнению с предшествующими типами производства. Во-первых, оно удовлетворяет не столько биологические (видо-специфические) потребности человека, сколько его социально-культурные потребности. Во-вторых, производительность ремесленного производства не определяется жестко природными факторами, как в сельскохозяйственном производстве, а во многом зависит от производственных навыков, профессионализма, знаний самого производителя. В отношении человек — мир активная сторона начала перемещаться к субъективному полюсу («человек»). В-третьих, в ремесленном производстве в непосредственное взаимодействие ставятся два природных объекта (предмет труда и средства труда), а результатом взаимодействия необходимо выступает проявление объективных (не зависящих от субъекта, человека) характеристик этих предметов. Ранние формы товарообмена осуществлялись без каких-либо особых посредников, а самими производителями (членами их семей) и покупателями. Но такой обмен малоэффективен. Он сдерживал развитие ремесленного производства, поскольку производитель много времени тратил на реализацию своего товара. Постепенно из среды ремесленников и их семей выделяется группа лиц, непосредственно обеспечивающая реализацию, обмен товаров, — купцы, торговцы. Анализ различного рода знаков собственности (печатей, штампов, пломб и др.), глиняных сосудов, выполнявших роль «посылок», остатков разрушенных городов, архитектурных сооружений позволяет сделать вывод, что в конце IV — начале III тыс. до н.э. в Месопотамии уже существовали сословия купцов, торговавших преимущественно престижными товарами, предметами роскоши, обслуживавших храмовые сооружения, родовую знать. Зародившись в предклассовом обществе, торговля получила свое полное развитие в условиях классового общества, в условиях цивилизации, когда складываются международные экономические связи. Таким образом, развитие в неолитическую эпоху производительных сил, создание производящего хозяйства, земледелия и скотоводства, появление избыточного продукта, развитие обмена и формирование общественного разделения труда создали совершенно новую ситуацию в обществе. Сложились условия для качественного усложнения структуры общества, для нового его структурирования, установления не только нового типа организации производства, но и новых типов связей между людьми во всех сферах общественной жизнедеятельности. Основные направления перестройки общества в эту эпоху—установление и развитие социального и имущественного неравенства, обособление собственности, возникновение классов, политогенез, качественная перестройка общественного сознания, рационализация духовной жизни как доминанта ее развития. Неолитическая революция привела в конечном счете и к кардинальным преобразованиям в сфере духовной культуры, в общественном сознании. Мифология не могла обеспечить нормального ориентирования человека в новых формах производственной деятельности и в новых социальных связях. Развитие производительных сил, рост населения, глубинные социально-экономические сдвиги, классообразование, обособление собственности, разрыв родовых связей, эволюция форм семьи, динамизм общественной жизни — все это ускоряло развитие общественного сознания, требовало качественно нового типа духовного освоения мира, сознания, способного обеспечить деятельность человека в условиях активного, производящего хозяйства и социально-классового расслоения. В ответ на эту общественную потребность на смену первобытному мифологическому сознанию формировался новый исторический тип сознания, новый тип духовной культуры. Во-первых, возникновение общественного разделения труда имело глубочайшие последствия для становления человеческой индивидуальности, развития духовного мира личности. В образе жизни постепенно выделяются две сферы: · личной, повседневной, бытовой жизнедеятельности с соответствующим сознанием, обслуживающим структуры повседневности; · производственной, трудовой, определяемой общественными условиями труда жизнедеятельности, которой соответствовало рационалистически-ориентированное сознание. Внутренний мир человека значительно усложнился за счет окончательного закрепления различий между социальными и личными, семейно-бытовыми интересами, представлениями, оценками, знаниями и т.п. Цивилизация развивается именно в русле становления и укрепления сферы социально мотивированной регуляции поведения индивида, когда в системе ценностей предпочтение отдается общественным условиям жизнедеятельности над мотивами бытовой повседневности, сиюминутного ситуационного реагирования. Усложнилась (стала еще более опосредованной и диверсифицированной) как система мотивов, так и ее связи, с одной стороны, со сферой целеполагания, а с другой — со сферой потребностей. Появились условия для существования глубокого внутреннего конфликта, повышенных токов духовной напряженности, драматизма во внутреннем мире личности. Именно поэтому цивилизованность всегда драматична. А главный сюжет «драмы цивилизации» — это борьба социально и личностно мотивированного во внутреннем мире человека, выступающая, как правило, в ипостаси борьбы добра и зла. Во-вторых, происходит социально-классовая поляризация общественного сознания, формируется идеология и психология классового разделения общества. В-третьих, единое, целостное, синкретическое первобытное мифологическое сознание дифференцируется на относительно самостоятельные формы общественного сознания (основные компоненты духовной культуры) — религию, мораль, искусство, философию, политическую идеологию, правосознание и, наконец, науку. Исторически процесс такой дифференциации был весьма длительным. Каждая форма общественного сознания имеет собственную историю и логику отпочкования, обособления от системы первобытного сознания. По-видимому, ценностные формы сознания (мораль, религия, политическое сознание, правосознание) складывались сначала более интенсивно, получили на первых порах преимущественное развитие по сравнению с формами рационального сознания — с наукой и философией. Очевидно, это связано с тем, что в данную эпоху наиболее быстрыми, динамичными и множественными, прямо воздействующими на сознание были изменения не в формах деятельности, а в системе социальных связей и отношений, функционирование которых обеспечивается именно ценностной сферой сознания. 2.1.4. Возникновение письменности Грандиозным по своей исторической значимости и последствиям событием было возникновение письменности. Письменность по сравнению с речью — принципиально новое средство общения, позволяющее закреплять, хранить и передавать речевую информацию с помощью начертательных знаков. Письменные знаки — это материальные предметы-посредники в общении людей между собой. В отличие от непосредственного речевого общения письменность способна преодолевать пространственные и временные границы общения людей, выходить за пределы непосредственного взаимодействия субъектов, развертывать содержание общения в пространстве и во времени. С возникновением письменности процесс общения как бы приобретает два новых «измерения» — историческое и географическое. Один безвестный египетский писец свыше четырех тысяч лет назад, размышляя о значении письма, записал на папирусе: «Человек исчезает, тело его становится прахом, все близкие его исчезают с поверхности земли, но писания заставляют вспомнить его устами тех, кто передает это в уста других. Книга нужнее построенного дома, лучше роскошного дворца, лучше памятника в храме». В истории письменности (и особенно ее конкретных видов) еще немало тайн, загадок, нерасшифрованных страниц. Не все детали долгого процесса в полной мере прояснены наукой. Это.и не удивительно: ведь процесс становления письменности длился тысячелетия (начиная, возможно, с верхнего палеолита). И тем не менее основные этапы этого процесса уже достаточно обстоятельно выявлены, изучены и сейчас мало у кого вызывают сомнения. Принято считать, что первые, зачаточные формы неречевых (дописьменных) средств передачи информации связаны с так называемым предметным письмом. Предметное письмо - это совокупность предметов, вещей, которые искусственно создавались (или сочетались из природных вещей) одним человеком (или группой) для передачи какой-либо информации другому человеку (группе). В качестве таких знаковых предметов служили воткнутые у тропы ветки, зарубки на дереве, узоры из камней, информирующие идущих следом соплеменников о направлении движения, дым от костра как знак опасности, пучок стрел как символ объявления войны и др. Вполне вероятно, что такое предметное письмо широко применялось уже в эпоху верхнего палеолита. С помощью предметного письма, а также магических ритуалов и символов человечество в течение длительного времени осваивало знаковую функцию вещей — способность определенной вещи указывать на нечто другое, принципиально отличное от самой этой вещи, — на другие вещи, явления, процессы. Но предметное письмо носит абстрактный характер и, как правило, требует предварительной договоренности для своего адекватного понимания. Если ее нет, то информация может быть понята неверно. Ярким примером здесь может служить рассказ древнегреческого историка Геродота о том послании, которое скифы направили вторгнувшемуся в их страну древнеперсидскому царю Дарию. Они составили предметное письмо из птицы, мыши, лягушки и пяти стрел. Дарий извлек из этого послания смысл, противоположный тому, который вкладывали скифы *. И следствием стала гибель персидского войска. * Геродот излагает этот случай следующим образом: «Дарий полагал, что скифы отдают себя в его власть и приносят ему (в знак покорности) землю и воду, так как-де мышь живет в земле, питаясь, как и человек, ее плодами; лягушка обитает в воде: птица же больше всего похожа (по быстроте) на коня, а стрелы означают, что скифы отказываются от сопротивления» (Геродот. История. Л., 1972. С. 219— 220). На самом же деле скифы имели в виду совсем иное: «Если вы, персы, как птицы, не улетите на небо или, как мыши, не зароетесь в землю или, как лягушки, не поскачете в болото, то не вернетесь назад, пораженные этими стрелами» (там же. (.:. 220). Следующий шаг в становлении письменности состоял в переходе к использованию изобразительных средств закрепления информации. Первые изобразительные средства представлены рисуночным письмом — пиктографией. Пиктография - это фиксация и передача информации с помощью рисунков. Пиктографическое письмо появилось еще в период расцвета первобытного общества в верхнем палеолите. С помощью последовательного размещения ряда рисунков, изображающих отдельные конкретные предметы, передается определенная информация о хозяйственных, общественных, военных и других ситуациях. Пиктографическое письмо имело множество несомненных достоинств, которые определили возможности его развития в более высокие формы письменности, вплоть до фонетической. К числу этих достоинств следует отнести: · возможность вводить новые промежуточные звенья повествовательности; · достаточно высокий уровень абстрагирования, выделения главного, существенного; · отсутствие необходимости в реалистичности изображения, в таком письме заложены значительные возможности схематизации и перерастания в условные изображения. Основные направления исторического развития пиктографии следующие: выработка единого способа начертания рисунка, понятного для всех (или большинства) представителей данного племени (рода, общины); закрепление за каждым рисунком более или менее определенного значения, смысла (иначе говоря, тенденция к общезначимости и однозначности, хотя, конечно, до полной однозначности было еще далеко); обогащение набора пиктографических рисунков такими знаками, которые позволяют конкретизировать текст пиктограммы, особенно в том, что касается счета, собственности, имен и др. В связи с частой необходимостью передачи имен появился качественно новый и перспективный прием — изображение имен людей некоторыми предметами, сходными по звучанию, но имеющими, разумеется, совсем иную природу. Так постепенно зарождаются зачатки фонетического письма. В течение нескольких тысячелетий пиктографическое письмо постепенно перерастало в идеографическое письмо , где рисунки заменяются определенными знаками. Идеографическое письмо развивалось в направлении от изображения определенных представлений (образов, понятий) независимо от их звучания в устной речи — к иероглифам. Иероглифы одновременно указывали и образы (представления, понятия), и те звуки, из которых состоят слова, обозначающие данные образы (представления, понятия). На рубеже IV—III тыс. до н.э. иероглифическое письмо уже широко применялось в Месопотамии, а в 2400 г. до н.э. оно превратилось в упорядоченное словесно-слоговое письмо клинописного типа. Клинописное письмо было достаточно сложной системой, состоящей из нескольких сотен и даже тысяч специальных знаков. Его усвоение требовало значительной специализации и профессионализации. В древневавилонском обществе сформировался целый социальный слой — слой писцов. В течение III тыс. до н.э. складывается и египетская иероглифика. Высшей формой письменности, сложившейся во II тыс. до н.э., было фонетическое письмо, буквенное, в котором знаки обозначают не предметы, а слоги, звуки и графически передаются отдельные звуковые обозначения. Первое алфавитное письмо изобрели финикийцы. Финикийское письмо было положено в основу древнегреческого, а также арабского письма, из которого позднее возникли индийская, персидская, арабская системы письменности. Благодаря возможности хранения, накопления и передачи знаний письменность оказалась важнейшим стимулом для ускорения развития духовной культуры, явилась важнейшей предпосылкой становления науки. 2.1.5. «Культурное пространство» древневосточных цивилизаций Первые цивилизации Древнего Востока начали складываться в Двуречье и в долине Нила в IV тыс. до н.э. Экономической основой этих (цилизаций являлось ирригационное земледелие, которое хотя и требовало колоссальных трудовых затрат, кооперации и особой организации работ, но зато позволяло собирать даже не один, а несколько богатых урожаев в год. Получение значительного избыточного продукта стало экономической предпосылкой быстрого развития социальных отношений, классообразования, общественного разделения труда, возникновения специализированных ремесел (гончарного, ткацкого, кораблестроительного, металлургического, камнерезного и др.), обособления собственности, генезиса соседско-территориальных общин, образования господствующего класса, государственного аппарата, храмового персонала. В ранних (как правило, относительно небольших по территории и населению) государственных образованиях постепенно формировалось два сектора экономики. Первый — это децентрализованный общинный сектор, представленный большим количеством владевших землей, самоуправляющихся соседско-территориальных общин, свободные и полноправные члены которых вели усилиями патриархальной семьи земледельческо-скотоводческое натуральное хозяйство. Второй сектор — централизованные государственные (царско-храмовые) хозяйства (как правило, крупные), широко использовавшие труд зависимых и полузависимых крестьян-общинников, а также рабов. На таком экономическом базисе сложилась и соответствующая социально-классовая структура, представленная тремя основными классами. Высший класс — это класс людей, которые непосредственно не занимались производительным трудом, но либо сами владели средствами производства, либо распоряжались государственной и храмовой собственностью от имени царя или касты жрецов. Благодаря деятельности части представителей этого класса складывается особая система духовного производства, (относительно) независимая от материального производства. Именно в этой системе духовного производства зарождается протонаучная деятельность. Второй, средний класс — это класс свободных крестьян-общинников и городских (или сельских) ремесленников, непосредственно владевших средствами производства и занятых производительным трудом. И наконец, третий, низший класс — зависимые, не обладавшие собственностью работники, которые подвергались внеэкономической эксплуатации. В качестве таких работников выступали лишившиеся собственности и попавшие в зависимость крестьяне, а также рабы. Новым историческим явлением становится город. Урбанизация — неотъемлемая черта цивилизации. Город возник как географическое место экономического, политического, военного и культурного притяжения. В городе осуществлялся обмен продуктами ремесла и земледелия между двумя секторами экономики; в городе находились органы власти, государственный аппарат; город — это место нахождения храма главного местного божества, государственных и храмовых школ; крупные города обносились защитной стеной, в центре города располагалась цитадель, крепость. Немаловажно, что город нес с собой обычно и высокий уровень бытовой культуры, был средоточием развлечений, земных радостей и бытового комфорта. Уже во II— I тыс. до н.э. в крупных городах Месопотамии население исчислялось не десятками, а сотнями тысяч человек! Так, в I тыс. до н.э.. в Ниневии жило свыше 250 тыс. жителей, в Вавилоне — до 100 тыс. горожан. О масштабах градостроительства можно судить по следующим археологическим данным: еще в VII тыс. до н.э. оборонительная система Иерихона состояла из рва (ширина 8,5 м и глубина 2,1 м), каменной стены (толщина 1,6 м и высота около 4 м) и круглой каменной башни, сохранившейся до наших дней высотой свыше 8 м (!) Древневосточный город — это, как правило, открытое «социальное пространство», в котором есть место людям разных национальностей, этносов, где смешиваются разные культуры, традиции, где преодолевается консерватизм, традиционность психологии сельского общинника, где быстро развиваются и изменяются ценности, где требуется высокий уровень критицизма, самоанализа, интеллекта. Вместе с тем особенности «культурного пространства» ранних восточных цивилизаций обусловлены наличием еще значительныx следов мифологического сознания, для которого характерна образность, слабое развитие абстрактных понятий, категорий, различение закономерного и необходимого, причинно-следственных связей, доминирование ассоциативного мышления по аналогии, ориентация на традиционность, а не на новации, антропоморфизм. Очень медленно шел в сознании процесс различения природного и человеческого, преодоления слитности человека с природой. Об этом свидетельствует отсутствие пейзажа в изобразительном искусстве Древнего Ближнего Востока III тыс. до н.э., словесных описаний природы в ранней художественной литературе. Здесь еще мир вещей не отрывался от мира людей; вещи наделялись качествами людей, а человек — качествами вещей, которые ему принадлежат. Только во II тыс. до н.э. в древнеегипетской живописи появляется пейзаж, что свидетельствует о постепенном различении в сознании людей природного и человеческого. Пространственным представлениям и категориям (исторически сложившимся раньше временных) присущи качественная определенность, слитность с оценочными представлениями. Есть пространство «хорошее» и «плохое», пространство «доброе» и «злое», пространство сакральное и профанное; пространство своей страны «лучше» пространства «чужой» страны. Такими же качественно неоднородными являлись и представления о времени: есть время «хорошее» (дневное) и время «плохое» (ночное), различные дни, недели и месяцы года имели определенные предназначения, были «благоприятными» или «неблагоприятными» для разных дел. Человек древневосточных цивилизаций жил в мире, в котором самым теснейшим образом переплетались земное и божественное, мир людей и мир богов. По мнению людей того времени, множество богов постоянно вмешивается в повседневную жизнь людей и человек находится в их полной власти. Поэтому божественными знамениями интересовались, их боялись, пытались избежать. Единственное, что может сделать человек — научиться предвидеть божественные воздействия на него и защищаться от таких воздействий с помощью своих личных, семейных богов-защитников («личный бог») и сверхъестественных сил. Этим объясняется важное значение, придававшееся прорицателям, гадателям, астрологам, которые этой своеобразной деятельностью попутно накапливали и определенный опыт объективного познания мира. Основная тенденция развития духовной культуры древневосточных цивилизаций — возрастание индивидуализации сознания, нарастание антропоцентризма духовной культуры, что проявлялось в усилении интереса к человеку, его сознанию, психологии, внутреннему миру, к человеческому телу. Человек начинает осознавать себя как индивидуальность, как самоценность, как личность, постоянно решающая проблему выбора оптимальной линии своего поведения, вопросы координации своих отношений с другими людьми, с коллективом, с обществом, с природой. Теперь уже не только родовая община противостоит природе, но складывается еще одно фундаментальное противоречие — противоречие индивида и рода. Появляется проблема выбора индивидуальных ценностей, смысла жизни, места человека в обществе и в системе Космоса. Индивидуальность осознается часто как одиночество человека, его противостояние судьбе, року. В этих условиях складывается героический эпос, в центре которого — образ героя получеловека-полубога. Герой бросает вызов не только людям, но и самим богам, он может преодолеть все, кроме одного — своей судьбы. Весьма характерен в этом отношении древневавилонский «Эпос о Гильгамеше» (записан не позже XIX в. до н.э.). Много опасных приключений подстерегает в странствиях главного героя эпоса — Гильгамеша, но основная цель странствий — бессмертие — недостижима и недоступна. Такое противопоставление героя и богов, героя и Космоса, героя и Хаоса, героя и толпы является показателем того, что рационализация сознания поднялась на новый уровень — уровень теоретического осознания отношений человека и мира, уровень самосознания. Миф трансформируется в рациональный Логос. На этом пути постепенно зарождается наука, разумеется, сначала в самой простейшей форме — в форме протонауки. 2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока 2.2.1. От Мифа к Логосу (Науке) В эпоху классообразования и раннеклассовых обществ духовная культура находится в состоянии перехода от мифологического первобытного мышления к новому историческому типу культуры. Радикально меняются все три основные составляющие деятельности сознания — нравственная, эстетическая и познавательная. Причем ведущей в эту эпоху являлась нравственная составляющая. Утверждение новых типов отношений людей, способов регуляции их поведения, Эволюционные сдвиги в системе соционормативной культуры — все это имело, по-видимому, фундаментальное значение. Мотивы столкновения первобытной морали рода и новой, нарождающейся обще-человеческой морали, с одной стороны, и классовой морали, с другой стороны, пронизывали все сферы духовной культуры. Новые социо-нормативные нормы утверждались во всех средствах духовного воздействия на человека. Эстетическое и познавательное по сравнению с нравственным отступают на второй план. Но, конечно, остается тесное и многообразное взаимодействие эстетической, познавательной и нравственной составляющих деятельности сознания. Мифологическое сознание постепенно и медленно преобразовалось и преодолевалось рациональными формами. Это преобразование хорошо прослеживается на одной из главных тем первобытной мифологии — теме творения Мира (Космоса) из Хаоса. Мы уже отмечали (см. 1.3), что мифологическим представлением о Мире и Космосе была пронизана вся жизнь первобытного коллектива. Хаoc олицетворялся с неорганизованной, враждебной человеку, темной и пугающей своей связью с миром умерших силой. При этом в каждой родовой традиции складывались свои конкретные представления и о Хаосе (первичный океан, мировая тьма, бездна, вечная ночь, земная твердь, подземный мир и др.), и о Космосе (мировое дерево, мировое яйцо, мировая гора, небесный свод, брак неба и земли и др.). Образ жизни первобытных родовых коллективов подчинялся общей линии мифологического сюжета о связи Хаоса и Космоса. Нормы коллективного поведения, ритмизированная повседневная будничная жизнь (охота, собирательство, потребление пищи, воспроизводство рода и др.) соотносились с образом космической организации. Космоса как целого. Родовой коллектив рассматривался как частица, органическая часть Космоса, а любые перемены в ритмах образа жизни (включая празднества; семейные перемены, т.е. рождение детей, смерть сородичей, особенно вождя; смена сезонной хозяйственной деятельности и др.) оценивались как особые состояния, при которых организованное космическое целое подвергается опасности. Опасность усматривалась в возможности проникновения в организованное космическое целое враждебных человеку, злых, сверхъестественных, несущих в себе разрушающее начало хаотических сил. Спасение от их воздействия виделось в магических ритуалах, и чем более они эмоциональны, выразительны, художественны, тем эффективнее. Эстетическое начало выступало в глазах первобытного человека как главное спасительное средство от враждебного хаотического начала. Поэтому обрядовые магические ритуалы исключительно художественны. Карнавальные шествия, танцы, маски добрых и злых духов, ритуальные инсценировки восстаний против правителя, даже ритуальные оргии должны были продемонстрировать господство человеческих организованных сил над силами Хаоса, поставить хаотическое под контроль человека, подчинить его человеку. В этих художественно оформленных магических ритуалах вновь и вновь из Хаоса воссоздавался антропоморфно организованный Космос. Таким образом, магическое сознание стимулировало становление художественных, эстетических образов, различных видов искусства вплоть до требовавших огромных трудовых усилий мегалитических сооружений, скульптурных изваяний, родовых святилищ, погребальных сооружений и др. Мифологические образы периодического вмешательства хаотических сил в космическую организацию со временем трансформировались в систему представлений о мировых циклах. Такая система (в различных вариантах) впоследствии вошла почти во все ранние философские учения. Появилось понятие мировой катастрофы, которая опосредует собой переход от одного космического цикла к другому. Гибель мира, катастрофа — это победа сил Хаоса над космически организованным целым, над человеком, над обществом. Человеку не удалось сдержать напор хаотического, враждебного мировой гармонии начала, и Космос под его воздействием рушится. Но катастрофы не вечны. Космос затем восстанавливается из Хаоса, и начинается новый период космического развития, новый его цикл. Представление о мировой космической катастрофе органично интегрировалось и с новыми структурами сознания — абстрактными категориями будущего, пространства, времени и космоса. Еще в раннеклассовом обществе сформировались такие важные общие понятия (категории), как даль», «бесконечность», «ничто», «бытие», «сущее», «несущее» и др.* Возникновение таких широких абстракций (понятий, категорий) явилось одной из важнейших предпосылок становления естествознанания. * См.:Кейпер Г.Б.Я . Труды по ведийской мифологии. М., 1985. Развитие критической функции мышления, самосознания, установки на обоснование знания, становление всеобщих понятий, категорий мышления («бытие», «ничто», «пространство», «сущее», «несущее» и др.) выступили познавательными предпосылками генезиса естествознания. Эти предпосылки формировались прежде всего в процессе разрешения ряда противоречий в системе сознания: - между мифологическим видением мира и накапливающимся рациональным знанием, абстрактным мышлением; - в самой системе мифологии — между различными противоречащими друг другу мифами как следствие рационального упорядочения и систематизации мифологии; - между рациональными знаниями и все возрастающими практическими потребностями в расширении массива таких знаний. Решение этих противоречий осуществлялось посредством систематизации и логического упорядочения мифов (разрешения или противоречий, которые возникали между отдельными мифами, между мифологией и усложнившейся действительностью), накопления, обобщения и систематизации рациональных знаний (их увязывания со всеми остальными компонентами духовной культуры), развития абстрактного мышления, категориального аппарата сознания критической функции разума, приемов обоснования знания, сферы самосознания. В русле этих преобразований складывались и соответствующие познавательные предпосылки становления науки. Первые три из них (систематизация мифов, накопление и обобщение рациональных знаний, развитие категориального аппарата сознания) сложились уже в первых цивилизациях Древнего Востока — Древнем Египте и Древнем Вавилоне. Четвертая предпосылка (идея рационального обоснования знания как важнейшее условие возникновения теоретического самосознания) формируется в древнегреческой цивилизации. Рост населения, его подвижности, динамизма образа жизни, укрепление племенных союзов, развитие военного дела, политический и военный экспансионизм, развитие обмена, торговли — все это способствовало значительному расширению географического кругозора человека. Наряду с освоением новых пространств, развитием представлений о границах ойкумены (населенной части планеты) совершенствовались формы картографии, создавались карты — схемы местности, способы ориентации по звездам, особенно у народов, осваивавших океанские просторы, народов-мореплавателей (например, у народов Океании). Интересная характеристика географических познаний эпохи разложения первобытного общества и зарождения раннеклассовых отношений дана Л.Г. Морганом в исследовании жизни ирокезов: Столетия за столетиями и племя за племенем протаптывал... человек... древние исхоженные тропы. От Атлантического океана до Миссисипи и от Северных озер до Мексиканского залива главные индейские пути через страну были так же тщательно и разумно проложены и так же хорошо известны, как наши собственные. По многим из этих длиннейших троп ирокезы совершали военные экспедиции и таким образом практически изучали географию страны. В пределах своих непосредственных территорий они так же были знакомы с географическими особенностями, маршрутами путешествий, озерами, холмами и реками, как впоследствии мы сами *. * Морган Л.Г . Лига ходеносауни, или ирокезов. М., 1983. С. 32—33. На смену простейшим способам схематического изображения местности с помощью камней, палок, рисунков на песке и др., которые были характерны для первобытного общества, приходят более долговременные и совершенные «карты». Их либо рисовали, либо вышивали на коже или ткани, либо чертили ножом на коре дерева , и т.п. Эти карты обычно были схемами маршрута, так как отражали не местность в целом, а отдельный маршрут. На такой карте-схеме изображались гидрографическая сеть (главная река, ее притоки, озера и др.), речные пороги, броды, дороги, тропы, жилища, горы, следы проживания людей в данном районе и др. Длина маршрута определялась в днях пути. Есть этнографические данные о том, что у некоторых народов была традиция собирать такие карты местности в особых хранилищах. Новый дополнительный импульс развитию картографии был получен вместе с расширением торговой деятельности, появлением класса купцов, осваивавших дальние и неизведанные торговые пути. Наиболее распространенные и трудные маршруты снабжались определенными указательными знаками (на деревьях, на камнях, на скалах и др.), включая знаки, предупреждающие о возможности нападения (так зарождалось то, что на современном языке называется «служба эксплуатации дорог»). Указательные знаки также отмечались на картах-схемах маршрутов. 2.2.3. Биологические, медицинские и химические знания Становление производящего хозяйства (земледелия и скотоводства) стимулировало и развитие биологических знаний. Прежде всего это связано с доместикацией, имевшей колоссальное значение для судеб цивилизации. Одомашнивание животных и растений по самой своей сути предполагает использование такого фундаментального биологического явления, как искусственный отбор (селекция). Люди были очень далеки от понимания сущности искусственного отбора, но уже умели использовать этот метод для совершенствования своей хозяйственной деятельности. Опыт селекции передается из поколения в поколение. Так, в XIV в. до н.э. в Хеттском государстве некто Киккули из Митаннии написал трактат о коневодстве, который является самой древней из дошедших до нас рукописей, целиком посвященныx биологической теме. Благодаря селекции было выведено много новых пород животных и растений, заложена база современной аграрной культуры. Развитие скотоводства позволило освоить новые массивы зоологических, ветеринарных знаний и навыков, а развитие земледелия способствовало накоплению ботанических, агрохимических и гидротехнических (в связи с мелиорацией и ирригацией) знаний. Еще в Древней Месопотамии было открыто искусственное опыление финиковой пальмы, которое привело к получению большого сортового разнообразия этого дерева. В эпоху классообразования от системы биологических знаний постепенно отпочковывается медицина как относительно самостоятельная отрасль знаний и практических навыков. Глубинной основой этого процесса является изменение отношения к человеку. Человек начинает осознавать свое кардинальное отличие не только от природы, ее предметов и процессов, но и от других людей. Отрываясь от родовых связей, человек осознает себя как самоценное существо, которое хотя и связано с коллективом (соседско-территориальной общиной, патриархальной семьей и др.), его традициями и ценностями, но уже имеет и свои индивидуальные ценности. В сознании появляются новые элементы, представляющие собой зачаточные формы смысложизненных ориентиров. Человек впервые сталкивается с проблемой смысла своего существования. А это значит, что и поддержание жизни человека, его работоспособности приобретает особую ценность, значимость. В этих условиях приоритетной сферой рациональной деятельности становится медицинская практика. В обществе растет престиж тех, кто берется лечить людей и кому это удается. Например, древнегреческий поэт Гомер в «Илиаде» следующим образом выражает глубочайшее уважение к лекарям-врачевателям: Стоит многих людей один врачеватель искусный: Вырежет он и стрелу, и рану присыплет лекарством. Илиада, XX, 514-515. Лекарь, врачеватель — это прежде всего знаток лечебных трав и народной медицины. Развивается древнейшая традиция лечебного применения средств растительного происхождения (травы, цветы, плоды, кора деревьев и др.) и средств минерального и животного происхождения (жир, части организмов животных и др.). Создаются приемы санитарии и гигиены, появляются физиотерапевтические процедуры, массаж, иглотерапия, диетика, разрабатываются новые хирургические приемы и соответственно металлические хирургические инструменты (скальпель, щипцы и др.). Совершенствуется акушерство — одна из первых медицинских специальностей. Конечно же, в первобытной медицине наряду с рациональными знаниями еще много и наивного. Так, древние вавилоняне считали, что жизнь связана с кровью, печень — главный орган жизни, содержащий запас крови; органом же мышления они считали сердце. Поэтому наряду с народной медициной, лекарями — знатоками лекарственных трав, простейшей хирургии складывается и другой тип врачевателей — знахари-заклинатели, опиравшиеся на мифологические и магические процедуры. Эта ветвь древней медицины со временем трансформируется в храмовую медицину *. * См.: Сорокина Т.С. Медицина в рабовладельческих государствах Средиземноморья. М.,1979. Первоначальное накопление химических знаний осуществлялось в области ремесленной прикладной химии. Основные виды такой деятельности: высокотемпературные процессы (металлургия, стеклоделие, керамика); получение красителей, косметических средств, лекарств, ядов, освоение бальзамирования; использование брожения для переработки органических веществ. Широкое распространение получила обработка и подделка драгоценных камней. Кроме меди, бронзы и железа древние знали такие металлы, как свинец, олово, ртуть и их сплавы. Осознание связи небесных явлений и сезонов года . Развитие астрономических знаний в рассматриваемую эпоху определялось в первую очередь потребностями совершенствования календаря, счета времени. Важнейшим условием зарождения научной астрономии явилось осознание связи небесных явлений и сезонов года, которое, по-видимому, формировалось еще в мезолите. Если присваивающее хозяйство вполне могло обходиться лунным календарем, то производящее хозяйство требовало более точных знаний времени сельскохозяйственных работ (особенно времени посева и сбора урожая), которые могли базироваться лишь на солнечном календаре, на солнечных циклах (годовом, суточном, сезонном). Известно, что 12 лунных месяцев составляют лунный год, равный 354,36 солнечных суток, который отличается от солнечного примерно на 11 суток. Исторический процесс перехода от лунного календаря солнечному был достаточно длительным. Важным условием перехода от лунного календаря к солнечному являлось отделение наблюдений за интервалами времени от их привязки к биологическим ритмам (связанным с человеком и домашними животными) и выделение некоторых внебиологических природах «систем отсчета» для измерения интервалов времени. В таком качестве выступали, например, точки восхода Солнца в день летнего солнцестояния и захода в день зимнего солнцестояния, наблюдения звездной группой Плеяд в созвездии Тельца, позволявшие корректировать солнечное и лунное времяисчисления. Чтобы результатами побного рода наблюдений можно было пользоваться неоднократно, их следовало каким-то образом фиксировать. Так появилась потребность в создании соответствующих сооружений. В археологии такие сооружения известны в виде разного рода мегалитических конструкций. Даже в настоящее, космическое время, когда мы мало чему удивляемся, мегалитические сооружения древности поражают своей грандиозностью и загадочностью. Мегалитические сооружения — это постройки из громадных каменных плит камней. Известны их различные виды — дольмены (несколько вертикально установленных огромных каменных плит, cвеpxy перекрытых горизонтально уложенными плитами), кромлехи (выстроенные в круг гигантские монолиты, иногда вместе с дольменами) и др. Большинство из них выполняло одновременно несколько функций — религиозно-культовую, произведения монументальной архитектуры, протонаучной астрономической обсерватории и др. Одним из наиболее известных является грандиозный мегалитический комплекс Стоунхендж в Англии, созданный на рубеже неолита и бронзового века *. * См.: Хокинс Дж„ УайтЛл. Разгадка тайны Стоунхенджа. М., 1984. Мегалитические сооружения строились так, что они позволяли с довольно высокой точностью ориентироваться на точку восхода Солнца, фиксировать день летнего и зимнего солнцестояния и даже предсказывать лунные затмения. Сооружения из огромных каменных плит и монолитов требовали колоссальных трудовых затрат, были результатом коллективного длительного труда многих десятков и сотен, а иногда и тысяч людей. Это говорит о том, какое важное значение придавалось астрономическим знаниям в период становления цивилизации. Астрономия Древнего Египта . В Древнем Египте связь небесных явлений и сезонов года была осознана очень давно, очевидно, еще в период Древнего Царства (2664—2155 гг. до н.э.). Предвестником Нового года у древних египтян выступал Сириус. Первая видимость Сириуса на утреннем небе (гелиактический восход Сириуса) наступал за несколько недель до разлива Нила (около 20 июля), выхода его из берегов, наводнения, т.е. самого важного события в египетском сельскохозяйственном году. Эти земледельческие правила были первым шагом на пути становления научной астрономии. В эпоху Среднего Царства (2052—1786 гг. до н.э.) были разработаны диагональные календари (деканы) — звездные часы, служившие для определения времени по звездам (разумеется, главным образом ночью). Такие календари обнаружены в пирамидах: уходивший в иной мир для своего путешествия должен был иметь все необходимое, в том числе и звездные часы. Со временем деканы перекочевали в астрологическую литературу, где они выступали в новой форме и новой роли — богов, определявших судьбу людей. Египтяне оказали значительное влияние на становление древнегреческой астрономии, о чем есть много свидетельств античных авторов. Древневавилонская астрономия . Еще большее развитие, чем в Древнем Египте, астрономия получила в Вавилонии и Ассирии. Так, в Месопотамии в начале III тыс. до н.э. был принят лунный календарь, а через тысячу лет — лунно-солнечный календарь. К лунному году (12 месяцев, 354 дня) время от времени добавлялся дополнительный «високосный» месяц, чтобы сравниться с солнечным годом (365,24 суток). Вавилонянам (халдеям) уже было известно, что 8 солнечных лет приблизительно равны 90 лунным месяцам; или 19 солнечных лет (6940 суток) равны 235 лунным месяцам *. Точность лунного месяца здесь составляла 2 мин, а средняя продолжительность года лишь на 30 мин отличалась от действительной длительности тропического года в середине V в. до н.э. Достаточно точно рассчитывались лунные эфемериды, что позволяло вавилонским астрономам предсказывать лунные затмения. По-видимому, в середине VIII в. до н.э. началось систематическое наблюдение затмений, а в VII в. древневавилонские астрономы научились предсказывать лунные затмения. * В истории астрономии эта закономерность известна как метонов цикл (по имени древнегреческого астронома Метона, который заимствовал ее в 433 г. до н.э. у халдеев). Существуют исторические предания о том, что вавилонские астрономы якобы могли точно предсказывать не только лунные, но солнечные затмения. Однако сообщения о таких предсказаниях, якобы сделанные (учившимся у халдеев) Фалесом и другими мудрецами древности, относятся к области легенд. Солнечные затмения можно точно предсказывать при условии, что известны расстояния между Солнцем, Землей и Луной. Но вавилонским астрономам (и всем вообще древним) такие расстояния не были известны; они не имели геометрической модели для объяснения затмений, и потому не могли точно предсказывать солнечные затмения. Астрономы Двуречья могли лишь предсказывать возможность солнечного затмения. Они знали, что солнечные затмения случаются обычно за полмесяца или через полмесяца после лунных и главным образом в промежутке между сетями лунных затмений, когда не наблюдались они 41 или 47 месяцев. Тень на Солнце накатывала на 27-й или 28-й день лунного месяца. Величайшим достижением древневавилонской астрономии стало развитие математических методов для предвычисления положений Солнца, Луны и планет на небе, а также затмений и других небесных явлений. Древнегреческая астрономия впоследствии во многом усвоила традиции астрономов древнего Междуречья. На Древнем Востоке развитие астрономических знаний теснейшим образом переплеталось с целями и задачами астрологии. Астрономия и астрология . В древности астрономические знания накапливались в системе астрологии. Астрология - это уходящая своими корнями в магию деятельность, состоящая в предсказании будущего (судеб людей, событий разного рода) по поведению, расположению небесных тел (звезд, планет и др.) в форме гороскопов . Древнейший из дошедших до нас гороскопов (из Вавилона) датируется второй половиной V в. до н.э. Астрология строилась, с одной стороны, на религиозном убеждении, что небесные тела являются всесильными божествами и оказывают решающее влияние на судьбы людей и народов. С другой стороны, в основе астрологии лежит представление о всеобщей причинной связи вещей и их повторяемости — всякий раз, когда на небе будет наблюдаться одно и то же событие, последуют те же следствия. Из взаимного расположения планет между собой, а также из их отношения к знакам зодиака астрология пытается угадать будущие события и все течение жизни человека. Астрология имеет древнюю историю. И в течение многих веков развитие астрономии являлось побочным результатом астрологической деятельности. В древности, средневековье, эпоху Возрождения власть имущие, вкладывая большие средства в строительство обсерваторий и совершенствование астрономических инструментов, преследовали вовсе не бескорыстные цели познания объективных законов небесных тел, ожидали не почетных лавров покровителей науки, а совсем иного — усовершенствованных гороскопов, более точных астрологических предсказаний своей личной судьбы. Начальные этапы отчуждения астрологии и астрономии, по-видимому, связаны с древнегреческой культурой. В IV в. до н.э. Евдокс Книдский уже не верил в предсказания астрологов. И побудительным мотивом греков в развитии математической астрономии были не астрологические прогнозы, а познание «вечно неизменного мира» астрономических явлений. Но отчуждение астрономии и астрологии происходило не просто. Так, величайший астроном древности К. Птолемей, создатель геоцентрической модели мироздания, занимался также и астрологией и обосновывал ее мировоззренчески; до нас дошел его астрологический трактат «Тетрабиблос» *. И даже в эпоху Возрождения не только отдельные монархи, но и целые городские общины содержат в штате чиновников астрологов, и вплоть до XVII в. в европейские университеты на работу принимаются профессора для чтения курса астрологии, который преподавался наряду с курсом астрономии. Мода на астрологию дошла и до нашего времени: астрологические гороскопы являются неотъемлемым атрибутом многих периодических изданий. * Птолемей Клавдий. Математический трактат, или Четверокнижье // Знание за пределами науки. М., 1996. С. 92-131. В разное время, в разных культурах в основных задачах астрологии могли изменяться акценты. Так, например, в старовавилонской астрологии и центре внимания была не судьба отдельного человека, а благополучие страны — погода, урожай, война, мир, судьбы царей и др. Но суть всегда оставалась одной — связать прямой необходимой причинной связью повседневные земные события (быстротекущей жизни людей и народов) с небесными явлениями. На первый взгляд, вполне научная задача. Но на самом деле это не так. Ведь наш мир устроен таким образом, что в нем нет прямой непосредственной необходимой причинной связи всего со всем. И потому хотя Космос, условно, оказывает определенное воздействие на земные явления (в том числе, например, геомагнитными бурями на состояние здоровья человека), конечные причины человеческих и социальных процессов и судеб лежат не за пределами Земли, а в земных факторах — природных (прежде всего, биологических) и социальных. В рассматриваемую эпоху математические знания развивались в следующих основных направлениях. Во-первых, расширяются пределы считаемых предметов, появляются словесные обозначения для чисел свыше 100 единиц — сначала до 1000, а затем вплоть до 10 000. В о - в т о р ы х, закладываются предпосылки позиционной системе исчисления. Они состояли в совершенствовании умения считать не единицами, а сразу некоторым набором единиц (4, 5, чаще всего 10). Когда нужно было пересчитать большое количество одинаковых предметов (например, стадо скота), применялся так называемый групповой счет. Такой счет вело несколько человек: один — вел счет единицам, второй — десяткам, третий — сотням (наблюдения Н.Н. Миклухо-Маклая *). Развитие хозяйства, торговли требовало не просто умения считать, но и умения сохранять на длительное время или передавать на расстояния результаты счета (очень часто — больше числа). Для этого применялись известные еще с древнейших времен бирки, шнуры, нарезки или узлы, на которых уже обозначаются не только единицы, но и группы единиц (по 4, 5,10,20 единиц). По сути, формировался прообраз различных систем счисления. *' См.: Миклухо-Маклай Н.Н. Собр. соч. М.; Л., 1950. Т. 1. С. 141. В-третьих, формируются простейшие геометрические абстракции — прямой линии, угла, объема и др. Развитие земледелия, отношений земельной собственности требуют умения измерять расстояния, площади земельных участков (отсюда и происхождение слова «геометрия» — от древнегреческого «землемерие»). Развитие строительного дела, гончарного производства, распределение урожая зерновых и проч. требовало умения определять объемы тел. В строительстве было необходимо уметь проводить прямые горизонтальные и вертикальные линии, строить прямые углы и т.д. Натянутая веревка служила прообразом представления о геометрической прямой линии. Одним из важнейших свидетельств освоения человеком геометрических абстракций является зафиксированный археологами бурный всплеск использования геометрических орнаментов на сосудах, ткани, одежде. Геометрическая отвлеченность начинает превалировать в художественной изобразительной деятельности, в передаче изображений животных, растений, человека. На Древнем Востоке математика получила особое развитие в Месопотамии. Математика развивалась как средство решения повседневных практических задач, возникавших в царских храмовых хозяйствах (землемерие, вычисление объемов строительных и земляных работ, распределение продуктов между большим числом людей и др.). Найдено более сотни клинописных математических текстов, которые относятся к эпохе Древневавилонского царства (1894— 1595 гг. до н.э.). Их расшифровка (Варден ван дер Б.Л. и др.) показала, что в то время уже были освоены операции умножения, определения обратных величин, квадратов и кубов чисел, существовали таблицы с типичными задачами на вычисление, которые заучивали наизусть *. Математики Древнего Вавилона уже оперировали позиционной системой счисления (в которой цифра имеет разное значение в зависимости от занимаемого ею места в составе числа). Система счисления была шестидесятиричной. Жителям Древнего Вавилона были известны приближенные значения отношения диагонали квадрата к его стороне они считали равным приблизительно 1,24; число π — приблизительно равным 3,125). * См.: Варден ван дер Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959; Рыбников К.А. История математики. 2-е изд. М., 1974; и др. Вавилонская математика поднялась до алгебраического уровня, оперируя не числом конкретных предметов (людей, скота, камней и проч.), а числом вообще, числом как абстракцией. При этом числа рассматривались как некий символ иной, высшей реальности (наряду с множеством других символов такой высшей реальности). Но у древних вавилонян, по-видимому, еще не было свойственного древнегреческой математике представления о числах как некоторой абстрактной реальности, находящейся в особой связи с материальным миром. Поэтому у них не вызывали мировоззренческих проблем вопросы о природе несоизмеримых отношений и иррациональных чисел. На современном математическом языке те типовые задачи, которые могли решать вавилоняне, выглядят следующим образом: Алгебра и арифметика: уравнения с одним неизвестным АХ =B; X2 = А; X2 + АХ = В; X2 - АХ = В; X3 = А; X2 (X + 1)=А; системы уравнений с двумя неизвестными им были известны следующие формулы: и суммирование арифметических прогрессии. Геометрия: пропорциональность для параллельных прямых; теорема Пифагора; площадь треугольника и трапеции; площадь круга == 3 R2 ; длина окружности ==6R ; объем призмы и цилиндра; объем усеченного конуса они считали по неправильной формуле: 1 /2 (З R2 + З r 2 ) (на самом деле он равен 1/3( R 2 - r 2 ). Объем усеченной пирамиды с высотой Н , квадратным верхним В ) и нижним (А ) основаниями они определяли по неправильной формуле: 1/2 (А2 + В2 )Н ; на самом деле он равен 1/3(А2 + АВ+ В2 )Н. Основная общая особенность и общий исторический недостаток древневосточной математики — ее преимущественно рецептурный, алгоритмический, вычислительный характер. Математики Древнего Вocтока даже не пытались доказывать истинность тех вычислительных формул, которые они использовали для решения конкретных фактических задач. Все такие формулы строились в виде предписаний: «делай так-то и так-то». Потому и обучение математике состояло в механическом зазубривании и заучивании веками не изменявшихся пособов решения типовых задач. Идеи математического доказательства в древневосточной математике еще не было. Вместе с тем у древних вавилонян уже складывались отдельные предпосылки становления математического доказательства. Они состояли в процедуре сведения сложных математических задач к прошлым (типовым) задачам, а также в таком подборе задач, который позволял осуществлять проверку правильности решения. 3. СОЗДАНИЕ ПЕРВОЙ ЕСТЕСТВЕННО-НАУЧНОЙ КАРТИНЫ МИРА В ДРЕВНЕГРЕЧЕСКОЙ КУЛЬТУРЕ Античная цивилизация — величайшее и прекраснейшее явление в истории человечества. Невозможно переоценить роль и значение античной цивилизации, ее заслуги перед всемирно-историческим процессом. Созданная, древними греками и древними римлянами цивилизация, просуществовавшая с VIII в. до н.э. вплоть до падения Западной Римской империи в V в. н.э., т.е. более 1200 лет, была не только культурным центром своего времени, давшим миру выдающиеся образцы творчества во всех сферах человеческого духа. Она также стала колыбелью двух близких нам современных цивилизаций: западной и византийско-православной — евразийской. А в одном отношении античная цивилизация является универсальной основой, пьедесталом всей последующей общечеловеческой культуры — в той мере, в какой она содержит дух рационализма, пронизана таким отношением к бытию, в котором преобладает убеждение, что мир (как природный, так и человеческий) состоит из вещей и процессов, взаимодействующих между собой и изменяющихся по естественным, не зависящим от воли, сознания и желаний человека закономерностям. Именно античная цивилизация окончательно преодолела рубеж, разделяющий в сознании человека Хаос и Закон, Хаос и Космос, Миф и Логос, отделила «логику вещей» от «логики слов и мыслей», утвердила представление о том, что освоение мира во всех формах человеческой деятельности возможно только по его собственным законам. Античная цивилизация принадлежит к цивилизациям второго цивилизационного цикла. Ко времени ее становления древними культурами Месопотамии, Восточного Средиземноморья и Малой Азии был накоплен определенный значительный культурно-исторический опыт. И географически, и исторически Греция стала мостом между древними культурами Востока и новыми цивилизациями Европы. Благодаря своим особым географическим, историческим и этнокультурным условиям древние греки органично впитали в себя достижения азиатских (ассиро-вавилонской, египетской, хеттской, финикийской и др.) и эгейских (крито-минойской и микенской) цивилизаций седой древности, творчески переработали их и подняли на качественно новый уровень. 3.1. Культурно-исторические особенности древнегреческой цивилизации Расцвет эллинской культуры и формирование античной цивилизации I тыс. до н.э. были подготовлены предшествующим двухтысячелетним развитием протогреческих и раннегреческих племен в эпоху бронзы и, возможно, неолита. Наиболее глубокие корни древнегреческой культуры уходят в духовный мир индоевропейской культурно-исторической общности. Греки не являлись автохтонным населением нынешней Греции. Древнегреческие племена несколькими волнами пришли и осели на территории нынешней Греции в результате длительного и активно-наступательного переселенческого движения, «великого переселения» индоевропейских племен. Первые классовые общества, ростки цивилизаций сложились на островах Эгейского моря в конце III тыс. до н.э. К этому времени цивилизации Месопотамии и Египта насчитывали уже тысячу лет. Древнейшим очагом цивилизации в Европе был остров Крит — центр большого государства, объединявшего острова в южной части Эгейского моря и восточные прибрежные области Балканского полуострова (крито-минойская цивилизация эпохи бронзы). Экономической основной этой цивилизации являлось земледелие, ориентированное одновременное выращивание трех сельскохозяйственных культур— злаковых (главным образом, ячменя), винограда, олив. Увеличение массы избыточного продукта, отделение ремесла от сельскохозяйственного производства создали благоприятные условия для развития торговли и мореплавания — эффективного средства межобщинного и межплеменного обмена. Если цивилизации Древнего Востока возникали на основе орошаемого и ирригационного земледелия в речных долинах с плодородной почвой, то развитие народов Эгейского бассейна и Балканского полуострова определялось иными природными условиями. Каменистая, трудная для обработки и возделывания почва, многочисленные горные хребты, наличие лишь изолированных пригодных для земледелия долин, развитая береговая линия — все это обусловило особенности экономического и общественного развития древнегреческой цивилизации. Образу жизни древних греков свойственна ориентированность на море — на получение морских продуктов питания, на морскую торговлю, морские контакты с другими народами, на политику колонизации. С В середине XV в. до н.э. крито-минойская цивилизация была разрушена племенами ахейцев, вторгшимися на Крит из материковой Греции. В регионе Балканского полуострова греческие племена снимались с насиженных мест и направляли свои завоевательные усилия на юг, осваивая острова Эгейского моря. Такие миграционные движения осуществлялись не постоянно, а периодически, волнами. Одну из первых известных нам волн греческих завоеваний устремили на юг греческие племена ахейцев. Продвигаясь все дальше на юг, ахейцы разгромили крито-минойскую цивилизацию, ассимилировали коренное население, усваивая его культуру. На остатках крито-минойской цивилизации сложилась новая раннеклассовая микенская цивилизация, которая, по-видимому, представляла собой не единое государство, а множество непрерывно враждующих между собой государств. Греки-ахейцы вели активную колонизаторскую политику, их политическая и военная экспансия была нацелена на Малую Азию и Восточное Средиземноморье. Одним из событий той эпохи была знаменитая Троянская война, о которой повествует Гомер в своей бессмертной поэме «Илиада». В силу пока не вполне выясненных причин в конце XIII в. до н.э. народы северобалканского региона (не только греки-дорийцы, но и фракийцы, иллирийцы) пришли в движение. Множество племен, тысячи людей устремились на юг, в богатые, процветающие области Греции, в Малую Азию. На рубеже XIII—XII вв. до, н.э. микенская цивилизация испытала страшный удар. Истощенная внутренними войнами, потерей огромных людских и материальных ресурсов микенская цивилизация не смогла противостоять натиску варварских племен. Ей был нанесен непоправимый ущерб, от которого она уже не смогла оправиться. Дорийское завоевание отбросило Грецию на несколько столетий, почти к тому состоянию, в котором она находилась до зарождения микенской цивилизации. Материальная и духовная культура этого времени несет на себе печать полного упадка и опустошения. На всей территории Греции вновь утвердился первобытно-общинный строй. Началась эпоха «темных веков» (с XII по IX в. до н.э.), для которой характерны разложение родовых отношений и создание предпосылок полисного строя. В истории Древней Греции XI—IX вв. до н.э. — так называемый гомеровский период, поскольку поэмы Гомера «Илиада» и «Одиссея» являются главным источником информации об этом времени. Важнейшее достижение данного периода — освоение греками техники выплавки и обработки железа. Появились первые орудия труда, изготовленные из железа, развивались земледелие (хлебопашество, садоводство и виноградарство) и скотоводство. Основным критерием богатства считался скот, который использовался и как меновая единица, как деньги. Сельское хозяйство носило в основном общинный и натуральный характер. Торговля и ремесло играли незначительную роль, но был широко распространен морской разбой. Пиратство рассматривалось как занятие, достойное настоящего героя и аристократа. Хотя имущественное неравенство уже довольно четко обозначилось, тем не менее образ жизни всех слоев общества, в том числе и высших, носил простой, патриархальный характер. Гомеровские цари еще не окружены придворными, не чураются грубой физической работы. Хотя рабство и развивалось, но еще не получило большого распространения и носило преимущественно домашний характер. Рядовые члены общины сами обрабатывали свои земельные наделы, а в хозяйствах общинно-племенной знати использовался труд нанятых на время поденщиков. В поэмах Гомера Греция предстает раздробленной на множество мелких самоуправляемых общин. Сельская община (демос) занимала, как правило, очень незначительную территорию и была мало связана с соседними общинами. Политическим и экономическим центром общины был полис (небольшое укрепленное поселение, в гомеровскую эпоху заселенное крестьянами — земледельцами и скотоводами. Между отдельными общинами существовали обычно «прохладные», а часто и вовсе враждебные отношения. Конфликты происходили постоянно, обычно на почве похищения скота, раздела земельных и пахотных угодий. Экономической ячейкой гомеровской общины выступала патриархальная семья. Имущественная и социальная дифференциация в общине зашла довольно далеко. Родовой наследственной знати противостоят рядовые общинники. У Гомера понятия «знатность» и «богатство» — синонимы. Однако военно-демократические традиции были сильны, и народные собрания регулярно собирались для обсуждения и решения важнейших вопросов общественной жизни. Правда, на этих собраниях решающую роль уже играет наследственная, родовая аристократия. Знать претендовала на господствующее положение в политической жизни общины, и воля народа не имела для аристократии силы закона. Гомеровская эпоха — это время интенсивной ломки традиций родового строя и развития классовых отношений, становления политической организации общества. В этот период накапливались решающие предпосылки для нового стремительного подъема греческой материальной и духовной культуры. Такой подъем произошел в VIII—VI вв. до н.э. Наиболее характерной его чертой явилась Великая греческая колонизация — переселение части греческого населения из района Эгейского бассейна в многочисленные колонии по побережью Средиземного и Черного морей. Причины древней греческой колонизации состояли в наличии избыточного населения, обусловленном демографическим взрывом, использовании экстенсивных методов ведения хозяйства, ограниченности естественных ресурсов (земли, пастбищ, леса и др.) и их весьма неравномерном распределении. В этих условиях процесс классообразования и социальной дифференциации общества приводил к весьма быстрому образованию слоя обезземеленных, попавших в цепкие лапы ростовщиков или закабаленных соседями, крестьян. Они и составляли основной контингент колонистов, искавших на чужбине счастья, удачи, земли, благосостояния. Наряду с обезземеленными крестьянами в колонизационном процессе участвовали и политические изгнанники, а также люди с умеренным достатком, стремившиеся разбогатеть. Великая греческая колонизация осуществлялась в трех различных направлениях: в западном (Южная Италия, Сицилия, Сардиния, Корсика, южное побережье Франции и восточное побережье Испании), северо-восточном (черноморские проливы, побережье нынешней Болгарии и Румынии, берега Черного моря), юго-восточном (восточное побережье Средиземного моря, Малая Азия, Северная Африка). Колония основывалась как самостоятельный полис, но сохраняла тесные экономические и культурные связи с метрополией. Одни колонии имели преимущественно земледельческую ориентацию, а другие — торговую. В колониях складывалась система землевладения, сочетавшая коллективное владение землей и частнособственническое присвоение участков. Колония выступала как посредник между местным населением и метрополией. Все это определило историческое становление ареала древнегреческой цивилизации, целого мира древнегреческой культуры в районе Средиземного и Черного морей. Колонизация стимулировала экономическое, политическое и духовное развитие архаической Греции. Интенсивно развивается торговля, совершенствуется ремесленное и сельскохозяйственное производство, происходит отделение ремесла от сельского хозяйства, возникают товарно-денежные отношения, ростовщичество, работорговля. Резко возрастает роль труда рабов, благодаря чему у незанятых производительным трудом граждан создается избыток свободного времени. Появившийся досуг посвящается духовной деятельности — занятиям наукой, искусством, философией, политикой, спортом и др. Полис постепенно превращается из деревенского поселения в город и становится политическим (административным), торговым, ремесленным, военным и духовным (религиозным) центром сельской общины. (В настоящее время известно около 200 независимых античных полисов, с населением от сотни-другой человек до 50 тыс. в Сиракузах в IV в. до н.э.) Колонизационное движение окончательно разорвало узы родовых, патриархальных связей. Освоение новых земель на окраинах ойкумены стимулировало развитие таких качеств личности, как инициативность, предприимчивость, энергичность, динамичность, демократичность, рациональность, здравомыслие, высвобождение из рамок старой родовой морали и др. Социально-политические изменения в эту эпоху были направлены от аристократического строя к ранним демократиям и олигархиями. В этих условиях формируется духовная индивидуальность личности. Так в архаичной Греции подлавливались условия для качественного скачка, рационалистического переворота в духовной культуре, суть которого — окончательный разрыв с мифологическим сознанием и возникновение рационалистических форм культуры, прежде всего науки и философии. В сложном комплексе материальных и духовных исторических предпосылок рационализации древнегреческой культуры следует выделить: · развитие производительных сил, техники (освоение железа и производство железных орудий труда); · развитие экономических отношений, переход от раннеклассового общества к развитому рабовладельческому обществу, которое характеризуется абстрактными общественными отношениями (отношения господин — раб, развитие системы товарно-денежных отношений), сложившимися представлениями меновой стоимости и абстрактного труда; · территориальная экспансия, которая приводила к культурным контактам с самыми разнообразными странами и народами; · множественность полисов (городов-государств), каждый из которых имел свои традиции, причем это не только не разрушало, но даже усиливало сознание общегреческого культурного единства; · социальная организация полиса, демократический характер многих из них; · относительное политическое равенство свободных граждан, наличие политических прав и личных свобод; · развитое чувство гражданской ответственности и критического мышления, когда каждый грек считает себя ответственным не только за свою судьбу, но и за судьбу всего государства, всего полиса; · наличие совершенной системы письменности (фонетическое, буквенное письмо), т.е. самой совершенной по тем временам системы средств фиксации, хранения и передачи информации; · распространение публичных дискуссий, что требовало умения убедительно, логично, обоснованно защищать свою точку зрения; разрабатываются приемы логического доказательства; система обучения и образования приобретает характер социального института; · индивидуализация духовного мира личности, формирование самосознания и самооценки; · формирование общественного мнения, поощрявшего творческие личные достижения (дух «агона», соревновательности во всех сферах деятельности — в производстве, спорте, политической жизни, культуре). Все эти факторы в тесном единстве, во взаимодействии между собой определили окончательное разложение основ мифологического сознания, деантропоморфизацию природы, рационализацию форм культуры, категоризацию мыслительной деятельности, возможность теоретического противопоставления в сознании человека субъекта и объекта, мира и человека, предмета и его образа, вещи и ее имени и т.д. В конечном счете кардинально изменяется характер отношения человека к миру: мир предстает, с одной стороны, как некий объект, обладающий своими собственными, не зависящими от человека закономерностями, а с другой — как некая универсальная целостность (макрокосм), находящаяся в определенной связи со своей неотъемлемой частью — человеком (микрокосмом). На этом уровне универсальные отношения Человека и Мира, т.е. те отношения, которые придают Миру и Человеку внутреннее единство и целостность, выделяются сознанием и осознаются человеком. Именно в этих условиях становится возможным появление важнейших мировоззренческих установок и представлений: · установки на получение нового знания; · представления о том, что познание есть некоторая самостоятельная ценность; · установки на выявление некоторых естественных, а не сверхъестественных причин различных явлений; · представления о систематичности знания, последовательности его накопления; · установки на обосновываемость, доказательность знания, идеи о необходимости обоснования истинности нового знания. Именно эти установки способствуют окончательному разрыву с мифологией и созданию оснований качественно нового, рационалистического, научно-познавательного способа мышления. Переход к научному познанию мира предполагал выработку качественно нового (по сравнению с мифологическим) представления о мире. В таком немифологическом мире существуют не антропоморфно, а естественные, объективные, независимые от людей и богов процессы. Непосредственные предпосылки такого представления складывались в поздних теокосмогонических мифах, в которых на природные процессы переносятся социальные, общинно-родовые, родственные отношения между людьми. Вопрос о происхождении мира трактовался с позиций происхождения общины, рода, племени, народа, представлений о смене поколений в пределах рода, семейно-бытовых отношениях в нем. А образы богов, героев, других персонификаций обобщали отдельные стороны жизнедеятельности родовой общины (сначала матрилинейной, а затем патрилинейной). Содержанием теокосмогонических мифов выступали картины происхождения богов, смена поколений богов и их борьба между собой, их природно-определенные связи и отношения со смертными людьми и проч. Теокосмогонические мифы — высшая форма мифотворчества, которая уже содержит зародыши научного отражения мира. Эти мифы рационализировали мифологию посредством ее историзации (совершенствование понятий, воспроизводящих историю мира) и систематизации. Иначе говоря, протонаучными формами космогонии выступали родо-племенные теогонии. Например, Гесиод так излагает начальные этапы развития мира в своей космогонической мифологии: Прежде всего во вселенной Хаос зародился, а следом Широкогрудая Гея (Земля), всеобщий приют безопасный, Сумрачный Тартар в земных залегающих недрах глубоких, И между вечными всеми богами прекраснейший, — Эрос (Любовь). Сладкоистомый — у всех он богов и людей земнородных Душу в груди покоряет и всех рассуждения лишает. Черная ночь и угрюмый Эреб (Мрак) родились из Хаоса. Ночь же Эфир (Свет) родила и сияющий День или Гемеру… Гея же прежде всего родила себе равное ширью Звездное Небо, Урана, чтоб точно покрыл ее всюду И чтобы прочным жилищем служил для богов всеблаженных... Теогония, 116-128. В «Теогонии», как в других теокосмогонических мифах, история мира — пока еще не история естественных, природных процессов, а история рождения и смены поколений богов. Но Гесиод уже не просто пересказывает и систематизирует древние мифы, а пытается найти в системе мифов некоторый рациональный смысл. Гесиод проницательно и справедливо ищет на пути систематизации, логической упорядоченности мифов форму обоснования, доказательства не только мифов, но знания вообще. В теокосмогонических мифах складываются следующие предпосылки научно-рационального познания: · образ некоторого первичного состояния Вселенной, которое характеризуется хаотичностью, бессистемностью, аморфностью (Хаос, Тьма, безграничная Бездна); · идея общего преобразования, усложнения мира от его хаотического состояния к организованному, упорядоченному, систематично устроенному миру, разумному и справедливому (идея развития мира от Хаоса к Космосу); · представление о качественном переходе от Хаоса к Космосу, отражавшее осознание противоположности и единства культуры и природы; человеческого (социального) и естественного (дочеловеческого); · представление о периодической гибели, разрушении Космоса и возвращении мира в хаотическое состояние, а затем новом рождении, восстановлении Вселенной из Хаоса. История мира предстает как история циклов Хаос — Космос — Хаос. Итак, историческая заслуга древнегреческих теокосмогонических мифологий состояла в выработке общего представления о Космосе, которое служило важной предпосылкой возникновения научного познания мира. Космос осознавался древними греками как материальное, организованное и в то же время одухотворенное, живое целое, образовавшееся из стихии неорганизованного Хаоса. Космос, или Вселенная, представлялись как гармоничное, симметричное, ритмически устроенное целое. Это целое находится в состоянии постоянного становления, изменения. Космос периодически способен превращаться в Хаос и вновь возрождаться. Каждая часть Космоса воспроизводит структуру космоса в целом. Не боги создавали Космос, а Космос создал из себя богов — таким мировоззренческим представлением завершалось мифологическое сознание. И это же представление открывало дорогу для возникновения науки. С появлением такого вещественно-телесного, пластического образа Космоса до возникновения научного отражения естественных закономерностей мира остался только один шаг. В Древней Греции такой шаг был осуществлен в начале VI в. до н.э. Именно в это время в древнегреческой культуре завершается разделение объекта и субъекта, возникает теоретическая проблема отношения человека и мира, познания законов природы, ее структуры, организации бытия. Непосредственно возникновение европейской науки принято связывать с милетской школой, названной так потому, что первые ученые Древней Греции были жителями города Милет, расположенного на территории полуострова Малая Азия. Представители милетской школы сформулировали исторически первую и наиболее фундаментальную проблему— проблему того первоначала, из которого возникат все вещи и в которое со временем они превращаются. Иначе говоря, историческая заслуга милетской школы состояла в постановке первой и важнейшей естественно-научной проблемы — проблемы первоначала, субстанции мира. Представители милетской школы (Фалec, Анаксимандр, Анаксимен) были одновременно и первыми учеными-естествоиспытателями и первыми философами. На уровне чувственного восприятия люди осознают, что окружающий их мир представляет собой многообразие самых разнообразных вещей — деревья, кустарники, поля, реки, озера, сами люди, звездное небо и т.д. Естествознание начинается тогда, когда сознание человека поднимается до уровня выработки высокой абстракции (категории) субстанции, позволяющей сформулировать вопрос, существует ли за многообразием вещей некое единое начало. Или, другими словами, «что есть все?» В свою очередь вопрос о субстанции, первоначале мира стал возможен тогда, когда уровень мыслительного абстрагирования позволил сформулировать представление о процедуре обоснования знания. Формой такого представления явилась идея математического доказательства. Идея математического доказательства — это величайшее достижение древнегреческих мыслителей. В древневавилонской и древнеегипетской математике такая идея отсутствовала. Древневосточная математика, как мы отмечали выше, была представлена множеством алгоритмов, операций, которые обеспечивали вычислительный эффект, но не имели логического, теоретического обоснования. Однако, одно дело — сформулировать задачу и предложить алгоритм ее деленного решения, а совсем иное дело — не просто численно решить задачу, но и доказать, что это решение не только возможное, но и истинное. Для доказательства надо иметь принципы решения целого класса проблем определенного типа. Это значит, что мышление должно оперировать некоторыми всеобщими логическими структурами. Среди таких структур важнейшая — категория субстанции. Не случайно основатель милетской школы («первый европейский ученый», как его называют) Фалес Милетский вошел в историю науки одновременно и как естествоиспытатель-философ, сформулировавший проблему субстанции мира, и как математик, сформулировавший идею математического доказательства. Фалесу приписывают доказательство следующих геометрических теорем: 1) круг делится диаметром пополам; 2) в равнобедренном треугольнике углы при основании равны; 3) при пересечении двух прямых образуемые ими вертикальные углы равны; 4) два треугольника равны, если два угла и одна сторона одного из них равны двум углам и соответствующей, стороне другого. Каким образом представители милетской школы решали вопрос о субстанции мира, едином основании многообразия вещей? Фалес считал, что началом всех вещей, их субстанцией (т.е. то, из чего возникают все вещи и во что они в конечном счете превращаются) является вода. Другой представитель милетской школы Анаксимандр источником всего сущего, субстанцией всех вещей считал не воду, а некое вечное, беспредельное, безграничное, бесконечное начало, которое он назвал апейроном (т.е. «беспредельное»). В этом вечном, находящемся в непрерывном движении неопределенном первовеществе возникает как бы зародыш будущего мира. Мир периодически возвращается в это первовещество. Древние сообщали, что Анаксимандр был первым греком, начертившим географическую карту Земли, и распространял среди греков заимствованные на Востоке солнечные часы (гномон). Последним великим представителем милетской школы был Анаксимен, который началом, основой, субстанцией мира считал воздух. Все возникает из воздуха через его разряжение и сгущение. Разряжаясь, воздух становится сначала огнем, затем эфиром, а сгущаясь — ветром, облаками, водой, землей и камнем. Анаксимен — один из наиболее ярких представителей «метеорологической» традиции древнегреческой науки, в которой основные естественно-научные проблемы (начала и структуры Космоса) решались по аналогии с метеорологическими процессами. Для нас сейчас не так важно, как конкретно решали представители милетской школы проблему субстанции. Важен факт постановки самой проблемы субстанции мира, ориентирующей на дальнейшее развитие научно-рационального познания. Милетская школа — это еще натурфилософское познание мира, здесь еще не разделились в полной мере естественно-научное и философское познание. Философская и естественно-научная картины мира здесь пока формируются в тесном единстве. Эту традицию продолжил Гераклит. Гераклит из Эфеса — один из самих глубоких мыслителей Греции, оказавший значительное влияние на последующее развитие науки и философии. С мыслителями милетской школы его связывала проблема субстанции мира, первоосновы бытия. Но в центре учения Гераклита другая важнейшая идея — идея безостановочной изменчивости вещей, их текучести. Гераклит учил, что все в мире изменчиво, «все течет». Ничто в мире не повторяется, все преходяще и одноразово. Нельзя понять субстанцию мира, природу Космоса не учитывая его постоянную текучесть, изменчивость, то, что он все время находится в состоянии становления. Становление — это постоянное изменение, преобразование, движение, ведущее к созданию новых форм (вне зависимости от того, какими эти новые формы являются — более сложными или более простыми, прогрессивными или регрессивными высшими или низшими и др.); такие новые формы являются лишь повторением того, что уже однажды, когда-то было. Какое же вещество больше всего соответствует в качестве субстанции мира его постоянной подвижности, текучести, изменчивости, становлению? Гераклит видел такую первооснову в огне, который в то время представлялся самым подвижным и изменчивым веществом. (Тогда люди еще не понимали, что огонь — это не вещество, как вода, воздух, земля, а реакция окисления с выделением теплоты и света.) От представления о том, что субстанция может быть текущей, изменчивой, становящейся, остается один шаг до мировоззрения, согласно которому мир кажется порождением мысленной абстракции. Этот важный шаг был осуществлен пифагорейцами. В конце VI в. до н.э. центр научной мысли Древней Греции перемещается с востока средиземноморского мира на его запад — на побережие Южной Италии и Сицилии, где греки основали свои колонии. В городе Кротоне сложилась, по-видимому, первая (из известных в истории человечества научно-философско-религиозно-политическая школа — Пифагорейский союз. Он просуществовал с конца VI в. до середины IV в. до н.э. и оказал громадное влияние на развитие древнегреческой культуры, науки, философии. При этом он активно вмешивался и в политическую жизнь италийских полисов. Основателем Пифагорейского союза был Пифагор, мыслитель, о котором сложено множество легенд и мало что известно достоверного. Пифагор — личность противоречивая, в его воззрениях тесно переплетались элементы мифологии, магии, религии, философии и науки. Выходец из острова Самоса, Пифагор много лет учился в Египте и Вавилоне, возможно, даже в Индии. Известна легенда о встрече в Милете юного Пифагора с Фалесом незадолго до смерти последнего. Оказавшись в Кротоне, он основал научно-философское и религиозно-политическое сообщество единомышленников, получившее впоследствии название «Пифагорейский союз». Это была закрытая, тайная организация с определенным уставом, культивирующим размеренный, созерцательный образ жизни, который следовал из их представления о Космосе как упорядоченном, гармоничном, симметричном целом, постигнуть который дано не всем, а только избранным, т.е. тем, кто ведет особый образ жизни созерцателя, самоуглубляющегося, самосовершенствующегося мудреца. Основное мировоззренческое положение (которое принадлежит, очевидно, Пифагору) — «все есть число». Ранние пифагорейцы воспринимали число как божественное начало, сущность мира, а в исследованиях числовых отношений видели средство спасения души, некий религиозный ритуал, очищающий человека и сближающий его с богами. Это философско-религиозное учение о том, что «мир есть число», ускоряло перевод математики из области практически-прикладной, вычислительной в сферу теоретическую, в систему понятий, логически связанных между собой процедурой доказательства. Мир целостен, гармоничен, в нем все взаимосвязано. В то же время «мир есть число», значит, все числа связаны между собой, а занятия математикой позволят эти связи установить, прояснить их логическими доказательствами. Кто изучит и поймет божественные числовые отношения, тот сам станет божественным (подобно Пифагору), а его душа перестанет переселяться в другие существа (реинкарнация) и возвысится до абсолютного блаженства. Так закладывались философско-религиозные предпосылки математического и естественно-научного познания. 3.4.2. Математические и естественно-научные достижения пифагореизма При всей противоречивости пифагореизма (а может быть, благодаря ей) пифагорейская школа внесла величайший вклад в развитие конкретно-научного познания. Прежде всего это касается математики. Основные направления математических исследований раннего Пифагорейского союза: · доказательства тех положений, которые были получены в египетской и вавилонской математике (включая и «теорему Пифагора»); · разработка теории пропорций, музыкальной теории (важнейшие гармонические интервалы могут быть получены при помощи отношений чисел 1, 2, 3 и 4); · разработка теории чисел. В теории чисел пифагорейцами была проведена большая работа типологии натуральных чисел. Пифагорейцы делили их на классы. Выделялись класс совершенных чисел (число, равное сумме своих собственных делителей, например, 6=1+2+3), класс дружественных чисел (каждое из которых равно сумме делителей другого, например,220 и 284; ведь 1 + 2 + 4 + 5 + 10 + 20 + 11 + 22 + 44 + 55 + 110 = 284 и 1+2 + 4 + 71 + 142 = 220), класс фигурных (треугольное число, квадратное число и т.д.) чисел, простых и др. В эту эпоху стали также известны формулы суммирования простейших арифметических прогрессий и результатов, в современном математическом языке выражающиеся формулой типа к= 1 Рассматривались также вопросы делимости чисел. Введены арифметическая, геометрическая и гармоническая пропорции, а также различные средние: арифметическое, геометрическое, гармоническое. Наряду с геометрическим доказательством теоремы Пифагора (найден способ отыскания неограниченного ряда троек «пифагоровых чисел», т.е. чисел, удовлетворяющих соотношению А2 +В2 = С2 . Было открыто много математических закономерностей теории музыки, совершенствовались приемы геометрического доказательства и т.д. Важнейшим событием в истории пифагореизма (уже после смерти Пифагора) было открытие несоизмеримости диагонали и стороны квадрата, равной единице (современным математическим языком √2). Это открытие имело не только чисто научное, математическое, но и большое мировоззренческое значение. Философский смысл его состоял в крахе общей идеи гармоничности, цельности, стройности, пропорциональности, измеримости, организованности Космоса. Под сомнением оказалась сама идея о том, что «мир есть число». В пифагорейском союзе царила растерянность, назревал скандал. Известна легенда о том, что члены Союза пытались замалчивать это открытие, не предавать его гласности. Открытие несоизмеримости стало поворотным пунктом в истории математики и по своему значению может быть сопоставлено с открытием неевклидовой геометрии в XIX в. Для решения проблемы несоизмеримости надо было иметь четкое представление о следующих вещах: является ли неограниченной продолжительность процесса нахождения общей меры; как выразить бесконечную малость последней; как выразить то, что она должна содержаться бесконечное число раз в сравниваемых величинах. Теоретически были возможны два выхода. Первый связан с обобщением понятия числа и включением в него более широкого класса математических величин (как рациональных, так и иррациональных). По этому пути математика пойдет много позже, в эпоху Возрождения. Второй путь — геометризация математики, т.е. решение чисто алгебраических задач с использованием геометрических образов (геометрическая алгебра позволяет выражать как рациональные, так и иррациональные отрезки). Поскольку совокупность геометрических величин (например, отрезков) более полна, чем множество рациональных чисел, постольку такое исчисление можно построить в геометрической форме. Так возникла геометрическая алгебра. Например, уравнение X2 = 2 не может быть решено ни в области целых чисел, ни даже в области отношений чисел. Но оно вполне разрешимо в области прямолинейных отрезков: его решением является диагональ квадрата со стороной, равной единице. Следовательно, для того чтобы получить решение такого квадратного уравнения, из области чисел надлежит перейти в область геометрических величин. Геометрическая алгебра приложима не только к соизмеримым, но и к несоизмеримым отрезкам и тем не менее является точной наукой. Первичные элементы геометрической алгебры — отрезки прямой. По отношению к ним определялись арифметические вычислительные операции. Сложение интерпретировалось как приставление отрезков, вычитание — как отбрасывание от отрезка части, равной вычитаемому отрезку. Умножение отрезков приводило к построению площадей (произведением отрезков А и В считался прямоугольник со сторонами А и В ). Произведение трех отрезков давало параллелепипед. Произведение большого числа сомножителей в геометрической алгебре не могло рассматриваться. Деление было возможно лишь при условии, что размерность делимого больше размерности делителя и выступало как задача приложения площадей. Методы геометрической алгебры имели принципиальные ограниченности: они позволяли определить только один, положительный корень квадратного уравнения; средствами построения были циркуль и линейка; объектами построения были геометрические образы размерности не выше второй; уравнения степени выше третьей в геометрической алгебре древних просто невозможны. Недостаточность геометрической алгебры как общей математической теории несоизмеримых величин проявилась при выделении класса задач, не поддающихся решению с помощью циркуля и линейки. Среди них наиболее известны задачи удвоения куба, трисекции угла и квадратуры круга. Попытки их разрешения привели в дальнейшем к появлению и усовершенствованию новых перспективных математических методов. Так, был разработан метод конических сечений, метод исчерпывания (как предпосылки метода пределов), разработаны основы общей теории отношений, приложимой как для соизмеримых, так и для несоизмеримых величин. Значительны и астрономические идеи пифагорейцев. Есть сведения о том, что еще Пифагор высказал идею шарообразности Земли *. Пифагорейцы первыми в Древней Греции научились распознавать в небесном своде планеты, отличать их от звезд (в то время распознавали лишь пять планет). Им же принадлежит идея гармонии «небесных сфер». Представители пифагорейской школы сформулировали идею гелиоцентризма, которую впоследствии развивал Аристарх Самосский. * См.: Дитмар А.Б . География в античное время. (Очерки развития физико-географических идей.) М., 1980. Гл. 3. Всемирно-историческая заслуга пифагореизма — в осмыслении и утверждении категории количества. Мир не является многообразием качественно различных предметов, вещей, за таким качественным многообразием лежит количественное единство вещей. Каждая вещь и ее свойства имеют определенную меру, степень роста, изменчивости, насыщенности своих качеств. Мера изменчивости определенного качества и есть его количество. Каждая определенная вещь есть некоторое единство качества и количества. Нельзя постичь вещь в ее сущности и в ее целостности без выявления количественных характеристик вещи, а они постигаются математикой. Пифагорейцы заложили основы такого представления о мире и его познании, в соответствии с которым математические знания (о числах и их отношениях) являются важнейшим условием, ключом к познанию природы. Начиная с Пифагора в истории культуры развивается установка на широкое развитие математических исследований. Обратим внимание еще на одну особенность пифагореизма. По сути, из ложной посылки, что основа мира есть число, вытекает очень разумный и плодотворный вывод: математика есть средство познания устройства мира. И это далеко не единственный пример того, когда из ложных общих идейных философских посылок следуют плодотворные и истинные научные программы. 3.5. Формирование первых естественно-научных программ 3.5.1. Великое открытие элеатов Особое место в истории античной культуры занимает элейская школа. Представителям ее принадлежит великое открытие — наличие противоречия между двумя картинами мира в сознании человека; одна из них — это та, которая получена посредством органов чувств, через наблюдение; другая — та, которая получена с помощью разума, логики, рационального мышления. Основоположником элейской школы (г. Элея на юге Италии) был Ксенофан — один из первых рационалистических критиков мифологического мировоззрения. Но слава Элеи, ранее совсем неприметного города на юге Италии, связана с именами Парменида и Зенона -великих представителей этой философской школы. Парменид и его последователи убедительно показали, что результатом человеческого познания является не одна, а две различные картины мира — чувства дают одну картину мира, а разум — другую, причем эти картины мира могут быть принципиально противоположны. Легендарные апории Зенона, собственно говоря, и посвящены обоснованию и доказательству существования этих двух различных картин мира *. Установление качественного различия между отражением мира разумом и чувствами (мышлением и ощущением, логическим и чувственно-образным) было величайшим научно-философским открытием. Оно со всей силой и значимостью поставило вопрос о том, как возможно научное познание мира и возможно ли оно вообще. В ту эпоху сама возможность научного познания мира отнюдь не была самоочевидной. Немало мыслителей сомневалось в возможности естественно-научного (и философского) познания мира. Идея познаваемости мира буквально выстрадана человечеством. * См., например: Комарова В.Я. Учение Зенона Элейского. Л., 1988. Сами элеаты считали, что из двух картин мира подлинная та, которая постигается разумом. На этой основе они ввели качественно новое представление о первооснове мира, о его субстанции. Если у представителей милетской школы первооснова мира носит характер физического процесса, некоторой стихии (вода, воздух и др.), у пифагорейцев — абстрактно-математический характер (число), то у элеатов она является абстрактно-философской — бытие как таковое. Элеатовское бытие — это специфический теоретический объект, предмет философского и никакого другого познания. По мнению элеатов, такой объект (бытие) никогда не возникал, не подвержен гибели, един-единствен, неподвижен, закончен и совершенен. А самое главное, что бытие постигается только разумом и ни в коем случае не чувствами. В своей философской поэме «О природе» Парменид говорит: Ибо мыслить — то же, что быть... Можно лишь то говорить и мыслить, что есть; бытие ведь Есть, а ничто не есть: прошу тебя это обдумать * . * Фрагменты ранних греческих философов. Ч. 1. От эпических теокосмогоний до возникновения атомистики. М., 1989. С. 296. Пo Пармениду, есть два пути познания — «путь истины» и «путь мнения». Путь истины — это познание разумом единого бытия, выделение его из бесконечного качественного многообразия вещей, которое есть небытие. Путь истины — это путь отделения бытия от небытия. Путь мнения — это познание на уровне чувств, образов, которое не дает знания бытия, а только движется на уровне поверхностных свойств вещей, на уровне явления, небытия. Путь мнения — это путь нефилософского, обманчивого познания. Софисты, Демокрит и Платон делают разные выводы из учения элеатов и по-разному решают поставленную элеатами проблему. Софисты (например, Горгий) используют качественное различие двух картин мира, двух путей познания для обоснования субъективного и прагматического характера познания, вплоть до скептицизма. (Известный парадокс Горгия: «Ничего не существует; если бы и существовало, то было бы непознаваемо; если бы и было познаваемо, то не было бы передаваемо другому».) Кто же такие софисты? В середине V в. до н.э. в условиях развивавшейся рабовладельческой демократии появилась потребность в изменении системы образования: вместо гимнастики и музыки на первый план выдвигаются необходимые в судах и народных собраниях риторика, логика, философия. Появились первые платные учителя философии, риторики, логики — софисты. Разъезжая по городам, они за плату учили красноречию — умению говорить, убеждать, побеждать в спорах, выигрывать тяжбы в суде. Обычно это яркие, активные, бойкие и часто, по-видимому, нагловатые, с оттенком нигилизма, но талантливые люди, смело разрывавшие со старыми традициями жизни и мысли. Среди своих современников софисты пользовались далеко не самой лучшей репутацией. Нередко в них видели утонченных шарлатанов или дилетантов. Для этого имелись свои основания: в софистике был силен прагматический момент. Софисты учили побеждать в споре не только во имя истины, но и часто вопреки ей. Так, например, софист Горгий заявлял, что может любую вещь и восхвалять, и ниспровергать независимо от ее объективных качеств (используя двусмысленность и многосмысленность (полисемантизм) словесных выражений, неправильности логических связей мысли и т.д.). Поэтому под софистикой понимают умение использовать полемику, силу слова, логики для доказательства всего чего угодно, умения представить истину ложью, а ложь — истиной, белое — черным, а черное — белым. Именно в софистике — корни того направления в истории философии, которое связано со скептицизмом и агностицизмом, с неверием в возможности познания человеком мира, отрицанием возможности и необходимости науки. Демокрит и Платон занимали иную позицию в вопросе о познаваемости мира. Они верили в познание мира, в возможность и необходимость естествознания, хотя по-разному понимали объекты и пути познания. Демокрит и Платон — основатели двух исторически первых естественно-научных программ познания природы. 3.5.2. Атомистическая программа Одной из вершин античной культуры являлось атомистическое учение Демокрита, основоположника античного материализма. Жизнь Демокрита — образец глубокой преданности науке, познанию мира. Занятия наукой, философией он ставил превыше всего; истина для него — высшая ценность. Демокрит заявлял, что одно причинное объяснение он предпочитает обладанию (самым могущественным в то время) персидским престолом. Он много путешествовал по Востоку, был в Египте, Вавилонии, Индии и Эфиопии, усвоил научные и философские достижения древневосточных культур. Демокрит поставил перед собой задачу создать такое учение, которое смогло бы преодолеть противоречия, зафиксированные элеатами. Иначе говоря, такое учение, которое обеспечивало соответствие картины мира, открывающейся человеческим чувствам, картине мира, конструируемой деятельностью мышления, дискурсивно, логикой. На этом пути он осуществил переход от континуального к дискретному видению мира. Демокрит исходил из безоговорочного признания истинного бытия существующим и существующим как многое. Он убедительно показал, что мыслить бытие как многое, мыслить движение можно, если ввести понятие о неделимости элементарных оснований этого бытия — атомов. Бытие в собственном смысле этого слова — это атомы, которые движутся в пустоте (небытии). В противоположность элеатам Демокрит учил, что реально существует не только бытие, но и небытие. Бытие — это атомы, небытие — пустота, пустое пространство. Пустота неподвижна и беспредельна; она не оказывает никакого влияния на находящиеся в ней тела, на бытие. Идея пустоты привела Демокрита к идее бесконечного пространства, где во всех направлениях беспорядочно носятся, перемещаются атомы (как пылинки в солнечном луче). Представление о пустоте — это достаточно сильная абстракция, требующая высокого уровня теоретического мышления. От понятия пустоты остается только один шаг до понятия инерции, но древние греки этого шага не сделали. Атом — неделимая, совершенно плотная, непроницаемая, невоспринимаемая чувствами (вследствие своей, как правило, малой величины), самостоятельная частица вещества, атом неделим, вечен, неизменен. Атомы никогда не возникают и никогда не погибают. Они бывают самой разнообразной формы — шарообразные, угловатые, крючкообразные, вогнутые, выпуклые и т.п. Атомы различны по размерам. Они невидимы, их можно только мыслить. В процессе движения в пустоте атомы сталкиваются друг с другом и сцепливаются. Сцепление большого количества атомов составляет вещи. Возникновение и уничтожение вещей объясняются сложением и разделением атомов; изменение вещей — изменением порядка и положения (поворота) атомов. И если атомы вечны и неизменны, то вещи преходящи и изменчивы. Таким образом, атомизм соединил в одной картине рациональные моменты двух противоположных учений — учений Гераклита и Парменида: мир вещей текуч, изменчив, а мир атомов, из которых состоят вещи, неизменен, вечен. По Демокриту, мир в целом — это беспредельная пустота, начиная многими отдельными мирами. Отдельные миры образовать в результате того, что множество атомов, сталкиваясь друг с другом, образуют вихри — кругообразные движения атомов. В вихрях иные и тяжелые атомы скапливаются в центре, а более легкие и малые вытесняются к периферии. Так возникли земля и небо. Небо образует огонь, воздух, светила. Земля — центр нашего мира, на краю которого находятся звезды. Каждый мир замкнут. Число миров бесконечно. Многие из них могут быть населенными. Демокрит впервые описал Млечный Путь как огромное скопление звезд. Миры преходящи: одни из них только возникают, другие находятся в расцвете, а третьи уже гибнут. Исторической заслугой античного атомизма являлось также формирование и разработка принципа детерминизма (причинности). В соответствии с этим принципом любые события влекут за собой определенные следствия и в то же время представляют собой следствие из некоторых других событий, совершавшихся ранее. Демокрит понимал принцип детерминизма механистически, отождествляя причинность и необходимость. Все, что происходит в мире, не только причинно обусловлено, но и необходимо, неизбежно. Он отвергал обьективное существование случайности, говоря, что человек называет событие случайным, когда не знает (или не хочет узнать) причины события. Мир атомистов — мир сплошной необходимости, в котором нет объективных случайностей. Концепция атомизма — одна из самых эвристичных, одна из самых плодотворных и перспективных научно-исследовательских программ в истории науки. Она сыграла выдающуюся роль в развитии представлений о структуре материи, в ориентации движения естественно-научной мысли на познание все более глубоких структурных уровней организации материи. И сейчас, спустя 2500 лет после ее возникновения, программа атомизма (применяемая уже не к атомам, а к элементарным частицам, из которых они состоят) является одним из краеугольных оснований естествознания, современной физической картины мира. 3.5.3. Математическая программа Если Демокрит решает сформулированное элеатами противоречие в духе первичности и единственности чувственной реальности, то Платон считает логически допустимым другой путь. Противоречие между знаниями, полученными органами чувств, и знаниями, полученными логикой, мышлением, Платон объясняет не трудностями процесса познания (как софисты) и не структурой чувственного материального мира (как Демокрит), а возможным Наличием двух реальностей, двух миров. Первый мир — это мир множества единичных, изменяющихся, подвижных, отражаемых чувствами человека вещей; это — материальный мир. Второй мир — это мир вечных, общих и неизменных сущностей; мир общих идей, понятий; он постигается не чувствами, а разумом. Что же представляют собой платоновские «идеи»? «Идея» имеет своим корнем слово «видеть», «вид». Идея — это то, что видно разумом в вещи. Для Платона идея вещи не является отражением вещи, а наоборот: идея вещи хотя и существует в отрыве от самой вещи, но тем не менее сама является некоторым принципом оформления вещей, принципом их конструирования. Идея — это некоторое конструктивное начало вещи, ее прообраз, парадигма, порождающая модель, принцип конструирования вещи. Идея — это старые мифологические боги, переведенные на абстрактно-всеобщий, философско-категориальный язык. Вместе с тем идея — это и некоторое общее понятие, некоторое обобщение. Но это такое обобщение, которое характеризуется почти математической предельностью, это такой предел абстрагирования, идеализации вещи, за которым вещь уже теряет свои существенные признаки. Объективный идеализм Платона состоит не столько в том, что идеи являются обобщением вещей, существующим вне этих вещей, а в том, что идеи — это активный, конструктивный, порождающий базис самих вещей, такое исходное начало, без которого сама вещь существовать не может. Мир идей (или идеальный мир) — это реальность, которая существует, хотя и далеко от земного мира, но не на бесконечном расстоянии от него. Никто из богов или героев не пребывал в этом мире. Мир идей, идеальный мир первичен по отношению к миру чувственных идей, материальному миру. Материальный мир произведен от идейного. Материальный мир — это сфера, в которой уже происходит затухание конструктивной активности идей, ее уменьшение, сокращение, затемнение и проч. То, что в мире идей характеризуется идеальной формой, в материальном мире характеризуется напластованием случайных, индивидуальных, неповторимых свойств конкретных чувственных вещей. И чем дальше от земли и ближе к миру идей, тем стабильнее, устойчивее, неподвижнее организован мир. Так, далекие звезды отличаются стабильностью, неизменностью, неподвижностью. На уровне планетных сфер уже появляется неустойчивость, подвижность, нестабильность. А в самом мире земных вещей конструктивное идеальное начало ослабевает в такой мере, что вещи повсеместно становятся изменчивыми, движущимися, индивидуализированными, разнообразными и неповторимыми и т.п. Значительную роль в своей теории идей Платон отводит математике. У Платона все бытие пронизано числами, числа — это путь к постижению идей, сущности мира. О значении, которое он придавал математике, свидетельствует надпись над входом в платоновскую академию: «Несведущим в геометрии вход воспрещен». Эта высокая оценка математики определялась философскими взглядами Платона. Он считал, что только занятия математикой являются реальным средством познания вечных, идеальных, абсолютных истин. Платон отвергал значения эмпирического знания о мире земных вещей, считал, что это знание не может быть основой науки, так как приблизительно, неточно и лишь вероятно. Только познание мира идей, прежде всего с помощью математики, является единственной формой научного, достоверного познания. Математическими образами и аналогиями пронизана вся философия Платона. Вслед за пифагорейцами Платон закладывал основы программы математизации познания природы. Но если пифагорейцы рассматривали Космос как некоторую однородную гармоническую сферу, то Платон впервые вводит представление о неоднородности бытия, Космоса. Он разделяет Космос на две качественно различные области: божественную (вечное, неизменное бытие, небо) и земную (преходящие, изменчивые вещи). Из представления о божественности Космоса Платон делает вывод, что небесные светила могут двигаться только равномерно, по идеальным окружностям и в одном и том же направлении. 3.6. Физика и космология Аристотеля Один из важнейших итогов развития древнегреческой культуры — разработка первой естественно-научной картины мира. Она сложилась в результате синтеза следующих отраслей познания: философии (прежде всего, аристотелизма); математики; астрономии (космологии); учения о движении (механика). Ядром первой естественно-научной картины мира стало учение Аристотеля. Можно сказать, что естествознание — это родная стихия аристотелевской мысли. Аристотель — это первый великий натуралист, который вместе со своими учениками поставил научно-исследовательскую работу в области естествознания на небывалую до него высоту. 3.6.1. Учение Аристотеля о материи и форме Аристотель — величайший древнегреческий философ, мыслитель, ученый; учитель и наставник Александра Македонского. Аристотелевское учение явилось грандиозным универсальным синтезом всех достижений древнегреческой полисной культуры и одновременно духовной платформой культуры эллинизма. Аристотель родился в Стагире, жил в Афинах, в течение 20 лет учился в Академии Платона, был его лучшим учеником, часто не соглашавшимся со своим учителем («Платон мне друг, но истина дороже»). Впоследствии открыл в Афинах свою философскую школу — Ликей. Аристотель строил свое учение, отталкиваясь от критики теории идей Платона. Главное возражение Аристотеля направлено против платоновского отрыва идеи вещи от самой вещи. Аристотель пишет: «Ведь» покажется, пожалуй, невозможным, чтобы врозь находились сущность и то, чего есть сущность... как могут идеи, будучи сущностями вещей, существовать отдельно (от них)?» * Аристотель категорически не согласен с представлением с самостоятельном существовании мира идей, о его независимости, отделенности от чувственного мира. Идеи и чувственные вещи не могут существовать отдельно, в разных мирах. Мир един, он не распадается на два мира — чувственный и идеальный. Идея существует не где-то в далеких космических далях, а в самих чувственных вещах. Отсюда — и иная оценка природы и возможностей ее познания. * Аристотель. Метафизика // Соч.: В 4 т. М., 1976. Т. I. С. 88. В отличие от Платона Аристотель считает, что мир изменчивых, индивидуализированных природных вещей (так же, как и мир идей) может быть предметом достоверного познания, науки. Все достойно быть предметом познания: и движение светил, и строение тела всех живых и растительных существ (от червя до человека), и устройство полиса, и свойства высшего перводвигателя и др. Основу естественно-научных воззрений Аристотеля составляет его учение о материи и форме. Миp состоит из вещей, каждая отдельная вещь является соединение материи и формы. Материя сама по себе — бесформенное, хаотическое, пассивное начало: это материал, т.е. то, из чего возникает ее субстрат. Чтобы стать вещью, материя должна принять форму, некое идеальное, конструирующее, моделирующее начало, которое придает вещам определенность и конкретность. Как материя,так и форма вечны. По Аристотелю, каждая вещь — соединение материи и формы. При этом материя данной вещи является в свою очередь формой для материи тех элементов, из которых эта вещь состоит. Переходя таким образом в глубь вещества, к все более простым телам (например, от здания к кирпичам, от глины к элементам, из которых она состоит, и т.д.), приходят к абстрактной «первоматерии». Первоматерия лишена всякой формы, всяких свойств и качеств. Это субстанция, не имеющая определенности. Соединяясь с простешийми формами, она образует первые элементы, из которых состоят все вещи. Простейшие формы — теплое, холодное, сухое и влажное. Соединяясь с первоматерией, они образуют четыре первоэлемента: огонь, воздух, вода и земля. Первоэлементы в мире расположены в определенном порядке, который задает структуру Космоса. Каждый первоэлемент имеет свое место. В центре мира находится элемент земли, который образует нашу планету. Земля является центром Вселенной, она неподвижна и имеет сферическую форму. Принцип центрального и неподвижного положения Земли во Вселенной является краеугольным в аристотелизме и намного столетий определил господство геоцентрической системы в астрономии. Вокруг Земли распределена вода, затем воздух, затем огонь. Огонь простирается до орбиты Луны — первого небесного тела. Выше Луны — надлунный, божественный мир, который принципиально отличен от мира подлунного, действует по иным закономерностям. В этом мире все тела состоят из эфира. Эфир неизменен, он не превращается в остальные элементы. В божественном, надлунном небе существует лишь один вид движения — равномерное непрерывное круговое движение небесных тел. Небесные тела вращаются вокруг Земли по круговым орбитам, они прикреплены к материальным, сделанным из эфира, вращающимся сферам. Существуют сферы Луны, Меркурия, Венеры, Солнца, Марса, Юпитера, Сатурна и сфера неподвижных звезд. За последней находится перводвигатель — Бог, который и придает движение сферам. Космос — конечен и вечен; он никогда не родился и никогда не погибнет, никогда не возникал и принципиально неуничтожим. Важную роль в космологии Аристотеля играл принцип отсутствия пустоты в природе. («Природа не терпит пустоты».) Введение такого представления означало, что Аристотель строит континуальную картину мира, принципиально противоположную атомистической, дискретной. Картина мира Аристотеля кардинально отличается от современной естественно-научной картины мира. Аристотелевский Космос иерархически организован, состоит из многих субординированных уровней, слоев. Каждый слой обладает своими специфическими закономерностями, и в каждой точке мира, в каждом направлении пространства действуют свои законы. Современная физика строится на принципиально иной основе — на идее однородности и изотропности пространства и времени (это значит, что в любой точке и в любом направлении пространства (и времени) законы природы проявляют себя одинаковым образом). Переход от аристотелевского неоднородного и анизотропного представления о Вселенной к однородной и изотропной картине мира в XVII в. было важнейшей предпосылкой формирования уже второй научной картины мира. 3.6.3. Основные представления аристотелевской механики Историческая заслуга Аристотеля перед естествознанием состоит и том, что он стал основателем системы знаний о природе — физики. Центральное понятие аристотелевской физики — понятие движения. Аристотель разработал первую историческую форму учения о движении — механику. Все механические движения он разбивает на две большие группы: движение небесных тел в надлунном мире; движение тел в подлунном, земном мире. Движение небесных тел — наиболее совершенное движение. Оно представляет собой вращательное равномерное круговое движение, или движение, сложенное из таких простых круговых равномерных движений. Совершенство кругового движения в том, что у него нет ни начала, ни конца; оно вечно и неизменно, не имеет материальной величины. В отличие от небесных земные движения несовершенны; здесь все подвержено изменению, все имеет начало и конец. Движения земных тел в свою очередь можно разделить на две категории: насильственные и естественные. Естественное движение — это движение тела к своему месту, например, тяжелого тела вниз, а легкого — вверх. Тела, состоящие из элементов земли, стремятся вниз, а тела, образованные из воздуха или огня, — вверх. Естественное движение происходит само собой, оно не требует приложения силы. Все остальные движения на Земле — насильственные и требуют применения силы. Закона инерции Аристотель не знал. Он предполагал, что любые насильственные движения, даже равномерные и прямолинейные, происходят под действием силы. Основной принцип динамики Аристотеля: «Все, что находится в движении, движется благодаря воздействию другого». При этом он полагал, что скорость пропорциональна действующей силе. В современной формулировке закон движения Аристотеля выглядит следующим образом: F·t ≈ m· L, гдеF — сила, действующая на тело, t — время движения, m — масса (вес),L — пройденный путь *. * Интересно, что аристотелевская физика поддается переформулировке в вариационной форме, когда сила выражается через потенциал. А такое выражение оказывается весьма разумным приближением к уравнению Ньютона, записанному для движения материальной точки в вязкой среде, когда масса точки стремится к нулю. Механика Аристотеля содержала в себе глубокое противоречие — ведь есть немало видов движений, которые осуществляются без видимого приложения силы. Что вызывает эти движения? Поиски ответа на этот вопрос растянулись на столетия. 3.7. Естествознание эллинистически-римского периода В Вавилоне 10 июня 323 г. до н.э. от ран и болезней скончался Александр Македонский, который создал за двенадцать с половиной лет царствования и непрерывных завоевательных походов грандиозную монархию, протянувшуюся от Македонии до Индии и от Амударьи до нубийских пустынь. Эта дата может быть условно названа началом эпохи эллинизма — качественно своеобразного периода в истории культуры, который (с учетом римского периода) охватывает почти тысячу лет — вплоть до падения Западной Римской империи (от IV в. до н.э. до V в. н.э.). Эпоха эллинизма характеризуется значительным расширением территорий, занятых греками, их экспансией на Восток. Это была как бы новая историческая волна греческой колонизации. Следствием такой колонизации явилось создание качественно новой культуры, синтезировавшей достижения греческой культуры с восточными духовно-культурными традициями. Римская империя, пришедшая на смену эллинистическим монархиям, сложившимся на развалинах эфемерной монархии Александра Македонского, впитала в себя эллинистическую культуру, модифицировала и переработала ее. Это позволяет выделять эллинистически-римскую культуру как некоторую качественно своеобразную историческую целостность. Длительная, насыщенная многими бурными историческими событиями эпоха эллинизма была периодом не только синтеза греческой и восточной культур, но и периодом наиболее плодотворного развития конкретных наук, прежде всего математики и астрономии. В эпоху эллинизма окончательно сложилась и первая научная картина мира. Новый эллинистический тип культуры сформировался как результат экспансии на Восток материальной культуры, достигнутой греческими полисами. Колонисты переносили в новые условия, новые страны, новым народам и греческий образ жизни. Греческая культура — это прежде всего городская культура. И Александр Македонский (одержимый идеей единства народов, целостности человечества, отрицавший различие между греками и варварами), и его последователи (диадохи и эпигоны) вели на завоеванных территориях интенсивное градостроительство. Новые города строились по греческим канонам. В центре города располагалась центральная площадь, окруженная общественными зданиями и храмами. От этой площади отходили широкие прямые улицы. В каждом городе существовали стадион, театр, гимнасии и др. Города заселялись в основном греками (ветеранами войн, греческими переселенцами) и были опорой власти. Обычно города закладывались на реках или торговых путях, что создавало предпосылки для их постепенного превращения в крупные торговые и экономические центры. Одним из наиболее известных таких городов была (заложенная Александром Македонским в дельте Нила, на месте рыбацкой деревушки) Александрия, ставшая впоследствии не только самым крупным оживленным торговым, ремесленным, политическим, но и культурным, главным научным центром Востока. Александрия воплощала идеалы космополитизма, единства народов, о котором мечтал Александр Македонский. Есть данные, что к концу I в. до н.э. в Александрии проживало около миллиона жителей — представителей самых разных народностей — греков, египтян, сирийцев, италийцев и др. Гордостью Александрии была знаменитая библиотека, основанная в середине III в. до н.э.; она насчитывала свыше 700 тыс. папирусных свитков, в которых были собраны все основные сочинения античной науки. Александрийская библиотека являлась частью Музея (храма муз), в котором размещались астрономическая обсерватория, зоологический и ботанический сад, помещения для жизни и работы ученых, приезжавших сюда из разных стран. Греческая экспансия повсеместно вела к вытеснению натурального хозяйства товарно-денежными отношениями, масштабному развитию международной торговой и даже финансовой деятельности. Усложнялась организационная, управленческая деятельность, усиливать роль личностного начала во всех формах деятельности. Во многих странах пользовался широким признанием и уважением слой культурной интеллигенции — людей, профессионально и творчески занимающихся умственным, организационным трудом. Значительно изменился духовный мир человека; ускорился процесc его дифференциации. На смену строгому (телесно-вещному, непсихологизированному) индивидуализму полисной эпохи пришла гихологизированная (интимно-личностная, полная эмоциональной окраски, повседневной теплоты, переживания и сердечности) индивидуальность эпохи эллинизма. Индивид, освобожденный от связи с полисными традициями, от диктата полисных и общинных императивов, получил возможность углубиться в свою собственную личность, сделать мир своих мыслей и чувств важнейшим предметом духовного освоения, научно-философского познания. Наряду с новеллами и романами, насыщенными трагическими мотивами, а часто и накалом еврипидовских страстей героев, существовала утонченная любовная поэзия, буколики Феокрита, комедии Менандра. Создавать грандиозные архитектурные сооружения, реалистические и совершенные живописные полотна. В этих условиях вопросы объективного устройства мира, законов природы в значительной мере передаются от философии к конкретным наукам. Постепенно складывается первая естественно-научная картина мира. 3.7.2. Александрийская математическая школа В древнегреческой культуре обстоятельное развитие получила прежде всего математика. Уже в V—IV вв. до н.э. в древнегреческой математике были разработаны геометрическая алгебра, теория делимости целых чисел и теория пропорций (Архит), метод «исчерпывания» Евдокса (как прообраз теории пределов), теория отношений Евдокса и др. Качественно новый этап в развитии математики связан с деятельностью александрийской математической школы. У ее истоков стоял великий математик древности, педагог и систематизатор математической науки Евклид. О личности Евклида нам известно очень мало. Жил он в последней четверти IV— первой четверти III в. до н.э. Учился в Афинах, затем переехал в Александрию. В своем основном труде «Начала», состоявшем из 13 книг, Евклид изложил все достижения древнегреческой математики в систематизированной аксиоматической форме. (Изучение геометрии в средней школе вплоть до самого последнего времени строилось на основе «Начал».) В первых четырех книгах «Начал» излагалась геометрия на плоскости; в пятой и шестой книгах — теория отношений Евдокса; в седьмой, восьмой и девятой книгах — теория целых и рациональных чисел, в основе своей разработанная еще пифагорейцами; в десятой книге — свойства квадратичных иррациональностей; в одиннадцатой книге — основы стереометрии; в двенадцатой книге — метод исчерпывания Евдокса, в частности доказываются теоремы, относящиеся к площади круга и объему шара и др.; в заключительной, тринадцатой книге рассматривались свойства пяти правильных многогранников, в которых Платон видел идеальные геометрические образы, выражающие основные структурные отношения Космоса. Изложение математических знаний носило дедуктивный характер, теории выводились из небольшого числа аксиом. Универсальной ученостью отличался Эратосфен, у которого есть работы не только по математике, но и по астрономии, географии, истории, философии и филологии. Особенно известны его работы по определению размеров земного шара, по географии. В математике Эратосфен известен своими исследованиями целочисленных пропорций, открытием «решетки Эратосфена» (способ выделения простых чисел из любого конечного числа нечетных чисел, начиная с трех. В Александрии начинал свой творческий путь и Архимед. Именно здесь он сложился как математик. Возвратившись в Сиракузы, Архимед продолжал поддерживать тесные отношения с александрийскими математиками (до нас дошла его переписка с ними). Среди математических работ Архимеда, импульс для которых он получил во время своего пребывания в Александрии, особенно важными являются работы, связанные с развитием метода «исчерпывания» Евдокса и подходом к понятию определенного интеграла. В александрийской школе творил Никомед, известный открытием алгебраической кривой конхоиды (в полярных координатах эта кривая имеет вид ρ = А + В/ cos φ ), которую он применял для решения задач удвоения куба и трисекции угла. Величайшим математиком древности был Аполлоний Пергский. В своем основном сочинении «Конические сечения» он дал теорию конических сечений в такой исчерпывающей форме, что никто из последующих математиков (вплоть до Нового времени) к ней добавить ничего не смог. Аполлоний Пергский непосредственно подошел к основам аналитической и даже проективной геометрии. Им была разработана законченная теория кривых второго порядка, в том числе эллипса. Кроме того, Аполлоний предложил метод описания равномерных периодических движений как результат сложения более простых — равномерных круговых движений. Это стало важнейшей предпосылкой создания геоцентрической системы К. Птолемеем. 3.7.3. Развитие теоретической и прикладной механики Теоретическая механика. Из трех составных частей механики (статика, кинематика, динамика) в древнегреческий период наиболее обстоятельно была разработана статика (и гидростатика). Основопологающую роль в возникновении статики и гидростатики сыграл Архимед. Несмотря на то что появление работ по статике было вызвано техническими потребностями, сочинения Архимеда лишены видимой связи с практикой. По своему характеру они абстрактны и очень похожи на «Начала» Евклида. Прежде всего Архимеду принадлежит установление понятия центра тяжести тел. Кроме того, он теоретически доказал закон простого рычага (на основе ряда постулатов). В гидростатике Архимед открыл закон, носящий его имя, и теоретически его доказал. Развитие кинематики было существенно ограничено тем, что принцип относительности движения не получает должного обобщения, хотя и начинает осознаваться отдельными учеными. Аристотелевское учение о движении с его идеей неподвижности Земли перечеркнуло идею относительности. Однако некоторые философы и ученые иногда возвращались к принципу относительности и пытались использовать его для объяснения кинематики движений. Даже Птолемей считал возможным на основе этого принципа пользоваться гипотезой о движении Земли для простоты астрономических расчетов. Главная проблема динамики состояла в объяснении основного закона механики Аристотеля. Согласно этому закону, скорость движения тела пропорциональна приложенной к нему силе. Но отсюда следовало, что при прекращении действия силы на тело оно сейчас же должно остановиться. Однако во многих случаях ничего подобного не происходило (например, камень, брошенный из пращи, летит довольно далеко, хотя никакая видимая сила на него не действует). Для объяснения этих явлений в VI в. возникла «теория импетуса». Ее родоначальник, греческий философ и ученый Филопон полагал, что движущемуся телу движущее тело сообщает некую «движущую силу», которая и продолжает некоторое время двигать это тело, пока вся не израсходуется. Эта идея позднее, в XV—XVI вв. сыграла важную роль в становлении классической механики. Прикладная механика . Наряду с теоретической механикой получила развитие и прикладная механика — создание разного рода механизмов и машин. Следующие факторы определили развитие прикладной механики: производственная деятельность (прежде всего ремесленная) и строительство (создание сложных блоков, лебедок, зубчатой передачи и т.д.); военное дело — создание метательной артиллерии и новых типов военных судов; театральная техника, одним из элементов которой были подъемные сценические устройства. Целый ряд античных авторов (Полибий, Плутарх и др.) подробно рассказывают о машинах Архимеда, которые помогали отразить штурм Сиракуз римлянами. Мощные катапульты издалека швыряли тяжелые каменные глыбы на римские легионы, легкие катапульты близкого действия (так называемые скорпионы) метали из бойниц град ядер; морские береговые краны обрушивали на римские корабли целые скалы или тяжелые свинцовые глыбы, поднимали кранами нос корабля и затем сразу роняли судно вниз в море, так что оно опрокидывалось или заливалось водой. Римские солдаты были смертельно напуганы. Плутарх так описывает их состояние: «Как только они замечали, что из-за крепостной стены показывается веревка или бревно, то обращались в бегство с криком, что вот Архимед еще придумал новую машину на их погибель». Кроме военных машин Архимеду приписывается изобретение архимедова винта, применявшегося для поливки полей. В III в. до н.э. возникла такая специфичная отрасль механики, как пневматика (использование давления воздуха для создания разного рода механических устройств). Основателем этой отрасли считают Ктесибия, жившего и работавшего в Александрии. Он был изобретателем двухцилиндрового водяного насоса, снабженного всасываемыми наполнительными клапанами; водяного органа, управление которого осуществлялось с помощью сжатого воздуха; водяных часов; военных метательных машин, использовавших силу сжатого воздуха и т.п. Известным изобретателем механизмов был Герон Александрийский, который знаменит прежде всего как изобретатель сифонов и автоматов: он проводил опыты с нагретым воздухом и паром. Используя реактивное действие струи пара, Герон построил некий прообраз реактивного двигателя. Но массового применения изобретения Геронa не нашли, они остались в истории как замечательные и искуссные игрушки *. * О науке эпохи эллинизма см.: Рожанскии И.Д. История естествознания в эпоху эллинизма и Римской империи. М., 1988. 3.8. Развитие древнегреческой астрономии 3. 8.1. Становление математической астрономии Предпосылки теоретизации астрономии. Требование «спасения явлений». Развитие древнегреческой астрономии шло по пути, во-первых, накопления эмпирических наблюдательных данных и, во-вторых, разработки теоретических моделей структуры, организации Космоса. Первые древнегреческие натурфилософы VI—V вв. до н.э. имели весьма слабые, приблизительные представления об организации Вселенной, оперировали недостаточными наблюдательными данными, и потому их модели Космоса носили умозрительный, спекулятивный характер. Только в V в. до н.э. пифагорейцами было осознано различие между звездами и планетами и установлено существование пяти планет. Пифагорейцу Филолаю принадлежит и одна из первых и широко известных в древности моделей Вселенной. По Филолаю, в центре Вселенной находится огонь — Гестия, вокруг которого вращается сферическая Земля. Центральный огонь невидим для нас потому, что между Землей и Гестией расположена Антиземля (Антихтон) — темное тело, подобное Земле. Солнце — шар, прозрачный, как стекло, получает свой свет и тепло от Гестии. Все остальные планеты вращаются вокруг Гестии. В V в. до н.э. началось интенсивное развитие наблюдательной астрономии. Было обнаружено неравенство четырех времен года; измерен наклон эклиптики (круг, вдоль которого движутся Солнце, Луна и планеты) к небесному экватору (около ≈ 24°); создан лунно-солнечный календарь; установлено, что планеты движутся по небу по необычайно сложным траекториям, которые включают в себя нерегулярные колебательные движения, попятное петлеобразное движение и др. Одновременно в недрах математики и философии созревали теоретические предпосылки моделирования астрономических явлений, создания математических моделей Вселенной. Задача математизации астрономии, создания математической теории движений небесных тел была в четкой форме поставлена Платоном и серьезно решалась в платоновской Академии. Здесь же были сформулированы философские основания математизации астрономии. Наиболее концентрированное выражение они нашли в требовании «спасения явлений». Суть его в следующем. Планеты («блуждающие светила») движутся по чрезвычайно сложным траекториям, которые включают в себя колебательные движения, попятное петлеобразное движение и др. Такие сложные изменчивые движения — видимость, за которой скрыта некая неизменная единая сущность, некие идеальные геометрические движения (равномерные, круговые в одном и том же направлении). Поэтому требование «спасения явлений» означало следующее: во-первых, признание различия между являющимся (наблюдаемым) и истинным, сущностным движением; во-вторых, признание установки, в соответствии с которой наблюдаемое движение должно быть объяснено как являющееся истинное движение; в-третьих, представление о том, что истинное движение носит идеальный геометрический характер. Все дальнейшее развитие математической астрономии в античном мире определялось этим требованием «спасения явлений». Поиски математиков и астрономов были направлены на нахождение математических приемов, которые позволили бы наиболее совершенным образом устранить противоречия между наблюдаемыми движениями планет на небе и мировоззренческими представлениями об устройстве Космоса, об идеальном движении небесных тел. Метод гомоцентрических сфер. В древнегреческой астрономии были найдены два основных математических подхода к решению задачи «спасения явлений». Первый (исторически более ранний) был связан с идеей представить сложные движения планет посредством вращающихся гомоцентрических сфер, второй (исторически более поздний) — с математическими методами описания неравномерных периодических движений как результата сложения более простых — равномерных круговых. Первый подход был детально разработан великим математиком IV в. до н.э. другом Платона Евдоксом Книдским *. Свое полное и завершенное воплощение метод гомоцентрических сфер нашел в космологии Аристотеля. В основе этого подхода лежит представление o том, что Космос состоит из определенного количества вращающихся сфер, имеющих общий центр, совпадающий с центром земного шара. Самая дальняя сфера — это сфера неподвижных звезд, совершающая оборот вокруг мировой оси в течение суток. Для Солнца, Луны и пяти планет существуют отдельные независимые системы сфер. Каждая сфера вращается вокруг своей оси, однако направление этой оси и скорость вращения у разных сфер различны. Ось внутренней сферы жестко связана с двумя точками следующей по порядку сферы и др. Таким образом, любая сфера увлекает следующую за ней сферу и участвует в движении всей системы сфер данного небесного тела. Само небесное тело крепится к экватору самой внутренней из сфер данной системы. Для Луны и Солнца Евдокс предлагал системы из трех сфер, а для каждой планеты из четырех. * Существуют сведения Страбона о том, что Евдокс и Платон многие свои астрономические познания заимствовали в Египте, в частности египтяне «научили Платона и Евдокса применять доли дня и ночи, которые, набегая сверх 365 дней, наполняют время «истинного года» (Страбон. География. М., 1964. С. 743). Совершенствование метода гомоцентрических сфер состояло в добавлении нескольких новых дополнительных сфер в систему каждого небесного тела. В модели древнегреческого астронома Калиппа ршо уже 34 сферы. Еще более усложнилась эта модель в космологии Аристотеля, поскольку он пытался создать некую единую систему движения всех небесных тел, единый физический Космос на основе принципа отсутствия пустоты. В его модели Вселенной сферы различных планет передают свое движение друг другу, вследствие чего теряется независимость движения каждого отдельного светила (планеты). Чтобы сохранить независимость движения каждой планеты, аристотель вынужден был добавлять к каждой системе сфер дополнительные сферы, компенсирующие вращательный эффект первых. В результате в аристотелевской модели количество основных и компенсирующих сфер достигает 55. Концепция гомоцентрических сфер не получила развития в послеаристотелевскую эпоху, поскольку обладала принципиальным недостатком. Античные астрономы зафиксировали факт изменения яркости планет при их движении по небесному своду и сделали правильный вывод, что это свидетельствует об изменении расстояний планет от Земли. В концепции же гомоцентрических сфер расстояние от любой планеты до Земли остается постоянным. Таким образом, возникла потребность в поиске новых теоретических моделей описания движений небесных тел. Одно из направлений поиска было связано, в частности, с идеями и теориями античного гелиоцентризма (Гераклит Понтийский, Аристарх Самосский), однако они вступили в противоречие с принципами античной механики (не знавшей закона инерции), с общими мировоззренческими представлениями о центральном положении Земли, человека во Вселенной (антропоцентризм) и проч. Эпициклы и деференты . Второй, качественно новый этап в процессе математизации астрономии и познания природы движений небесных тел связан с именем великого древнегреческого астронома Гиппарха. Он впервые использовал в астрономии предложенный Аполлонием Пергским геометрический метод описания неравномерных периодических движений как результата сложения более простых — равномерных круговых. Неравномерное периодическое движение можно описать с помощью кругового, используя теорию эпициклов (движение небесных тел происходит равномерно по круговой орбите — эпициклу, центр которого, в свою очередь, совершает равномерное вращение вокруг Земли по круговой орбите — деференту) и (или) теорию эксцентриков (небесные тела равномерно движутся по окружности, центр которой не совпадает с центром Земли). В древнегреческой астрономии использовались обе эти теории. Уже Аполлоний и Гиппарх знали, что обе теории могут приводить к одинаковым результатам. Гиппарх использовал для описания движения Солнца и Луны теорию эксцентриков. Он определил положение центров эксцентриков для Солнца и Луны, впервые в истории астрономии разработал метод и составил таблицы для предвычисления моментов затмения (с точностью до 1—2 ч). Появившаяся в 134 г. до н.э. новая звезда в созвездии Скорпиона навела Гиппарха на мысль, что изменения происходят и в мире звезд. Чтобы в будущем легче было замечать подобные изменения, Гиппарх составил каталог положений на небесной сфере 850 звезд, разбив все звезды на шесть классов и назвав самые яркие звездами первой величины. Сравнивая свои результаты с измерениями координат звезд, выполненными за полтора века до него в Александрии (Аристиллом и Тимохарисом), он обнаружил, что все звезды, отмеченные в его каталоге, как бы сместились по долготе, т.е. вдоль эклиптики, к востоку от начала отсчета долгот — точки весеннего равноденствия (пересечение эклиптики и экватора). Иначе говоря, долготы звезд взросли. Гиппарх нашел этому явлению гениально простое и правильное объяснение. Учитывая принцип относительности, он заключил, что сама точка весеннего равноденствия отступает в обратном направлении. Таким образом, экватор как бы перемещается вдоль эклиптики, не меняя своего наклона к ней. В результате Солнце в своем годовом движении с запада на восток каждый раз встречает точку весеннего равноденствия немного раньше, не доходя до того места, откуда оно год назад начинало свой путь по эклиптике (предание равноденствия, или прецессия). Гиппарх весьма точно оценил ее значение (46,8" в год, по современным данным 50,3"). Открытие прецессии показало сложность понятия «год» и позволило Гиппарху установить, что солнечный и звездный годы различаются на 15 минут (по современным данным, около 20). 3.8.2. Геоцентрическая система Птолемея Благодаря Гиппарху астрономия становилась точной математической наукой, что позволяло приступить к созданию универсальной тематической теории астрономических явлений. За решение этой задачи взялся знаменитый александрийский астроном Клавдий Птолемей, что отражено в его фундаментальном труде «Большое математическое построение астрономии в XIII книгах» («Альмагест»). Опираясь на достижения Гиппарха, Птолемей изучал подвижные небесные светила. Он существенно дополнил и уточнил теорию движения Луны, усовершенствовал теорию затмений. Но подлинно научным подвигом ученого стало создание им математической теории видимого движения планет. Эта теория опиралась на следующие постулаты: шарообразность Земли; колоссальная удаленность от сферы звезд; равномерность и круговой характер движений небесных тел; неподвижность Земли; центральное положение Земли во Вселенной. Теория Птолемея сочетала теории эпициклов и эксцентриков. Он предполагал, что вокруг неподвижной Земли находится окружность (деферент) с центром, несколько смещенным относительно центра Земли (эксцентрик). По деференту движется центр меньшей окружности — эпицикл — с угловой скоростью, постоянной по отношению к собственному центру деферента и не к самой Земле, а к точке, расположенной симметрично центру деферента относительно земли (эквант). Сама планета в системе Птолемея равномерно движется по эпициклу. Для описания вновь открываемых неравномерностей в движениях планет и Луны вводились новые дополнительные эпициклы — вторые, третьи и т.д. Планета помещалась на последнем. Теория Птолемея позволяла предвычислять сложные петлеобразные движения планет (их ускорения и замедления, стояния и попятные движения). На основе созданных Птолемеем астрономических таблиц положение планет вычислялось с весьма высокой по тем временам точностью (погрешность менее 10'). Из основных свойств планетных движений, определенных Птолемеем, вытекал ряд важных закономерностей. Во-первых, условия движения верхних от Солнца и нижних планет существенно различны. Во-вторых, определяющую роль в движении и тех и других планет играет Солнце. Периоды обращения планет либо по деферентам (у нижних планет), либо по эпициклам (у верхних) равны периоду обращения Солнца, т.е. году. Ориентация деферентов нижних планет и эпициклов верхних связана с плоскостью эклиптики. Тщательный анализ этих свойств планетных движений привел бы Птолемея к простому выводу, что Солнце, а не Земля — центр планетной системы. Такой вывод задолго до Птолемея сделал Аристарх Самосский, который доказывал, что Солнце в несколько раз больше Земли. Вполне естественно, что меньшее тело движется вокруг большего, а не наоборот. Хотя размеры других планет прямым путем Птолемей определить не мог, тем не менее было ясно, что и они гораздо меньше Солнца. Но переход к гелиоцентризму для Птолемея был невозможен — он считал Землю центром мира и приводил множество доводов в пользу этого взгляда. Отказаться от своего мировоззрения очень сложно, а от эпохи и вовсе невозможно. Только спустя 14 столетий, в совершенно другую эпоху, когда старое мировоззрение уже себя исчерпало, Н. Коперник сумел сделать этот решительный шаг. Птолемей (а до него Гиппарх), введя эксцентрики для более точного отображения неравномерностей видимого движения небесных светил, по сути, уже лишил Землю ее строго центрального положения в мире, какое она занимала в аристотелевской модели Вселенной. Введением экванта Птолемей еще более нарушил аристотелевские физические основания геоцентризма. В этом отношении он превзошел даже Коперника. В астрономической системе Птолемея максимально использовались те возможности, которые представляла античная наука для реализации принципа «спасения явлений», для объяснения движения небесных тел с позиций геоцентрического видения мира. Построение геоцентрической системы Птолемеем завершило становление первой естественно-научной картины мира. В течение длительного времени эта система была не только высшим достижением теоретической астрономии, но и ядром античной картины мира, и астрономической основой антропоцентрического мировоззрения. 3.9. Античные воззрения на органический мир 3. 9.1. Античные толкования проблемы происхождения и развития живого Особо следует сказать о развитии биологических знаний в античности. Здесь достижения не были столь выдающимися, как в астрономии и математике, но тем не менее значительный прогресс познания тоже был налицо. Античность реализовала функцию первичного накопления эмпирического материала об органических явлениях и процессах. Это — еще не научная биология, но уже ее отдаленные предпосылки. Уже античные натурфилософы обращали свои взоры на органический мир и строили первые умозрительные схемы, объяснявшие егo происхождение и развитие. На основе таких умозрительных представлений в конце концов сложились два противоположных подхода к решению вопроса о происхождении жизни. Первый, религиозно-идеалистический, исходил из того, что возникновение жизни не могло осуществиться естественным, объективным, закономерным образом на Земле; жизнь является следствием множественного творческого акта (креационизм), и потому всем существам свойственна особая, независимая от материального мира «жизненная сила» (vis vitalis), которая и направляет все процессы жизни (витализм). Наряду с таким идеалистическим подходом еще в древности сложился и материалистический подход, в основе которого лежало представление о том, что живое может возникнуть из неживого, органическое из неорганического под влиянием естественных факторов. Так сложилась концепция самозарождения живого из неживого. Например, согласно учению Анаксимандра, живые существа образуются из апейрона по тем же законам, что и вещи неорганической природы. Он считал, что животные родились первоначально из влаги и земли, нагретых солнцем. Первые животные были покрыты чешуей, но, достигнув зрелости, они вышли на сушу, чешуя их лопнула, и, свободившись от нее, они начали вести свойственный каждому из них образ жизни. Все виды животных возникли независимо друг от друга. Здесь, в древней натурфилософии еще нет идеи генетической связи между видами, представления об историческом развитии животного мира. Правда, в отношении человека Анаксимандр, по-видимому, уже допускал возможность его происхождения от организмов другого вида. Еще более обстоятельная теория происхождения живого была создана Эмпедоклом, с именем которого связывают первую догадку о том, что существуют ископаемые остатки вымерших организмов. Биологические воззрения Эмпедокла были тесно связаны с его философией. Он исходил из существования четырех элементов («стихий») мира (огонь, воздух, вода и земля), каждый из которых состоит из вечных частиц, способных вступать во взаимодействие друг с другом, и двух «сил» — Любви и Вражды, которые соединяют (Любовь) или разъединяют (Вражда) разрозненные частицы. Эти две силы — двигатели всех процессов во Вселенной. Возникновение живых существ Эмпедокл представлял себе так. Жизнь началась на нашей планете еще до того, как народилось Солнце. В ту дальнюю, досолнечную пору землю непрерывно орошали обильные дожди. Поверхность Земли превратилась в тинообразную массу. Из недр Земли, которая содержит внутренний огонь, наружу периодически прорывался огонь, который поднимал вверх комья тины, принимавшей различную форму. В этом взаимодействии земли, воды, воздуха и огня создавались сперва растения — предшественники и предтечи подлинных живых существ. А со временем стали появляться и сами эти животные формы. Но это были причудливые существа. По сути, это были даже не животные существа, которые мы знаем, а лишь их отдельные обрывки, части, органы. Эмпедокл рисует прямо-таки сюрреалистическую картину биогенеза: «Головы выходили без шеи, двигались руки без плеч, очи блуждали без лбов». Но влекомые силой Любви, все эти органы, беспорядочно носясь в пространстве, как попало соединяясь друг с другом, образовывали самые различные уродливые создания, большинство из которых были нежизнеспособными и недолговечными. Велением Вражды всем несовершенным и неприспособленным формам суждено было со временем погибнуть. Остались лишь немногие целесообразно устроенные организмы, которые могли питаться и размножаться. Эти гармоничные целесообразные организмы стали размножаться половым путем и тем самым сохранились до наших дней. При всей примитивности этой картины, нельзя не отметить в ней рациональных представлений, гениально предвосхищавших дарвиновскую идею естественного отбора. И у Эмпедокла и у Дарвина решающая роль принадлежит случаю и отрицается телеологизм — принцип целесообразной направленности органического развития. Несмотря на свою примитивность, первые исторические формы концепции самозарождения сыграли свою прогрессивную роль в борьбе с креационизмом. Питание и рост живых организмов Эмпедокл объяснял стремлением частиц стихий соединиться с себе подобными. Главную роль в организме, по его мнению, играет кровь. Чем больше в органе крови — тем он важнее. При умеренном охлаждении крови наступает сон, при сильном ее охлаждении — смерть. Душа умирает вместе с телом. Любопытно, что Эмпедокл, например, считал, что слух зависит от напора воздуха на ушной хрящ, который, словно колокольчик, колеблется под напором воздуха. 3.9. 2. Биологические воззрения Аристотеля Аристотелю были глубоко чужды представления Эмпедокла об органическом мире и его происхождении. Мировоззрение Аристотеля проникнуто телеологизмом и отрицанием эволюционизма. При этом биологический мир как объект исследования особенно увлекал Аристотеля. И млекопитающие, и птицы, и рыбы, и насекомые — все это вызывало у Аристотеля живой, неподдельный интерес, подлинное воодушевление и даже эстетическое восхищение. Он писал: «...Надо и к исследованию животных подходить без всякого отвращения, так как во всех них содержится нечто природное и прекрасное. Ибо не случайность, но целесообразность присутствует во всех произведениях природы, и притом в наивысшей степени, а ради какой цели они существуют или возникли — относится к области прекрасного». Именно целесообразность органической природы делает ее прекрасной и достойной изучения. Огромное разнообразие живых существ, поражающая их приспособленность к среде, функциональная и структурная целесообразность их строения, рост, рождение, способы размножения, смерть — все эти и другие черты биологического мира интересовали Аристотеля-биолога, требовали, по его мнению, детального описания и теоретико-философского обоснования. В качестве такого обоснования у него, естественно, выступает учение о материи и форме. Любой растительный или животный организм — это некое законченное целое, представляющее собой реализацию определенной формы . Такой организм состоит из многих неоднородных частей или органов, каждый из которых выполняет свою вполне определенную функцию, необходимую для поддержания жизнедеятельности всего организма. Выполнение этой функции и есть цель, ради которой этот орган существует. Выполнение функций органом требует, как правило, не одной, а нескольких способностей (двигаться, сжиматься и расширяться, воспринимать ощущение и др.). Поэтому орган должен состоять не из одной, а многих однородных частей. Так, рука и другие подобные части тела состоят из костей, нервов, мяса и др. К числу таких однородных частей Аристотель относит также волосы, когти, кровь, жир, мозг, желчь, молоко и другие аналогичные вещества у животных, а у растений—древесину, сок, кору, мякоть плода и др. Эти однородные вещества и представляют собой материю , из которой образованы органы и весь организм в целом. Онтогенез он рассматривал с позиций категорий возможности и действительности. Органический рост — это актуализация возможностей, скрытых в исходной материи. Такая трактовка близка современным представлениям о том, что все особенности структуры взрослого организма зашифрованы в виде генетического кода. Аристотель, бесспорно, был величайшим биологом своего времени. Если в области астрономии, физики, механики Аристотель во многом оставался спекулятивным мыслителем, то к живой природе он относился с исключительной наблюдательностью, проницательностью, стремился к постижению мельчайших деталей. Он вскрывал трупы различных животных, делая при этом выводы и об анатомическом строении человека; он изучил свыше пятисот видов животных, описал их внешний вид, и где мог — также и строение; рассказал об их образе жизни, нравах и инстинктах, сделал множество более частных открытий. Альбомы рисунков результатов анатомического расчленения животных и их органов, именовавшиеся «Анатомиями», служили приложениями к «Истории животных»; к сожалению, эти альбомы позднее оказались утерянными. Но Аристотель не только описывал мир живого; он заложил традицию систематизации видов животных. Он первый поставил классификацию животных на научную основу, группируя виды не только по сходству, но и по родству. Всех животных Аристотель подразделял на кровяных и бескровных. Такое деление примерно соответствует современному делению на позвоночных и беспозвоночных. К кровяным он относил: 1) живородящих — человек, киты и четвероногие, т.е., по сути, млекопитающие; 2) яйцеродных — птицы, яйцекладущие четвероногие (рептилии, амфибии), змеи и рыбы; К бескровным он относил: 1) мягкотелые (головоногие); 2) панцирные (ракообразные); 3) моллюски (кроме головоногих); 4) насекомые, пауки и черви. Человеку он отводил место на вершине кровяных. Кроме того, Аристотель описывает живые существа, которые, по его мнению, занимают промежуточную ступень между животными и растениями. Это — губки, акалефы (медузы), титии (асцидии). В свою очередь, и растения подразделяются им на высшие и низшие. Аристотель знал, что главнейшими признаками млекопитающих являются: наличие у них органов воздушного дыхания (легких и горячей крови), что они — живородящие, питают детей молоком и др. Аристотель вводит в биологию понятия аналогичных и гомологичных частей тела, идею о сходстве путей эмбриогенеза у животных и человека, понятие «лестницы существ», т.е. расположения живых существ на определенной шкале, и др. Отдельные ошибки Аристотеля в зоологии не идут ни в какое сравнение с богатством его действительного вклада в биологию. Биологические идеи и исследования Аристотеля развивали его ученики и последователи (Теофраст и др.). 3. 9.3. Накопление рациональных биологических знаний в античности Наряду с формированием умозрительных схем о происхождении живого античность постепенно накапливает эмпирические биологические знания, формирует концептуальный аппарат протобиологии. Как и в других областях естествознания, в накоплении биологических знаний конструктивную роль сыграла пифагорейская школа. К представителям пифагорейской школы относится Алкмеон Кротонский, которого считают основоположником античной анатомии и физиологии. О нем сообщают, что он первый начал анатомировать трупы животных для научных целей. Алкмеон признавал мозг органом ощущений и мышления и уяснил роль нервов, идущих от органов чувств (глаз, ушей) к мозгу. Он считал, что нормальное функционирование организма предполагает равновесие заключающихся в нем «сил», «стихий» — влажного и сухого, теплого и холодного, горького и сладкого и др. Нарушение этих равновесий (например, охлаждение) и является, по его мнению, главной причиной заболеваний. Одной из древних медико-биологических школ была Книдская школа, сложившаяся еще в VI в. до н.э. под влиянием восточной медицины. Она продолжала традиции вавилонских и египетских врачей. Ее принципы нацеливали на детальное описание отдельных комплексов болезненных симптомов и требовали разработки для каждой болезни свой особой (и часто сложной) терапии. Сочинения представителей Книдской школы до нас не дошли, но их фрагменты, очевидно, вошли в состав трактатов Свода Гиппократа. С именем Гиппократа, современника Демокрита, связан тот период развития биологии и медицины, когда медико-биологические знания начали отпочковываться от религии, магии и мистицизма. После этого времени биология и медицина отказываются от объяснения биологических явлений, происхождения и сущности болезней вмешательством потусторонних, сверхъестественных сил. Гиппократ и его ученики считали, что медицина должна основываться не на умозрительных схемах и предположениях или фантазиях, а на скрупулезном, тщательном (эмпирическом) наблюдении и изучении больного, на накоплении и обобщении медицинского опыта. Гиппократ развивает идею о естественных причинах болезней. К таким причинам он относит и факторы, исходящие из внешней среды, и возраст больного, и его образ жизни, и его наследственность и др. Гиппократ учил, что лечить надо не болезнь, а больного, поэтому все назначения должны быть строго индивидуальны. Один из теоретических принципов Гиппократова учения — единство жизни как процесса. Он считал, что основу всякого живого организма составляют четыре «жидкости тела» — кровь, слизь, желчь желтая и черная. Отсюда — и четыре типа темпераментов людей — сангвиники, флегматики, холерики и меланхолики. Весь организм оживотворяется пневмой — воздухоподобным веществом, которое во все проникает и все осуществляет — жизненные процессы, мышление, движение и проч. Свод Гиппократа сложился в Косской медицинской школе, получившей свое наименование от острова Кос, где жили поколения врачей, которые считали себя потомками легендарного героя, получеловека-полубога Асклепия. Лишь некоторые из трактатов Свода могут быть приписаны самому Гиппократу; большинство же из них было написано его учениками и последователями. Из Косской медицинской школы вышли пользовавшиеся известностью и славой Праксагор и его ученик Герофил, который в первой половине III в. до н.э. считался величайшим греческим врачом. В конце своей жизни Праксагор с группой учеников переселился в Александрию и заложил здесь основания Александрийской медицинской школы. Герофил развивал эмпирическую традицию античной биологии и медицины, выше всего ставил наблюдение и опыт. В его эпоху в Александрии уже не имел силы предрассудок, запрещавший анатомирование трупов. Более того, древние авторы сообщают слухи о том, что Герофил проводил опыты по вивисекции над преступниками, которые поставлялись ему царем. Он изучал строение и функционирование нервной системы, провел четкое различение между артериями и венами и пришел к правильному заключению (окончательно доказанному лишь несколько столетий спустя Галеном), что артерии получают кровь от сердца. Герофил впервые оценил диагностическое значение пульса, хотя связывал его с механизмом дыхания. Герофил дал подробное описание анатомии глаза, печени и других органов тела, провел сопоставительное изучение устройства человека и животных, внес существенный вклад в разработку анатомической терминологии. В сфере практической медицины он уделял большое внимание фармакологии, действию лекарственных препаратов, особенно тех, которые изготовлялись из трав, разработке правил диеты, лечебной физкультуры. Завершителем античной биолого-медицинской традиции был Клавдий Гален. Родился в Пергаме, в семье архитектора, изучал философию и медицину, с 162 г. жил в Риме. Гален — универсальный и плодовитый писатель и ученый. Его перу принадлежит свыше 250 сочинений. Гален был прекрасным анатомом. Поскольку в Риме в ту эпоху вскрытие трупов было запрещено, он изучал анатомию не только человека, но и разных животных — быков, овец, свиней, собак и др. Он заметил большое сходство в строении человека и обезьяны, проводя опыты над маленькой мартышкой, которая в то время водилась на юге Европы. Физиологические воззрения Галена базировались во многом на трудах Гиппократа. Гален детально изучал центральную и периферическую нервные системы, искал связь спинномозговых нервов с процессами дыхания и сердцебиения. Он окончательно доказал, что артерии наполнены кровью, а не воздухом. Гален закладывал предпосылки научного экспериментального метода в биологии и физиологии. Хотя истинные закономерности работы сердца и кровообращения остались им так и не разгаданными. В области терапии Гален развивал принципы воздухо- и водолечения, диетологии, изучал свойства лекарственных препаратов; сам создавал такие препараты, причем подчас очень сложные, включавшие в себя десятки компонентов. Элементы народной медицины и даже знахарства, содержавшиеся в рецептурных предписаниях Галена, способствовали его популярности и в античности, и в эпоху средневековья. 3.9.4. Античные представления о происхождении человека Задумывалась античность и над проблемой происхождения человека. В эпоху первобытного и раннеклассового общества, интересуясь своим прошлым, человек представлял его в виде генеалогических и этнологических мифов и легенд, т.е. устных преданий о деяниях и героических подвигах предков, о происхождении родов и племен. Это нашло выражение, в частности, в гениальных произведениях древнегреческих поэтов Гомера («Одиссея», «Илиада») и Гесиода («Теогония», «Труды и дни»), в произведениях других древнегреческих авторов. В эту эпоху формируется и концепция «золотого века» человечества, т.е. представление о том, что в далеком прошлом жизнь людей была намного лучше, чем впоследствии (ведь люди произошли от богов); что история человечества — это история не улучшения, а ухудшения, усложнения жизни людей. Великий древнегреческий поэт Гесиод, например, следующим образом изображает картины далекого прошлого: ...Жили те люди, как боги, с спокойной и ясной душою, Горя не зная, не зная трудов. И печальная старость К ним приближаться не смела. Всегда одинаково сильны Были их руки и ноги. В пирах они жизнь проводили, А умирали, как будто объятые сном. Недостаток Был им неведом. Большой урожай и обильный Сами давали собой хлебодарные земли. Труды и дни, 112-118. С окончательным разложением первобытного общества, возникновением рабовладельческой формации, усилением классовых антагонизмов проблема происхождения человека приобретает острую идеологическую направленность и выделяется как одно из важных, ключевых звеньев в цепи мировоззренческих проблем своего времени. Наряду с идеалистическим, креационистским пониманием антропосоциогенеза в древности развивались и материалистические представления о естественном происхождении человека. Так, еще философы античного мира высказывали мысли о том, что происхождение человека во многом сходно с происхождением животных: те и другие образуются в результате соединения исходных стихий в части и органы, которые под действием тепла соединяются в тело. Такую концепцию развивал, в частности, великий материалист и атомист древности Демокрит. Аристотель трактовал человека как некое «политическое животное», которое отличается от животного только наличием нравственности и на этой основе стремлением к «совместному жительству». Древнеримский философ и поэт Лукреций Кар в поэме «О природе вещей» нарисовал картину развития древних людей от дикого состояния до изобретения огня, одежды, жилищ и т.д. Он, высмеяв распространенные тогда легенды о сотворении людей богами, о «золотом веке», с которого будто бы начинается жизнь людей на Земле, утверждал, что люди делали важнейшие изобретения, подгоняемые нуждой. Л. Кар образно рисует первобытное состояние человека, когда люди еще не знали ни одежды, ни жилищ и вели жалкое существование, питаясь желудями и ягодами и охотясь на диких зверей. Предложив периодизацию истории человечества на три эпохи в зависимости от материала, из которого изготавливались орудия труда: Каменный, медный (бронзовый) и железный, Л. Кар писал: Прежде служили оружием руки могучие, когти, Зубы, каменья, обломки ветвей от деревьев и пламя, После того была найдена медь и порода железа Все-таки в употребление вошла прежде медь, чем железо, Так как была она мягче, притом изобильней гораздо. О природе вещей. V, 1283-1287. Кстати сказать, своей догадкой Л. Кар опередил выводы археологии почти на 19 столетий. В первые века нашей эры обострились социально-экономические, политические и культурные противоречия, свойственные рабовладельческой формации. Римская империя в V в. н.э. распалась под действием внутренних и внешних сил — восстаний рабов, бедноты, покоренных народов и нападений варварских племен. На смену рабовладельческому пришел феодальный строй. Формирование феодальных отношений было связано со значительными потрясениями во всех сферах общественной жизни, в том числе в области культуры и науки. По сути, формировался новый исторический тип сознания, новый тип культуры, духовного освоения мира человеком. Его основу воставляло монотеистическое религиозное сознание, в котором на первом плане — не познание мира и получение нового знания, а переживание, прочувствование мира и вера во всемогущего Бога, в существо, которое создало мир и постоянно творит его своей волей и активностью. Вмешательство божественных, потусторонних сил может проявиться в любой момент, в любой части мира. Такое прямое активное проявление действия божества и есть чудо. Природа наполнена чудесами, поэтому ни о каких ее объективных закономерностях не может быть и речи. В системе такого мировоззрения естествознание лишается своего действительного предмета, реальных целей и задач. Иррационализм и мистицизм способствовали упадку античной науки. Одной из существенных ограниченностей античной науки являлся ее отрыв от производства, отрыв теории от практики, знания от опыта. Рабовладельческий способ производства, в котором главной производительной силой был раб, не нуждался в науке как средстве развития производительных сил. Наука развивалась отдельно от материального производства. Последнее достигло такого уровня, что смогло выделить часть людей из непосредственного участия в производстве, дать им возможность заниматься духовной деятельностью. Но античное материальное производство в результатах духовной деятельности не нуждалось. Отсюда и недооценка связи знания и опыта, непонимание познавательного значения опыта, эксперимента. Эксперимент как метод познания в античности не был известен. И наконец, упадок античной науки во многом был обусловлен и отсутствием надежных средств хранения, обмена и передачи информации. Рукописи были дорогим, редким, а в эпоху непрерывных войн, миграций народов, исчезновения в пожарищах культур, этносов и ненадежным средством хранения информации. Как материальный носитель мысли, рукописи, к сожалению, все-таки горят. В VI в. н.э. в истории европейской культуры начался период «темных веков». 4. ЕСТЕСТВОЗНАНИЕ В ЭПОХУ СРЕДНЕВЕКОВЬЯ Эпоха феодального средневековья качественно отличается от античной. Значительные изменения произошли в сферах деятельности, общения людей, в системе духовной культуры. Деятельность стала более сложной, опосредованной, многозвенной, многоступенчатой; усложнилась система ее целей, средств и результатов. Технически средневековье более оснащено, чем античность. Для средневекового хозяйства характерно наличие орудий труда, состоящих из многих элементов (плуг, охотничьи западни, мельницы, метательные устройства и др.); широко распространен хозяйственно-культурный тип пашенных земледельцев, синтезирующих ручное земледелие и животноводство; разнообразны отрасли домашнего производства, ремесел, лесных промыслов и др. Качественные сдвиги претерпела и сфера общения людей. Природно-определенные связи между людьми (кровно-родственные, территориальные и др.) преобразовываются и приобретают характер межличностных отношений. Межличностный тип социальных отношений в течение всего докапиталистического периода продолжает господствовать, сосуществуя с социально-классовыми отношениями. Именно господство межличностных отношений порождало сословный характер феодального общества. Сословный статус личности определял не только ее место и роль в обществе, ее правовое и имущественное положение, но и ее сознание, мировосприятие. Вместе с тем преобразующее воздействие человека на природу оставалось незначительным. Вещный (несубъектный) элемент производительных сил был развит слабо: орудия труда были простейшими и как бы продолжали и дополняли естественные органы труда человека, но не заменяли их; энергетическим источником процесса труда был человек, его мускульные усилия или действия домашних животных. Товарное производство, а вместе с ним абстрактный труд и абстрактное мышление были развиты крайне недостаточно: господствовало патриархальное натуральное хозяйство. 4.1. Особенности средневековой духовной культуры 4.1.1. Доминирование ценностного над познавательным Привязанность к земле, малая подвижность населения, подчиненность образа жизни ритмике природных процессов, слабость связей общения — все это определяло значительную слитность человека и природы. Духовная культура несет в себе еще весомые моменты первобытного мифологизма. По-прежнему человек в своем сознании наделял себя природными качествами, а природу — человеческими. Так, человек и место его жительства мыслились как нечто нераздельное, а восприятие человека другими людьми существенно зависело от места его обитания, видение мира опосредовалось чувственно-эмоциональным отношением (переживанием) к своему дому, к своей усадьбе, к семье, к общине. Стержнем средневекового сознания явилось религиозное мировоззрение, в котором истолкование всех явлений природы и общества, их оценка, а также регламентация поведения человека обосновываются ссылкой на сверхъестественные силы, которые полностью господствуют над материальным миром, способны по своему произволу как угодно изменять ход естественных событий и даже творить бытие из небытия. Высшей сверхъестественной силой выступал Бог. Такие «супранатуралистические» представления порождались как практическим бессилием человека перед природой (неразвитость производительных сил, сельскохозяйственный и ремесленный характер производства), так и стихийным характером социально-классовых процессов, процессов общения (социальный гнет, социальная несправедливость, непредсказуемость жизненных ситуаций и др.). Средневековое сознание было ориентировано преимущественно на межличностные отношения. Но в их отражении и воспроизведении преобладают эмоциональные стороны, факторы сознания. Этим объясняется доминирование в средневековом сознании ценностно-эмоционального отношения к миру над познавательно-рациональным . Как на обыденном (во многом еще мифологизированном, наглядно-образном), так и на идеологическом (выраженном системой монотеистических представлений) уровнях оно являлось по преимуществу оценочным. Именно поэтому точкой отсчета в духовном освоении мира выступали ценностные противоположности — добро и зло, небесное и земное, божественное и человеческое, святое и грешное и др. Вещь, попавшая в сферу отражения, воспроизводилась в первую очередь с точки зрения ее полезности для человека, а не в ее объективных связях. Аналогичным образом человек характеризовался прежде всего не его объективными чертами (деловитостью, активностью, способностями), а через сословно-иерархические ценности: престиж, авторитет, власть и т.д. Отсюда и особое отношение к знанию. Знание рассматривалось не как главная цель духовной деятельности, а как некоторый ее побочный продукт. Религиозное удвоение мира в сознании на земной (грешный, бренный) и небесный (божественный, возвышенный, идеальный) предполагало возможность приобщения к миру «по ту его сторону». Способом такого приобщения считались не знания, а вера (в том числе и формы чувственно-эмоциональной экзальтации, связывавшие человека с божественной первосущностью). И потому, например, Кассиодор глубоко уверен, что «не только неученые, но даже те, кто и читать не умеет, получают от Бога премудрость» *. Средневековье вере отдает предпочтение перед знанием. * Кассиодор. Об изучении наук божественных и человеческих // Опыт тысячелетия. Средние века и эпоха Возрождения: быт, нравы, идеалы. М., 1996. С. 325. 4. 1.2. Отношение к познанию природы Выделяя себя из природы, но не противопоставляя себя ей, средневековый человек не сформулировал еще своего отношения к природе как самостоятельной сущности. В качестве определяющего выступает у него отношение к Богу, а отношение к природе вторично и производно от отношения к Богу. Здесь знание природы подчинено чувству божества». Природа рассматривалась как сфера, созданная, зримая и поддерживаемая всемогущим и всевидящим божеством, абсолютно зависящая от него; своими предметами, их поведением реализующая его волю во всем (в том числе и в отношении воздействия на людей, их судьбу, социальный статус, жизнь и смерть). Природа — проводник воздействия на людей божьей воли, вплоть до того, чтo она есть и средство их наказания. Для средневекового человека природа — это мир вещей, за которыми надо стремиться видеть символы Бога. Поэтому и восприятие природы раздваивалось на предметную и символическую составляющие. Познавательный аспект средневекового сознания был направлен не столько на выявление объективных свойств предметов зримого мира, сколько на осмысление их символических значений, т.е. их отношения к божеству. Познавательная деятельность была по преимуществу герменевтической, толковательной, а значит, в конечном счете опиралась на иерархизированную и субординированную систему ценностей, на ценностное сознание. Средневековое сознание не ориентировано на выявление объективных закономерностей природы. Его главная функция — сохранение ценностного равновесия человека и мира, субъекта и объекта. В нем слабо развиты познавательные средства вообще и познавательные средства выражения нового в частности. Средневековое знание ориентировано на повторение, воспроизведение и обоснование некоторых исходных абстрактных образов общекультурной (в то время религиозной) значимости. Они заимствовались в основном из сюжетов Ветхого и Нового заветов — Бог, рай, ад, Христос, Страшный суд и др., которые передавались из поколения в поколение на основе авторитарности. Деятельность такого рода была тем не менее системно организована. Основа такой системы — набор (не связанных между собой логической необходимой связью) базовых чувственных первообразов, вокруг которых концентрируются производные чувственно-понятийные образования как средства детализации и конкретизации исходных образов, зачастую также не связанные между собой закономерными, логическими связями. Поэтому система средневекового сознания гетерогенна, рационализирована лишь частично. Вместе с тем она была некоторой целостной системой, а значит, жила по своим законам, функционировала, развивалась, претерпевала количественные и качественные изменения. Качественные преобразования состояли, во-первых, в подключении в такую систему новых элементов, т.е. новых образов (иносказаний, символов, аллегорий и др.), во-вторых, в установлении между образами (как старыми, так и новыми, а так же между старыми и новыми) новых связей и отношений (классификация, схематизация, формализация, лежавшие в основе схоластики). 4.1.3. Особенности познавательной деятельности Хотим мы этого или нет, но познание мира, производство нового знания — историческая необходимость. Поэтому и в консервативном средневековом феодальном обществе складываются традиции познавательной деятельности. Они соответствовали трем основным моментам реального процесса познания: коллективный характер субъекта; предметно-преобразовательное отношение субъекта к объекту; чувственный контакт субъекта с объектом. Эти три закономерности познавательной деятельности определили формирование средневековых традиций познания, опирающихся на принципы: авторитета — авторитет, предание (схоластико-умозрительная традиция); ритуала — предметно-преобразовательное, рецептурно-манипуляционное начало (герметическая традиция); личного опыта — личный опыт выступал базисом эмпирической традиции. Схоластическая традиция . Авторитарность (предание, умозрение) выступала опорой в таких формах познания, которые требовали для себя теоретико-рефлексивной деятельности, — в богословии, философии, математике и др. Авторитарность проявлялась в комментаторском характере познания и обучения, выработке процедур простейшей систематизации и логической упорядоченности знаний, накопленных предшествующими поколениями. На такой основе складывается схоластика, главным вопросом которой был вопрос о том, что в реальном бытии соответствует общим понятиям человеческого разума — добру, злу, истине, Богу, времени и др. На начальных этапах своего развития схоластическая систематизация, предполагавшая расчленение и определение множества понятий, безусловно сыграла определенную положительную роль. Она была в тот период необходимой формой развития знаний. Причем, основные положительные результаты были получены схоластикой в процессе исследования чисто теологических и космологических вопросов — смысл Троицы (трех ипостасей Бога), бессмертия души, конечности и бесконечности мира и др. То есть в тех областях, где предмет познания непосредственно, эмпирически не представлен или представлен лишь частично, и разум остается единственным средством анализа предмета в соответствии с некоторыми логическими критериями. И лишь на закате средневековья схоластика становится тормозом развития познания, за что и подвергается справедливой резкой критике основоположниками научной методологии, например, Р. Декартом и Ф. Бэконом. Важнейшая проблема схоластики — отношение знания и веры. Именно в русле решения этого вопроса Фома Аквинский создает грандиозный теолого-философский синтез современного ему знания позиций установки на то, что теология выше философии. Но не потому, что вера выше разума, а потому, что существует различие между человеческим разумом и сверхразумом Бога. Истины Бога — не иррациональны, они — сверхразумны; их доказательство не под силу человеческому уму, они непознаваемы для него, но тем не менее носят рациональный характер. Естественные науки, по мнению Фомы Аквинского, имеют право на существование. Их задача состоит в том, чтобы подкреплять, детализировать, конкретизировать положения, содержащиеся в Библии, но сами эти науки (астрономия, физика, математика и др.) — ни каждая в отдельности, ни все вместе — не могут постигнуть основных начал мира, такая задача им не под силу. Герметическая традиция . В эпоху средневековья все формы человеческой деятельности и общения были пронизаны ритуалами. Все формы действий людей, включая коллективные, строго регламентировались. Магические, обрядовые и ритуальные действия рассматривались как способ влияния на природные и божественные стихии. С ними связывались надежды на дополнительную сверхъестественную помощь со стороны «добрых» сил и ограждение от «злых». Точное соблюдение ритуально-магических действий, обычаев, праздников, исполнение разного рода заклинаний, просьб, призывов — считалось необходимым условием благоприятного исхода деятельности, причем не только в хозяйственной области, но и в сфере общения людей, в сфере познания, политической и юридической практики и др. В ремесленном и мануфактурном производстве ритуалы сопровождали каждую технологическую процедуру, поскольку в их выполнении виделось условие полного раскрытия заложенных в предметах труда потенциальных возможностей. На ритуальной основе возникает средневековая герметическая традиция *, воплощавшаяся в алхимии, астрологии, каббале и др. Ориентированная на предметное созидание качественно нового, эта традиция опиралась на своеобразные мировоззренческие представления: взаимосвязь всего со всем; неразличимость взаимосвязи, взаимодействия и взаимопревращения; тождество, взаимопревращение макрокосма и микрокосма; биологизация мира (т.е. мир рассматривался как живой организм, в котором части представляли и заменяли собой целое); безграничные возможности влияния на события посюстороннего мира со стороны не только Бога, но и некоторых избранных людей (с помощью Бога либо другой сверхъестественной силы); убеждение в том, что влиянием на часть можно изменить целое; сущность вещи усматривалась в ее производстве, как сущность земного мира в его творении Богом; познать вещь означало прежде всего ее создать. * Герметический корпус — это свод трактатов, написанных на греческом языке во II—III вв. н.э. Большая часть трактатов представляет собой речи Гермеса Трисмегиста (Трижды Величайшего), некоторой легендарной личности, в которой, по-видимому, переплелись божественные и человеческие черты. Герметическая традиция нашла свое яркое и контрастное воплощение прежде всего в алхимии, а также в медицине, астрологии и других формах средневековой культуры. Опытно-эмпирическая традиция . Личный опыт был и точкой отсчета, и критерием истинности, и основой композиционной структуры текста, а также доверия аудитории в прагматически ориентированных сферах деятельности — в политике, производстве, праве, в стихийно-эмпирическом познании природы, некоторых жанрах литературы (житиях святых, хрониках, записках паломников, купцов, апокрифических рассказах, исторических повествованиях и др.). Традиция стихийно-эмпирического познания природы, начиная с XIII в., постепенно развивается в систему естественно-научного познания, под влиянием, в частности, естественно-научных произведений Аристотеля. Одним из самых значительных представителей этой традиции называют Роберта Гроссетеста — автора трактатов, в которых естественно-научное содержание уже преобладало над теологическим и философским. Его интересы концентрировались вокруг вопросов оптики, математики, астрономии. Он рассуждал о свойствах звуковых колебаний, морских приливов, преломления света и др. В его работах содержатся зачаточные формы будущей методологии классического естествознания. Так, например, он высказывал мысли о том, что изучение явлений должно начинаться с опыта, затем посредством анализа явлений устанавливается некоторое общее положение, рассматриваемое как гипотеза; отправляясь от нее, уже дедуктивно выводятся следствия, которые должны быть подвергнуты опытной проверке для определения их истинности или ложности. Наиболее выдающиеся представители опытно-эмпирической традиции были нацелены на программу практического назначения знания. В естественно-научном знании начинают видеть средство, с помощью которого человек может добиться расширения своего практического могущества, улучшения своей жизни. Так, например, Роджер Бэкон высказывал идеи и мечты, которые намного опережали его время — о создании судов без гребцов, управляемых одним человеком; о быстрейших колесницах, передвигающихся без коней; о летательных аппаратах, созданных человеком и управляемых им; о приспособлениях, которые позволили бы человеку передвигаться по дну рек и морей; о создании зеркал, которые способны концентрировать солнечные лучи так, что они могут сжигать все на своем пути, и др. Есть сведения о том, что ему первому в Европе удалось создать порох. Р. Бэкон был уверен, что познание мира человеком бесконечно, как бесконечны и возможности возрастания практического могущества человека. 4.2. Естественно-научные достижения средневековой арабской культуры По-разному сложились исторические судьбы Западной и Восточной Римской империи. Социально-экономический и культурный уровень стран Восточного Средиземноморья, Ближнего Востока (большее их число входило в состав Византийской империи) в эпоху раннего средневековья (вплоть до второй половины XII в.) был выше, чем стран Европы. В VII в. на обширных территориях Ближнего и Среднего Востока возникает централизованное арабское государство — Арабский Халифат. Формирование из ранее разрозненных областей единой политической системы на новой феодальной основе и быстрый рост экономики создали благоприятные условия для развития на средневековом Востоке науки и культуры. Объединенные политически и экономически, связанные единством религии и языка (арабский язык стал не только государственным, но и языком науки и культуры), народы Ближнего и Среднего Востока получили возможность более свободного обмена духовными ценностями. Благодаря интенсивной переводческой деятельности уже в IX в. в арабоязычном мире были изданы все главные произведения научной мысли античности. К античному наследию арабы относились с величайшим уважением. Так, в 823 г. халиф аль-Мамун потребовал от побежденного им византийского царя Михаила II передать ряд греческих рукописей или их копии. В их числе был получен и «Альмагест» К. Птолемея. Усвоение сложного комплекса местных культурных традиций и культурного наследия античности обеспечило расцвет мусульманской культуры. Особенно большое распространение на Востоке получили произведения Аристотеля. Вершиной арабоязычного аристотелизма стало творчество Ибн-Рушда (в Европе его называли Аверроэсом), интерпретировавшего труды Аристотеля в духе материализма и пантеизма. Ибн-Рушд развивал и учение о вечности материального мира, являющегося, однако, как учил Аристотель, конечным в пространстве. Ибн-Рушд стремился утвердить полную независимость философии и науки от теологии, мусульманского богословия, минимизировать функции бога по отношению к миру, считая, что бог влияет только на общий ход мирового процесса, но не на его частности. В учении Ибн-Рушда природа максимально независима от бога и сама может творить свои частные, конечные формы. Подобное ограничение креационизма создавало мировоззренческую основу для утверждения идеалов естественно-научного познания. Ибн-Рушд разработал также «теорию двух истин» — научно-философской и теологической. Как наука (философия), так и религия (теология) размышляют прежде всего о Боге — первой и высшей причине всего существующего и познаваемого. Но они совершенно различны по способу своих разъяснений. Более совершенный способ дает наука (и философия), опирающаяся на логику и доказательства. Религия (и теология) дает образное, чувственное познание, представление Бога, содержащее множество логических противоречий. В Коране можно найти два смысла — буквальный и «внутренний»: первый постигается богословием, второй — наукой, философией. Теория «двух истин» способствовала утверждению философских предпосылок естественно-научного познания. 4.2.1. Математические достижения Арабы существенно расширили античную систему математических знаний. Они заимствовали из Индии и широко использовали десятичную позиционную систему счисления. Она проникла по караванным путям на Ближний Восток в эпоху Сасанидов (224—641), когда Персия, Египет и Индия переживали период культурного взаимодействия. И уже из арифметического трактата аль-Хорезми «Об индийских числах», переведенного в XII в. на латынь, десятичная система стала известна в Европе. Получила также значительное развитие (свойственная еще Древнему Востоку) традиция создания новых вычислительных приемов и специальных алгоритмов. Так, например, аль-Каши с помощью вписанных и описанных правильных многоугольников вычислил число π до 17 верных знаков. Развивались методы приближенного извлечения корней. Например, такой известный в древности прием: где Т— целое, был распространен на случай любого натурального показателя корня: Известен им был и метод вычисления корней, который ныне называется методом Руффини — Горнера*: если тo последовательное вычисление знаков корня связано с отысканием разностей * См.: Рыбников К.А. История математики. М., 1974. С. 99. Арабские математики умели также суммировать арифметические и геометрические прогрессии, включая нахождение сумм вида: Не ограничиваясь методами геометрической алгебры, арабские математики смело переходят к операциям над алгебраическими иррациональностями. Они создали единую концепцию действительных чисел путем объединения рациональных чисел и отношений и постепенно стерли грань между рациональными числами и иррациональными. В Европе эту идею восприняли лишь в XVI в. Арабские математики совершенствовали методы решения уравнений 2-й и 3-й степеней; решали отдельные типы уравнений 4-й степени. В трактате аль-Хорезми «Книга об операциях джебр (восстановление) и кабала (приведение)», по которому европейские ученые в XII в. начали знакомиться с алгеброй, содержались систематические решения уравнений 1-й и 2-й степени следующих типов: Наиболее значительным достижением арабов в алгебре был «Трактат о доказательствах задач» Омара Хайяма, посвященный в основном кубическим уравнениям. Хайям построил теорию кубических уравнений, основанную на геометрических методах древних. Он классифицировал все кубические уравнения с положительными корнями на 14 видов; каждый вид уравнений он решал соответствующим построением. Хайям пытался найти правило решения кубических уравнений в общем виде, но безуспешно. Если отдельные зачаточные элементы сферической тригонометрии были известны еще древним грекам (например, Птолемей пользовался понятием «хорда угла»), то в систематическом виде тригонометрия создана арабскими математиками. Уже в работах аль-Баттани содержится значительная часть тригонометрии, включая таблицы значений котангенса для каждого градуса. Историческая заслуга средневековых арабских математиков состояла и в том, что они начали глубокие исследования по основаниям геометрии. Так, в сочинениях О. Хайяма и Насирэддина ат-Туси предприняты попытки доказать постулат о параллельных, основанные на введении эквивалентных этому постулату допущений (сумма внутренние углов треугольника равна двум прямым и др.). Из разделов механики наибольшее развитие получила статика , чему способствовали условия экономической жизни средневекового Востока. Интенсивное денежное обращение и торговля, как внутренняя, так и международная, требовали постоянного совершенствования методов взвешивания, а также системы мер и весов. Это определило развитие учения о взвешивании и теоретической основы взвешивания — науки о равновесии, создание многочисленных конструкций различных видов весов. Необходимость совершенствования техники перемещения грузов и ирригационной техники в свою очередь способствовала развитию науки о «простых машинах», конструированию устройств для нужд ирригации. Арабские ученые широко использовали понятие удельного веса, совершенствуя методы определения удельных весов различных металлов и минералов. Этим вопросом занимались аль-Бируни, О. Хайям, аль-Хазини (XII в.). Для определения удельного веса применялся закон Архимеда, грузы взвешивались не только в воздухе, но и воде. Полученные результаты были исключительно точны. Например, удельный вес ртути был определен аль-Хазини в 13,56 г/см3 (по современным данным —13,557); удельный вес серебра 10,30 г/см3 (по современным данным — 10,49), золота — 19,05 г/см3 (современные данные — 19,27), меди 8,86 г/см3 (современные данные — 8,94) и т.д. Столь точные данные позволяли решать ряд практических задач: отличать чистый металл и драгоценные камни от подделок, устанавливать истинную ценность монет, обнаружить различие удельного веса воды при разных температурах и др. Динамика развивалась на основе комментирования и осмысления сочинений Аристотеля. Средневековыми арабскими учеными обсуждались проблема существования пустоты и возможности движения в пустоте, характер движения в сопротивляющейся среде, механизм передачи движения, свободное падение тел, движение тел, брошенных под углом к горизонту. В работах Ибн-Сины, известного в Европе под именем Авиценна, аль-Багдади и аль-Битруджи, по сути, была сформулирована «теория импетуса», которая в средневековой Европе сыграла большую роль в качестве предпосылки возникновения принципа инерции. Развитие кинематики было связано с потребностями астрономии в строгих методах для описания движения небесных тел. В этом направлении и развивается аппарат кинематико-геометрического моделирования движения небесных тел на основе «Альмагеста» К. Птолемея. Кроме того, в ряде работ изучалась кинематика «земных» движений. В частности, понятие движения привлекается для непосредственного доказательства геометрических предложений (Ибн Корра Сабит, Насирэддин ат-Туси), механические движения используются для объяснения оптических явлений (Ибн аль-Хайсам), изучается параллелограмм движений и т.п. Одно из направлений средневековой арабской кинематики — разработки инфинитезимальных методов (т.е. рассмотрение бесконечных процессов, непрерывности, предельных переходов и др.). Существенный вклад внесен арабскими учеными и в астрономию . Они усовершенствовали технику астрономических измерений, значительно дополнили и уточнили данные о движении небесных тел. Один из выдающихся астрономов-наблюдателей аз-Зеркали (Арзахель) из Кордовы, которого считали лучшим наблюдателем XI в., составил так называемые Толедские планетные таблицы (1080); они оказали значительное влияние на развитие тригонометрии в Западной Европе. Вершиной в области наблюдательной астрономии стала деятельность Улугбека, который был любимым внуком создателя огромной империи Тимура. Движимый страстью к науке, Улугбек построил в Самарканде по тем временам самую большую в мире астрономическую обсерваторию, имевшую гигантский двойной квадрант и много других астрономических инструментов (азимутальный круг, астролябии, трикветры, армиллярные сферы и др.). В обсерватории был создан труд «Новые астрономические таблицы», который содержал изложение теоретических основ астрономии и каталог положений 1018 звезд, определенных впервые после Гиппарха с точностью, остававшейся непревзойденной вплоть до наблюдений Тихо Браге. Звездный каталог, планетные таблицы, уточнения наклона эклиптики к экватору, определения длины звездного года с ошибкой в одну минуту, годичной прецессии и продолжительности тропического года имели большое значение для развития астрономии. Результатами наблюдений в обсерватории Улугбека долгое время пользовались европейские ученые. В теоретической астрономии основное внимание уделялось уточнению кинематико-геометрических моделей «Альмагеста», устранению противоречий в теории Птолемея (в том числе с помощью более совершенной тригонометрии) и поиску нептолемеевских методов моделирования движения небесных тел. Следует упомянуть попытки согласования «Альмагеста» с моделью гомоцентрических сфер (Ибн Баджжи, Ибн Рушд, аль-Битруджи) и моделью, предложенной марагинской школой (Насирэддин ат-Туси, аш-Ширази, аш-Шатир), согласно которой «земное» прямолинейное движение участвует в движении небесных тел равноправно с равномерным круговым, что наметило тенденцию к объединению «земной» и «небесной» механик. 4.3. Становление науки в средневековой Европе К концу XII — началу XIII в. обозначился застой в социально-экономическом и культурном развитии ближневосточных стран. Страны же Западной Европы, напротив, стали «обгонять» мусульманский Восток и Византийскую империю. В основе такого «исторического рывка» лежало развитие производительных сил (как в сельском хозяйстве, так и в ремесле). Происходит технологическая революция в агротехнике: появляется тяжелый колесный плуг, используется боронование, совершенствуется упряжь тягловых животных, что позволяет в 3—4 раза увеличить нагрузки, внедряется трехпольная система земледелия, создается земельно-хозяйственная кооперация, осваиваются новые источники энергии — сила воды и ветра (распространяются водяные и ветряные мельницы) и др. Благодаря изобретению кривошипа и маховика механизированы многие ручные операции. Рационализируется организация хозяйственной деятельности (особенно в монастырях). Производство избыточной сельскохозяйственной продукции стимулирует развитие торговли, ремесла. Усиливается тенденция урбанизации. Складываются центры мировой торговли (Венеция, Генуя), «миры-экономики». Формируется дух уважительного отношения к физическому труду, к деятельности изобретателей, инженеров. Дух изобретательности и предприимчивости все в большей степени пронизывает культурную атмосферу общества. Превращение физического труда в ценность, в достойное занятие порождает необходимость его рационализации, так как тяжесть физического труда осознается как нечто нежелательное. В этих условиях происходит подъем в духовной сфере. Одним из наиболее ярких его выражений стало возникновение новых светских образовательных учреждений — университетов. Еще в XII в. был открыт университет в Болонье, а в 1200 г. 6ыл основан Парижский университет. В ХIII—XIV вв. появились университеты в других городах Западной Европы: в Неаполе (1224), Тулузе (1229), Праге (1349), Вене (1365), Гейдельберге(1385) и т.д. Средневековые университеты имели четыре факультета. Первый — подготовительный; он был самым многочисленным и именовался факультетом «свободных искусств». Здесь преподавали семь «свободных искусств» — грамматику, риторику, диалектику (искусство вести диспуты), геометрию, арифметику, астрономию и музыку. Впоследствии этот факультет стали называть философским, а полученные знания подразделяли на философию натуральную, рациональную и моральную. Основными факультетами являлись медицинский, юридический и теологический. Теологический факультет считался высшим факультетом, но обычно он был наименее многочисленным. 4.4. Физические идеи средневековья В период позднего средневековья (XIV—XV вв.) постепенно осуществляется пересмотр основных представлений античной естественно-научной картины мира и складываются предпосылки для создания нового естествознания, новой физики, новой астрономии, возникновения научной биологии. Такой пересмотр связан, с одной стороны, с усилением критического отношения к аристотелизму, а с другой стороны, с трудностями в разрешении тех противоречий, с которыми столкнулась схоластика в логической интерпретации основных религиозных положений и догматов. Одно из главных противоречий, попытки разрешения которого приводили к «разрушению» старой естественно-научной картины мира, состояло в следующем: как совместить аристотелевскую идею замкнутого космоса с христианской идеей бесконечности божественного всемогущества? Ссылки на божественное всемогущество служили основанием для отказа от ряда ключевых аристотелевских положений и выработки качественно новых образов и представлений, которые способствовали формированию предпосылок новой механистической картины мира. К таким представлениям и образам можно отнести следующие. Во-первых, допущение существования пустоты, но пока не абстрактной, а лишь как нематериальной пространственность, пронизанной божественностью (поскольку Бог не только всемогущ, но и вездесущ, как считали схоласты). Во-вторых, изменение отношения к проблеме бесконечности природы. Бесконечность природы все чаще рассматривается как позитивное, допустимое и очень желательное (с точки зрения религиозных ценностей) начало; оно как бы выражало такую атрибутивную характеристику Бога как его всемогущество. В-третьих, возникает и представление о бесконечном прямолинейном движении как следствие образа бесконечного пространства. В-четвертых, возникновение идеи о возможности существования бесконечно большого тела. Образ пространственной бесконечности постепенно перерастает в образ вещественно-телесной бесконечности. При этом рассуждали примерно так: «Бог может создать все, в чем не содержится противоречия; в допущении бесконечно большого тела противоречия нет; значит, Бог может его создать». В-пятых, допущение существования среди движений небесных тел не только идеальных (равномерных, по окружности), соизмеримых между собой, но и несоизмеримых. Иррациональность переносилась из земного мира в надлунный, божественный мир. В этом также виделись признаки творящей божественной силы: Бог способен творить новое повсюду и всегда. Исключение принципиального аристотелевского различия мира небесного и мира земного создавало предпосылки для интеграции физики, астрономии и математики. Качественные сдвиги происходят как в кинематике, так и в динамике. В кинематике средневековые схоласты вводят понятия «средняя скорость», «мгновенная скорость», «равноускоренное движение» (они его называли «униформно-дифформное»). Мгновенную скорость в данный момент они определяют как скорость, с какой стало бы двигаться тело, если бы с этого момента времени его движение стало равномерным. Кроме того, постепенно вызревает понятие ускорения. Схоласты уже догадываются, что путь, пройденный телом при равноускоренном движении без начальной скорости за известный промежуток времени, равен пути, который пройдет это же тело за то же время с постоянной скоростью, равной средней скорости равноускоренного движения. В эпоху позднего средневековья значительное развитие получила динамическая «теория импетуса», которая была мостом, соединявшим динамику Аристотеля с динамикой Галилея. Французский философ-схоласт Жан Буридан (XIV в.) объяснял падение тел с точки зрения теории импетуса. Он считал, что при падении тел тяжесть запечатлевает в падающем теле импетус, поэтому и скорость его все время падения возрастает. Величина импетуса, по его мнению, определяется и скоростью, сообщенной телу, и «качеством материи» этого тела. Импетус расходуется в процессе движения на преодоление трения; когда импетус растрачивается, тело останавливается. Аристотель считал главным параметром для любого момента движения расстояние до конечной точки, а не расстояние от начальной точки движения. Благодаря теории импетуса исследовательская мысль постепенно сосредоточивалась на расстоянии движущегося тела от начала движения: тело, падающее под действием импетуса, накапливает его все больше и больше по мере того, как отдаляется от сходного пункта. Эти выводы стали предпосылками для перехода от снятия импетуса к понятию инерции. Кроме того, теория импетуса способствовала развитию и уточнению понятия силы. Старое, античное и средневековое, понятие силы благодаря теории импетуса в дальнейшем развитии физики раздвоилось на два понятия. Первое — то, что И. Ньютон называл «силой» (ma ), понимая под силой воздействие на тело, внешнее по отношению к движению этого тела. Второе — то, что Р. Декарт называл количеством движения, т.е. факторы процесса движения (mv ), связанные с самим движущимся телом. Все это постепенно готовило возникновение динамики Галилея *. * См.: Гайденко В.П., Смирнов Г.А. Западноевропейская наука в средние века. Общие принципы и учение о движении. М., 1989. Разд. III. 4.5. Алхимия как феномен средневековой культуры Алхимия складывалась в эпоху эллинизма на основе слияния прикладной химии египтян с греческой натурфилософией, мистикой и астрологией (золото соотносили с Солнцем, серебро — с Луной, медь — с Венерой и др.) (II—VI вв.) в александрийской культурной традиции, представляя собой форму ритуально-магического (герметического) искусства (см. 4.1.3). Алхимия — это самозабвенная попытка найти способ получения благородных металлов. Алхимики считали, что ртуть и сера разной чистоты, соединяясь в различных пропорциях, дают начало металлам, в том числе и благородным. В реализации алхимического рецепта предполагалось участие священных или мистических сил (частицы бога или дьявола, надъестественного бытия, в котором проявления человеческого мира теряют свою силу), а средством обращения к этим силам было слово (заклинание, молитва) — необходимая сторона ритуала. Поэтому алхимический рецепт выступал одновременно и как действие, и как священнодействие *. * Рабинович В.Л. Алхимия как феномен средневековой культуры. М. 1979. Ч. 1. Гл. 1. В средневековой алхимии (ее расцвет пришелся на XIII—XV вв.) выделялись две тенденции. Первая — это мистифицированная алхимия, ориентированная на химические превращения (в частности, ртути в золото) и в конечном счете на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею «философского камня» — гипотетического вещества, ускорявшего «созревание» золота в недрах земли; это вещество заодно трактовалось и как элексир жизни, дающий бессмертие. Вторая тенденция была больше ориентирована на конкретную практическую технохимию. В этой области достижения алхимии несомненны. К ним следует отнести: открытие способов получения серной, соляной, азотной кислот, «царской водки», селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др. Деятельность алхимика опиралась на некоторую совокупность «теоретических» представлений и образов. В их основе представление о том, что исходное материальное начало — первичная материя — хаотична, бесформенна и потенциально содержит в себе все тела, все минералы и металлы. Порожденные первоматерией тела уже не исчезают, но зато могут быть превращены друг в друга. Между первоматерией и отдельными порожденными ею материальными телами есть два промежуточных «звена». Первое звено — всеобщие качественные принципы мужского (сера) и женского (ртуть) начал; в XV в. к ним добавили третье начало — «соль» (движение). Второе звено — это состояния, качества, свойства первоэлементов: земля (твердое состояние тела), огонь (лучистое состояние), вода (жидкое состояние), воздух (газообразное состояние), квинтэссенция (эфирное состояние). Алхимики полагали, что в результате взаимодействия качественных принципов (начал) и состояний первоэлементов можно осуществлять любые трансмутации веществ. Среди алхимиков, наряду с шарлатанами и фальсификаторами, было немало искренне убежденных в реальности всеобщей взаимо-превращаемости веществ; в том числе и крупных мыслителей — Раймунд Луллий, Арнольдо да Вилланова, Альберт Великий, Фома Аквинский, Бонавентура и др. Почти невозможно в средневековье отделить друг от друга деятельность, связанную с химией, и деятельность, связанную с алхимией. Они переплетались самым теснейшим образом. Особое отношение к алхимии складывалось в системах светской и церковной власти. С одной стороны, крупные феодалы рассчитывали с помощью алхимии поправить свое материальное положение и потому преклонялись перед алхимией и ее «возможностями». С другой стороны, власть имущие к алхимии относились подозрительно. Так, римский император Диоклектиан в 296 г., опасаясь, что получение алхимиками золота ослабит его казну и экономику, приказал уничтожить все алхимические рукописи. По тем же причинам в 1317г. папа Иоанн XXII предал алхимию анафеме. Но это не помогло, и еще много столетий (вплоть до середины XVIII в.) алхимия оставалась элементом европейской духовной культуры. 4.6. Религиозная трактовка происхождения человека В области биологии средневековье не дало новых идей. При этом многие античные достижения были либо утеряны, либо переинтерпретированы в религиозном духе. Особенно это касается таких мировоззренческих проблем, как происхождение жизни и происхождение человека. В рамках религиозного мировоззрения происхождение жизни и человека рассматривались как прямое, непосредственное творение их Богом. В той или иной форме этот взгляд характерен для всех трех мировых религий — христианства, мусульманства и буддизма. «И создал Господь Бог человека из праха земного и вдунул в лицо его дыхание жизни; и стал человек душою живою», — написано в библейской книге Бытия. Примерно в таком же ключе трактует этот вопрос и ислам. Аллах (который согласно Корану имеет лицо, руки, глаза, восседает на престоле и др.) слепил тело человека из глины, а затем одухотворил его: «вдул в него от своего духа». «Бог создал вас и то, что вы делаете», — говорится в Коране. В буддизме (с его сильной установкой на поиски путей нравственного самосознания и самосовершенствования) вопрос о происхождении человеческого общества так прямо не формулируется, поскольку материальный мир рассматривается как непрерывно творимый безначальным абсолютным сознанием — драхмами. Поэтому страдания мира и людей в нем безначальны. Но зато отдельный человек формируется на всех этапах (ниданах) своего роста под непосредственным влиянием сверхъестественного духа. Божественное сознание пронизывает душу человека еще на этапе его эмбрионального развития, а затем сопровождает его всю жизнь. Религиозные представления о времени возникновения человека, а также о закономерностях развития человеческого общества были далеки от реальности. Так, христианская историософия относила начало существования человечества к 5509 г. до н.э.* Вся история человечества при этом делилась на два основных периода — «допотопный» и «послепотопный». Согласно библейскому рассказу в допотопную эпоху в последний, заключительный, шестой день творения Бог создал из праха земного Адама, а затем Еву из ребра его, дал им возможность беспечно жить в саду Эдема — райской обители. Новое, «послепотопное» человечество произошло от единственного из «божественных» людей «допотопной» эпохи (т.е. прямых предков Адама и Евы) — Ноя и его потомков, сохранившихся во время потопа в ковчеге, и т.д. и т.п. * В России, например, вплоть до 1700 г. летоисчисление велось от дня «сотворения мира», которым считалось 21 марта 5509 г. до н.э. Интересно, что в средневековье религиозные догматы о сотворении человека Богом вполне уживались с самыми невероятными вымыслами о прошлом людей и о народах неведомых стран. Так, средневековые географы и хронисты всерьез принимали легенды о собакоголовых людях (киноцефалах), фанезийцах (т.е. людях, закутывавшихся в свои громадные уши, как в одеяла), кентаврах (людях с туловищем лошади), мантихорах (существах с лицом человека, туловищем льва и хвостом скорпиона) и др. Что касается вопроса о возникновении человечества и его первоначальной истории, то в средневековье считалось, что об этом все уже сказано в библейской легенде. Попытки поставить под сомнение эту одну из основных догм христианства рассматривались как опаснейшая ересь и жестоко преследовались. Так, в 1450 г. на костре инквизиции был сожжен Самуил Capc, высказавший догадку, что человечество гораздо древнее, чем об этом говорится в Библии. Религиозная концепция происхождения человека была влиятельным элементом общественного сознания в европейских странах вплоть до середины XIX в. Так, например, даже в начале XIX в. такой видный французский палеонтолог, как Жорж Кювье из религиозных соображений отрицал существование ископаемого человека. 4.7. Историческое значение средневекового познания Историческая роль средневекового сознания состояла не в поиске новых рациональных форм знания, отражающих объективные законы природы, а в пролиферации, умножении связей и отношений чувственных образов. Существенные связи и отношения мира даны субъекту не только в абстрактных понятийных формах, но и в допонятийных формах отражения, в том числе и в перцептивных образах. В этом случае они как бы впаяны в содержание образов наряду с множеством случайных свойств объекта и должны быть отделены друг от друга. Для перехода к научному познанию природы сознание должно было сформировать структуры, позволяющие отбирать из множества связей и отношений чувственных образов такие, которые носят существенный, закономерный характер. Реализация данной задачи возможна тогда, когда структурная часть (т.е. логические формы, категориальные структуры, операциональный состав мышления, символические элементы, математические формализмы и др.) приобретают ярко выраженную самостоятельность по отношению к субстратной части познавательных систем (т.е. чувственные, сенсорно-перцептивные образы, операнды мышления, абстракции и др.). Иначе говоря, логико-понятийное начало, выражавшее собой апробированные практикой всеобщие, универсальные связи и отношения мира, на определенном этапе истории познания должно подняться на уровень систематического превалирования над чувственно-образным началом. Такой революционный качественный переход, затрагивающий самые глубины деятельности сознания, несла с собой эпоха Возрождения. 5. ПОЗНАНИЕ ПРИРОДЫ В ЭПОХУ ВОЗРОЖДЕНИЯ Новый величайший переворот в системе культуры происходит в эпоху Возрождения, которая охватывает XIV — начало XVII в. Эпоха Возрождения — эпоха становления капиталистических отношений, первоначального накопления капитала, восхождения социально-политической роли города, буржуазных классов, складывания абсолютистских монархий и национальных государств, эпоха глубоких социальных конфликтов, религиозных войн, ранних буржуазных революций, возрождения античной культуры, возникновения книгопечатания, эпоха титанов мысли и духа. Социально-исторической предпосылкой культуры Возрождения явилось становление буржуазного индивидуализма, который приходил на смену сословно-иерархической структуре феодальных отношений. Средневековье завершает тот длительный период истории человечества, в ходе которого человек был еще привязан прямыми либо опосредованными узами к коллективу определенного типа. Этот отрыв окончательно осуществился именно в эпоху Возрождения. «Не терпеть нужды и не иметь излишка, не командовать другими и не быть в подчинении — вот моя цель», — писал Ф. Петрарка, выражая этим не только свои личные цели, но и жизнеощущение эпохи*. В социально-психологическом плане ренессансный индивидуализм порождал такую особенность образа жизни, которую великий русский мыслитель А.Ф. Лосев называл «субъективистически-индивидуалистической жаждой жизненных ощущений независимо от их религиозных или моральных ценностей»**. Жизнь на свой страх и риск, предполагающая индивидуализм и самоутверждение личности, возможна только в условиях активно-деятельного отношения к миру. * Петрарка Ф. Автобиография. Исповедь. Сонеты. М., 1915. С. 128. ** Лосев А.Ф. Эстетика Возрождения. М., 1978. С. 57. Именно такое отношение характеризует систему новых ценностей буржуазной городской культуры свободных и независимых ремесленников, торговцев, мастеров, средневековой интеллигенции. Среди этих ценностей: высокая работоспособность; умение трудиться; инициативность, стремление побольше успеть, свершить; умение ценить время, дорожить им (время — это такой «божий дар» человеку, который нельзя никому передать, но вместе с тем его можно потерять в ничегонеделании); и наконец, личная ответственность за результаты своей деятельности. Правда, есть вещи, которые неподвластны времени, и это делает их божественными: личная доблесть, знание и семья; их реализация приводит к утверждению вечных ценностей и исторически значимых дел, которые по достоинству смогут оценить лишь потомки. 5.1. Ренессанская мировоззренческая революция В эпоху Возрождения была проведена основная мыслительная работа, подготовившая возникновение классического естествознания. Это стало возможным благодаря мировоззренческой революции, свершившейся в эпоху Ренессанса и состоявшей в изменении системы человек—мир человека. Эта система распалась на три относительно самостоятельных отношения: отношение Человека к Природе, к Богу и к самому себе. В эпоху средневековья определяющим отношением к миру было отношение человека к Богу как высшей ценности. Отношение человека к природе, которая рассматривалась как символ Бога, и к самому себе как смиренному рабу божьему были производными от этого основного отношения. На основе индивидуализации личности, формирования новых ценностей и установок в эпоху Ренессанса происходит мировоззренческая переориентация субъекта. На первый план постепенно выдвигается отношение человека к природе, а отношения же человека к Богу и к самому себе выступают как производные. В логике такого идейного движения Ренессанс преодолел дуализм темного и небесного миров («двух градов» Августина). В ренессансном сознании эти два мира сближаются вплоть до пронизывания друг друга, слияния, превращения в некую амбивалентную тотальность. В человеке на первый план выдвигается то, что есть в нем божественного: один человек сам способен превращаться для другого в некоторое божество. Поскольку все связано со всем и все взаимопроникает во все, постольку все (а не только Бог) достойно быть предметом познания. В этом смысле предмет познания один - богоприрода или природобог. Философско-рационалистическое преодоление теизма с необходимостью проходит через стадию пантеизма. А ренессансный онтологический пантеизм, в свою очередь, повлек за собой гносеологический плюрализм: не только все может быть предметом познания, но и все точки зрения о предмете имеют право на существование, каждая культура имеет право на свое мировоззрение. В условиях эволюционного развития познания такой плюрализм привел бы к эклектизму. В революционную ренессансную эпоху гносеологический плюрализм ведет к релятивизму, который воплощает субъективно-творческий прорыв к будущим целостным формам теоретического синтеза, смыслового многообразия и вселенской гармонии. Именно новаторством, переходностью, сложностью и многообразием эпоха Возрождения глубоко созвучна нашей эпохе. Право на существование имеют все точки зрения, а значит, и те из них, которые содержат инновации. Более того, именно содержащая новизну позиция наиболее предпочтительна. С этого начинается формирование исторического мышления, ощущение культурно-исторической дистанции, постепенное формирование духа новаторства. Противоречивость ренессансной культуры в этом отношении состояла в том, что ренессансное сознание это новое искало в... античном прошлом. Творчески-новаторское отношение к миру выдвигает на первый план познавательную составляющую сознания, разум выходит «из изгнания», куда он заточен средневековой установкой на первенство веры над чувствами, а чувств над разумом. Уже у Н. Кузанского познание мира бесконечно и ведущим средством познания является разум. Мир для него — это богоприрода или природобог. Мир, Вселенная — бесконечны. Бесконечность мира познается разумом путем «совпадения противоположностей». Николай Кузанский принадлежит зрелому Возрождению. А в период позднего Возрождения Н. Коперник, создавая гелиоцентрическую систему мира, на деле показывает творческие возможности разума, позволяющего через выделение и исследование противоречий в сфере явления проникать в сущность вещей, которая может быть полностью противоположной явлению. Теоретическая мысль Возрождения еще не поднялась до уровня постановки и решения проблемы метода научного познания природы, однако предварила ее формулированием ряда принципиальных идей: гуманизма, рационализма, познаваемости мира, историзма и социально-исторического оптимизма. Но в ренессансном типе познания мыслительное и образно-чувственное не вполне разграничивались, часто выступая в синкретическом единстве. Это не позволяло создать методологический инструментарий для конкретно-научного познания природы. Созданием основ методологии конкретно-научного познания занялись мыслители Нового времени, прежде всего Ф. Бэкон и Р. Декарт. Не дала эпоха Возрождения и сложных, логически непротиворечивых фундаментальных теорий. Она решала другую задачу: посредством глубокого синтеза имевшегося мыслительного материала, нового способа функционирования культуры, новой системы ценностей осуществить объективистскую перестройку сознания, сформировать его новый исторический тип, в котором бы познавательная составляющая сознания доминировала над ценностной. В культуре Возрождения главной ценностью становится бескорыстное объективное познание мира . На основе этой важнейшей мировоззренческой ценности складываются непосредственные предпосылки возникновения классического естествознания. 5.2. Зарождение научной биологии Стихийно-эмпирическое накопление знаний о мире органических явлений длилось тысячелетиями. Но долгое время знания о биологических явлениях не выделялись из общей совокупности знаний о природе в самостоятельную отрасль. Биологические знания излагались вперемешку со знаниями о химических, физических, географических, климатических, метеорологических, социально-исторических явлениях. Специфика биологического объекта просто не фиксировалась, стихийно-эмпирически накапливаясь в основном как побочный продукт деятельности ремесленников, крестьян, путешественников, алхимиков, паломников, купцов, фармацевтов, лекарей и др. Природа выступала как нерасчлененное целое. В эпоху Возрождения ситуация в сфере познания живого изменилась. Здесь особое место принадлежит XVI в. В истории биологии этот период выделяется как начало глубокого перелома в способах познания живого. Ренессансный гуманизм, пересмотрев представление о месте человека в природе, возвысил роль человека в мире, вплоть до того, что божественность стали рассматривать как один из атрибутов человечности. В человеке видели венец, светоч природы, пололагая, что уже в силу одного этого он достоин самого тщательного изучения, внимания и заботы. Отражением главной ориентации той эпохи — ориентации на человека, на совокупность его ближайших потребностей и прежде всего на решение наиболее близких ему медицинских проблем — было быстрое развитие биологического познания. Известный историк естествознания П. Таннери, характеризуя «данный период развития биологии, писал: «...История науки в перовой половине XVI столетия была в сущности только историей медицины» *. В сторону человека развернулась даже алхимия; результатом слияния алхимии с медициной стала ятрохимия. Основоположник ятрохимии Парацельс утверждал, что «настоящие цели алхимии заключаются не в изготовлении золота, а в приготовлении лекарств». * Таннери П. Исторический очерк развития естествознания в Европе. М., 1934. С. 48. Особенности развития биологии в XVI—XVII вв. во многом определялись практическими потребностями развивавшегося капиталистического хозяйства, прежде всего его аграрного сектора, социально-классовыми потрясениями, ростом влияния материалистической философии на естествознание в целом и биологию в частности, институционализацией научной деятельности. На смену средневековой феодальной упрощенной культурно-бытовой сфере жизнедеятельности приходит буржуазный образ жизни, сформировавшийся в среде городской бюргерской культуры. Его важнейшими атрибутами были, в частности, цветоводство и садоводство. В XV—XVI вв. потребности медицины обусловили появление разного рода травников, а затем и создание «аптекарских садов», которые впоследствии превратились в ботанические сады; широко развивалась практика сбора гербариев. Мир животных тоже становится объектом интереса. В эпоху Возрождения значительно совершенствуется организация коневодства и конных заводов. А при дворах многих европейских правителей создаются даже настоящие зоопарки. На таком фоне повышается интерес к растению и животному как таковому. Как совершенно справедливо отмечал первооткрыватель итальянского Возрождения Я. Буркхард, «всем этим была... создана... благоприятная почва для развития научной зоологии, как и ботаники» *. * Буркхард Я. Культура Возрождения в Италии. Опыт-исследования. М., 1996. С.192. Значительные изменения происходят в способе биологического познания — вырабатываются стандарты, критерии и нормы исследования органического мира. На смену стихийности, спекулятивным домыслам, фантазиям и суевериям постепенно приходит установка на объективное, доказательное, эмпирически обоснованное знание. Благодаря коллективным усилиям ученых многих европейских стран такая установка обеспечила постепенное накопление колоссального фактического материала. Значительную роль в этом процессе сыграли Великие географические открытия, эпоха которых раздвинула мировоззренческий горизонт европейцев — они узнали множество новых биологических, геологических, географических и других явлений. Фауна и флора вновь открытых стран и континентов не только значительно расширили эмпирический базис биологии, но и поставили вопрос о его систематизации. Огромная описательная накопительная работа, проведенная в XVI—XVII вв. в биологии, имела важные последствия. Во-первых, она вскрыла реальное многообразие растительных и животных форм и наметила общие пути их систематизации. Если в ранних ботанических описаниях (О. Брунфельса, И. Бока, К. Клузиуса и др.) еще отмечается множество непоследовательностей и отсутствуют четкие принципы систематизации и классификации, то уже М. Лобеллий, К. Баугин и особенно А. Цезальпино закладывают программу создания искусственной систематики (получившую свое развитие в работах Ж.Л. Турнефора, искусственная система которого была общепринятой в конце XVII—первой половине XVIII в.), а И. Юнг дает теоретический ориентир на развитие естественной систематики растений, получивший развитие в трудах Р. Моррисона и Дж. Рэя. В это же время осуществляется и систематизация зоологического материала, прежде всего такими учеными-энциклопедистами, как К. Геснер и У. Альдрованди. Закладываются основы частных отраслей зоологии — энтомологии (Т. Моуфет), орнитологии (П. Белон), Этиологии (Г. Рондель). Сильнейший импульс развитию зоологии был дан изобретением микроскопа. Обнаружение мира микроорганизмов А. ван Левенгуком оказало поистине революционизирующее влияние на развитие биологии, а Ф. Стелутти одним из первых применил микроскоп для изучения анатомии животных, в частности насекомых. Во-вторых, накопительная биологическая работа в XVI— XVII вв. значительно расширила сведения о морфологических и анатомических характеристиках организмов. В трудах Р. Гука, Н. Грю, Я. Гельмонта, М. Мальпиги и др. получила развитие анатомия растений, были открыты клеточный и тканевый уровни организации растений, сформулированы первые догадки о роли листьев и солнечного света в питании растений. Установление пола у растений и внедрение экспериментального метода в ботанику — заслуга Р.Я. Камерариуса; садовод Т. Ферчайльд (не позже 1717 г.) создал первый искусственный растительный гибрид (двух видов гвоздики). На основе искусственной гибридизации совершенствовались методы искусственного опыления, закладывались отдаленные предпосылки генетики. Важной вехой в развитии анатомии стало, творчество А. Везалия, исправившего ряд крупных ошибок, укоренившихся в биологии и медицине со времен античности. М. Сервет, павший жертвой протестантского религиозного фанатизма, и У. Гарвей исследовали проблему кровообращения. У. Альдрованди обратился к традиции античной эмбриологии, а его ученик В. Койтер, систематически изучая развитие куриного зародыша, заложил основы методологии экспериментального эмбриологического исследования. Г. Фаллопий и Б. Евстахий проводят сравнение структуры человеческого зародыша и взрослого человека, соединяя тем самым анатомию с эмбриологией. На аристотелевско-телеологической основе формировались первые теоретические концепции в эмбриологии (Фабриций из Аквапенденте). В XVII в. складывается синтез анатомии и физиологии, возникают предпосылки структурно-функционального подхода (Г. Азелли, К. Покэ, Ф. Глиссон, Р. де Грааф и др.) В-третьих, важным следствием развития биологии явилось нормирование научной методологии и методики исследования живого. Поиски рациональной, эффективной методологии привели к стремлению использовать в биологии методы точных наук — математики, механики, физики и химии. Сформировались даже целые направления в биологии — иатромеханика, иатрофизика и иатрохимия. В русле этих направлений были получены отдельные конструктивные результаты. Так, например, Дж. Борелли подчеркивал важную роль нервов в осуществлении движения, а Дж. Майов одним из первых провел аналогию между дыханием и горением. Значительный вклад в совершенствование тонкой методики анатомического исследования внес Я. Сваммердам. В-четвертых, следствием накопительной работы является развитие теоретического компонента биологического познания — выработка понятий, категорий, методологических установок, создание первых теоретических концепций, призванных объяснить фундаментальные характеристики живого. Прежде всего это касалось природы индивидуального развития организма, в объяснении которой сложилось два противоположных направления — преформизм и эпигенез . Преформисты (Дж. Ароматари, Я.Сваммердам, А. ван Левенгук, Г.В. Лейбниц, Н. Мальбранш и др.) исходили из того, что в зародышевой клетке уже содержатся все структуры взрослого многоклеточного организма, потому процесс онтогенеза сводится лишь к количественному росту всех предобразованных зачатков органов и тканей. Преформизм существовал в двух разновидностях: овистической , в соответствии с которой будущий взрослый организм предобразован в яйце (Я. Сваммердам, А. Валлисниери и др.), и анималькулистской , сторонники которой полагали, что будущий взрослый организм предобразован в сперматозоидах (А. ван Левенгук, Н. Гартсекер, И. Либеркюн и др.). Уходящая своими корнями в аристотелизм, теория эпигенеза (У. Гарвей, Р. Декарт, пытавшийся построить эмбриологию, изложенную и доказанную геометрическим путем, и др.) полностью отрицала какую бы то ни было предопределенность развития организма и отстаивала точку зрения, в соответствии с которой развитие структур и функций организма определяется воздействием внешних факторов на непреформированную зародышевую клетку. Борьба между этими направлениями была острой, длительной, велась с переменным успехом. Каждое направление обосновывало свою позицию не только эмпирическими, но и философскими соображениями (так, преформизм хорошо согласовывался с креационизмом: Бог создал мир со всеми населяющими его существами, как теми, которые были и есть, так и теми, которые еще только появятся в будущем). В целом же биология в XVI—XVII вв. была в зачаточном состоянии; растительный и животный миры были исследованы лишь в самых грубых чертах, биологические объяснения носили чисто механический и поверхностный характер. Биологическое познание еще не выработало в это время своей собственной системы методологических установок. 5.3.1. Гелиоцентрическая система мира В эпоху раннего средневековья в Европе безраздельно господствовалa библейская картина мира. Затем она сменилась догматизированным аристотелизмом и геоцентрической системой Птолемея. Постепенно накапливавшиеся данные астрономических наблюдений подкачивали основы этой картины мира. Несовершенство, сложность и запутанность птолемеевской системы становились очевидными. Многочисленные попытки увеличения точности системы Птолемея лишь усложняли ее. (Общее число вспомогательных кругов возросло почти до 80.) Еще в XIII в. кастильский король Альфонсо Х высказался в том смысле, что если бы он мог давать Богу советы, то посоветовал бы при создании мира устроить его проще. Птолемеевская система не только не позволяла давать точные предсказания; она также страдала явной несистематичностью, отсутствием внутреннего единства и целостности; каждая планета рассматривалась сама по себе, имела отдельную от остальных эпициклическую систему, собственные законы движения. В геоцентрических системах движение планет представлялось с помощью нескольких равноправных независимых математических моделей. Для объяснения петель движения данной планеты предполагалось помимо движения по деференту движение по своей группе эпициклов, никак не связанных, вообще говоря, с эпициклами и деферентами других планет. Строго говоря, геоцентрическая теория не обосновала геоцентрической системы, так как объектом этой теории система планет (или планетная система) не являлась; в ней речь шла об отдельных движениях небесных тел, не связанных в некоторое системное целое. Геоцентрические теории позволяли предвычислять лишь направления нa небесные светила, но не определить истинную удаленность и расположение их в пространстве. Птолемей считал эти задачи вообще неразрешимыми. Установка на поиск внутреннего единства и системности была той основой, вокруг которой концентрировались предпосылки создания гелиоцентрической системы. Создание гелиоцентрической теории было связано и с необходимостью реформы юлианского календаря, в котором две основные точки — равноденствие и полнолуние — потеряли связь с реальными астрономическими событиями. Календарная дата весеннего равноденствия, приходившаяся в IV в. н.э. на 21 марта и закрепленная за этим числом Никейским собором в 325 г. как важная отправная дата при расчете основного христианского праздника Пасхи, к XVI в. отставала от действительной даты равноденствия на 10 дней. Еще с VIII в. юлианский календарь пытались совершенствовать, но безуспешно. Латеранский собор, проходивший в 1512—1517 гг. в Риме, отметил чрезвычайную остроту проблемы календаря и предложил ее решить ряду известных астрономов, среди которых был и Н. Коперник. Но он ответил отказом, так как считал недостаточно развитой и точной теорию движения Солнца и Луны, которые и лежат в основе календаря. Однако это предложение стало для Н. Коперника одним из мотивов совершенствования геоцентрической теории. Другая общественная потребность, стимулировавшая поиски новой теории планет, была связана с мореходной практикой. Новые, более точные таблицы движения небесных тел, прежде всего Луны и Солнца, требовались для вычисления положений Луны для данного места и момента времени. Определяя разницу во времени одного и того же положения Луны на небе — по таблицам и по часам, установленным по Солнцу во время плавания, вычисляли долготу места на море. Долгое время это был единственный способ нахождения долготы во время длительных морских плаваний. Совершенствование теории планетной системы стимулировалось также и нуждами все еще популярной тогда астрологии. Существенно упростивший астрономические вычисления с помощью тригонометрии немецкий астроном и математик Региомонтан (его «Эфемериды» вышли в свет в 1474 г.) выдвинул идею о том, что в птолемеевской теории можно освободиться от эпициклов и деферентов, если заменить описания пяти планет (исключая Землю), вращающихся вблизи Солнца по эпициклам и деферентам, эквивалентной системой планет, вращающихся вокруг Солнца по эксцентрическим окружностям. Это был прямой путь к созданию геогелиоцентрической системы, от которой оставался лишь один шаг до «чистого» гелиоцентризма. К другим предпосылкам гелиоцентризма следует отнести, по мнению известного историка науки Т. Куна, «достижения в химическом анализе «падающих камней», имевшие место в средневековье, возрождение в эпоху Ренессанса древнемистической неоплатонистской философии, которая учила, что Солнце — это образ бога, и атлантические путешествия, которые расширили территориальный горизонт человека эпохи Ренессанса» *. * Kuhn T. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, 1957. P. VIII. Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения «Альмагеста», восхищение математическим гением Птолемея сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в геоцентризме. Он начал поиск других фундаментальных астрономических идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждавших подвижность Земли *. * В древности кроме Аристарха Самосского негеоцентрические идеи высказывались пифагорейцами Филолаем (считавшим, что все планеты и Солнце вращаются вокруг некоего «центрального огня»), Экфантом (учение о вращении Земли вокруг своей оси), Гераклидом Понтийским (в его учении Земля находилась в центре мира, вращалась вокруг своей оси, а Меркурий и Венера вращались вокруг Солнца) и др. Кроме того, в эпохи античности и средневековья в различных мистических, эзотерических учениях духовный центр мира (Единое, Благо, Логос, Абсолют и др.) олицетворялся с Солнцем как источником «духовного» света. Такое олицетворение получило название «духовного гелиоцентризма». Коперник первым взглянул на весь тысячелетний опыт развития астрономии глазами человека эпохи Возрождения: смелого, уверенного, творческого, новатора. Предшественники Коперника не имели смелости отказаться от самого геоцентрического принципа и пытались либо совершенствовать мелкие детали птолемеевской системы, либо обращаться к еще более древней схеме гомоцентрических сфер. Коперник сумел разорвать с этой тысячелетней консервативной астрономической традицией, преодолеть преклонение перед древними авторитетами. Он был движим идеей внутреннего единства и системности астрономического знания, искал простоту и гармонию в природе, ключ к объяснению единой сущности многих, кажущихся различными явлений. Результатом этих поисков и стала гелиоцентрическая система мира. Между 1505—1507 гг. Коперник в «Малом комментарии» изложил принципиальные основы гелиоцентрической астрономии. Теоретическая обработка астрономических данных была завершена к 1530 г. Но только в 1543 г. увидело свет одно из величайших творений в истории человеческой мысли — «О вращениях небесных сфер», где изложена математическая теория сложных видимых движений Солнца, Луны, пяти планет и сферы звезд с соответствующими математическими таблицами и приложением каталога звезд. В центре мира Коперник поместил Солнце, вокруг которого движутся планеты, и среди них впервые зачисленная в ранг «подвижных звезд» Земля со своим спутником Луной. На огромном расстоянии от планетной системы находится сфера звезд. Его вывод о чудовищной удаленности этой сферы диктовался гелиоцентрическим принципом; только так мог Коперник согласовать его с видимым отсутствием у звезд смещений за счет движения самого наблюдателя вместе с Землей (т.е. отсутствием у них параллаксов). Система Коперника была проще и точнее системы Птолемея, и ее сразу же использовали в практических целях. На ее основе составили «Прусские таблицы», уточнили длину тропического года и провели в 1582 г. давно назревшую реформу календаря — был введен новый, или григорианский, стиль*. * Он был введен 5 октября (которое стало 15-м) 1582 г. по инициативе папы Григория XIII на основе проекта, предложенного Луиджи Лиллио. Меньшая сложность теории Коперника и получавшаяся, но лишь на первых порах, большая точность вычислений положений планет по гелиоцентрическим таблицам были не самыми главными достоинствами его теории. Более того, теория Коперника при расчетах оказалась не намного проще птолемеевской, а по точности предвычислений положений планет на длительный промежуток времени практически не отличалась от нее. Несколько более высокая точность, дававшаяся на первых порах «Прусскими таблицами», объяснялась не только введением нового гелиоцентрического принципа, а и более развитым математическим аппаратом вычислений *. Но и «Прусские таблицы» также вскоре разошлись с данными наблюдений. Это даже охладило первоначальное восторженное отношение к теории Коперника у тех, кто ожидал от нее немедленного практического эффекта. Кроме того, с момента своего возникновения и до открытия Галилеем в 1616 г. фаз Венеры, т.е. более полувека, вообще отсутствовали прямые наблюдательные подтверждения движения планет вокруг Солнца, которые свидетельствовали бы об истинности гелиоцентрической системы. В чем же действительное достоинство, привлекательность и истинная сила теории Коперника? Почему она вызвала революционное преобразование всего естествознания? * См.: Клайн М. Математика. Поиск истины. М., 1988. С. 84. Любое новое всегда возникает на базе и в системе старого. Коперник в этом отношении не был исключением. Он разделял многие представления старой, аристотелевской космологии. Так, он представлял Вселенную замкнутым пространством, ограниченным сферой неподвижных звезд. Он не отступал от аристотелевской догмы, в соответствии с которой истинные движения небесных тел могут быть только равномерными и круговыми. В этом он был даже больший консерватор и приверженец аристотелизма, чем Птолемей, который ввел понятие экванта и допускал неравномерное движение центра эпицикла по деференту. Стремление восстановить аристотелевские принципы движения небесных тел, нарушавшиеся в ходе развития геоцентрической системы, кстати сказать, и стало для Коперника одним из мотивов поисков иных, негеоцентрических походов к описанию движений планет. Но, в отличие от своих предшественников, Коперник пытался создать логически простую и стройную планетную теорию. В отсутствие простоты, стройности, системности Коперник увидел коренную несостоятельность теории Птолемея, в которой не было единого стержневого принципа, объясняющего системные закономерности в движениях планет. Н. Коперник писал: «...Я ничем иным не был приведен к мысли придумать иной способ вычисления движений небесных тел, как только тем обстоятельством, что относительно исследований этих движений математики не согласны между собой. Начать с того, что движения Солнца и Луны столь мало им известны, что они не в состоянии даже доказать и определить продолжительность года. Затем, при определении движений не только этиx, но и других пяти блуждающих светил, они не употребляют ни одних и тех же одинаковых начал, ни одних и тех же предположений, ни известных доказательств... Даже главного — вида мироздания и известную симметрию между частями его — они не в состоянии вывести на основании этой теории» * . * Коперник Н. О вращении небесных сфер. М., 1964. С. 12. Коперник был уверен, что представление движений небесных тел как единой системы позволит определить реальные физические характеристики небесных тел, т.е. то, о чем в геоцентрической модели вовсе не было и речи. Поэтому свою теорию он рассматривал как теорию реального устройства Вселенной. Возможность перехода к гелиоцентризму (подвижности Земли, обращающейся вокруг реального тела — неподвижного Солнца, расположенного в центре мира) Коперник совершенно справедливо усмотрел в представлении об относительном характере движения, известном еще древним грекам, но забытом в средние века. Неравномерное петлеобразное движение планет, неравномерное движение Солнца Коперник, как и Птолемей, считал кажущимся эффектом. Но он представил этот эффект не как результат подбора и комбинации движений по условным вспомогательным окружностям, а как результат перемещения самого наблюдателя. Иначе говоря, этот, эффект объяснялся тем, что наблюдение ведется с движущейся Земли. Допущение подвижности Земли было главным новым принципом в системе Коперника. Обоснование введения принципа гелиоцентризма Коперник усматривал в особой роли Солнца, отразившейся уже в птолемеевской схеме. В этой схеме планеты по свойствам их движений как бы разделялись Солнцем на две группы — нижние (ближе к Земле, чем Солнце) и верхние. Среди тех кругов, которые применялись для описания видимого движения планет, обязательно был один круг с годичным, как у Солнца, периодом движения по нему. Для верхних планет — это был первый, или главный эпицикл, для нижних — деферент. Кроме того, Меркурий и Венера (нижние планеты) вообще все время сопровождали Солнце, совершая около него лишь колебательные движения. Революционное значение гелиоцентрического принципа состояло в том, что он представил движения всех планет как единую систему, объяснил многие ранее непонятные эффекты. Так, с помощью представления о годичном и суточном движениях Земли теория Коперника сразу же объяснила все главные особенности запутанных видимых движений планет (попятные движения, стояния, петли) и раскрыла причину суточного движения небосвода. Петлеобразные движения планет теперь объяснялись годичным движением Земли вокруг Солнца. В различии же размеров петель (и, следовательно, радиусов соответствующих эпициклов) Коперник правильно увидел отображение орбитального движения Земли: наблюдаемая с Земли планета должна описывать видимую петлю тем меньшую, чем дальше она от Земли. В системе Коперника впервые получила объяснение загадочная прежде последовательность размеров первых эпициклов у верхних планет, введенных Птолемеем. Размеры их оказались убывающими с удалением планеты от Земли. Движение по этим эпициклам, равно как и движение по деферентам для нижних планет, совершалось с одним периодом, равным периоду обращения Солнца вокруг Земли. Все эти годичные круги геоцентрической системы оказались излишними в системе Коперника. Впервые получила объяснение смена времен года: Земля движется вокруг Солнца, сохраняя неизменным в пространстве положение оси своего суточного вращения. Более того, это глубокое объяснение видимых явлений позволило Копернику впервые в истории астрономии поставить вопрос об определении действительных расстояний планет от Солнца. Коперник понял, что этими расстояниями планет были величины, обратные радиусам первых эпициклов для внешних планет и совпадающие с радиусами деферентов — для внутренних *. Таким образом он получает весьма точные относительные расстояния планет от Солнца (в а.е.), (в скобках — современные данные): Меркурий 0,375 (0,387) Марс 1.52 (1,52) Венера 0,720 (0,723) Юпитер 5,21 (5,20) Земля 1,000 (1,000) Сатурн 9,18 (9,54) * Объявляя задачу определения расстояний до тел Солнечной системы неразрешимой, Птолемей не догадывался, что на самом деле решение этой задачи уже содержалось в скрытом виде в его системе. Теория Коперника логически стройная, четкая и простая. Она способна рационально объяснить то, что раньше либо не объяснялось вовсе, либо объяснялось искусственно, связать в единое то, что ранее считалось совершенно различными явлениями. Это — ее несомненные достоинства; они свидетельствовали о истинности гелиоцентризма. Наиболее проницательные мыслители поняли это сразу. И уже не столь важным было то, что Коперник отдал дань античным и средневековым традициям: он принял круговые равномерные движения небесных тел, центральное положение Солнца во Bсeленной, конечность Вселенной, ограничивал мир единственной планетной системой. Допуская лишь круговые равномерные движения пo окружностям, Коперник отверг эквант — быть может, наиболее остроумную находку Птолемея. Этим он сделал даже некоторый принципиальный шаг назад. Коперник сохранил и эпициклы, и деференты. Принцип круговых равномерных движений вынудил его для достаточно точного описания движения планет сохранить свыше «трех десятков эпициклов (правда, всего 34 вместо почти 80 в геоцентрической системе). И тем не менее теория Коперника содержала в себе колоссальный творческий, мировоззренческий и теоретико-методологический потенциал. Ее историческое значение трудно переоценить. · Она подорвала ядро (геоцентрическую систему) религиозно-феодального мировоззрения, основания старой (первой) научной картины мира. · Она стала базой революционного становления нового научного мировоззрения, новой (второй) механистической картины мира. · Она явилась одной из важнейших предпосылок революции в физике (так называемой ньютонианской революции) и создания первой естественно-научной фундаментальной теории — классической механики. · Она определила разработку новой, научной методологии познания природы. Схоластическая традиция исходила из того, что для познания сущности объекта нет необходимости детально изучать внешнюю сторону объекта, сущность может непосредственно постигаться разумом. Коперник же впервые в истории познания на деле показал, что сущность может быть понята только после тщательного изучения явления, его закономерностей и противоречий; познание сущности всегда опосредовано познанием явления, которое по своему содержанию может быть совершенно противоположным сущности. 5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма В течение нескольких десятилетий после выхода в свет труда «Об обращении небесных сфер» коперниканские идеи не привлекали особого внимания широкой научной общественности. Это было связано с бурными политическими событиями того времени: религиозные войны, Реформация, обострение борьбы католицизма и протестантизма, становление национальных государств, отодвинули на второй план проблемы мироздания, космологии и астрономии. Задача сравнения птолемеевской и коперниканской теорий актуализировалась лишь в 70-е гг. XVI в., когда два знаменитых астрономических события (вспышка сверхновой в 1572 г. и яркая комета 1577 г.) в очередной раз поставили под сомнение основы аристотелевской космологии. Мировоззренческие и теоретические выводы из гелиоцентризма, его развитие и совершенствование — заслуга ученых следующего поколения: Т. Браге, Дж. Бруно, И. Кеплер, Г. Галилей, Дж. Борелли и др. Прежде всего не замедлили проявиться мировоззренческие выводы из коперниканизма. Признав подвижность, планетарность, неуникальность Земли, теория Коперника тем самым устраняла вековое представление об уникальности центра вращения во Вселенной. Центром вращения стало Солнце, но оно не было уникальным телом. О его тождественности звездам догадывались еще в античное время. Следующий шаг в мировоззренческих выводах был вполне закономерен. Он был сделан бывшим монахом одного из неаполитанских монастырей Джордано Бруно, личности исключительно яркой, смелой, способной на бескомпромиссное стремление к истине. Познакомившись в 60-е гг. XVI в. с гелиоцентрической теорией Коперника, Бруно поначалу отнесся к ней с недоверием. Чтобы выработать свое собственное отношение к проблеме устройства Космоса, он обратился к изучению системы Птолемея и материалистических учений древнегреческих мыслителей, в первую очередь атомистов, о бесконечности Вселенной. Большую роль в формировании взглядов Бруно сыграло его знакомство с идеями Николая Кузанского, который утверждал, что ни одно тело не может быть центром Вселенной в силу ее бесконечности. Объединив гелиоцентризм Н. Коперника с идеями Н. Кузанского об изотропности, однородности и безграничности Вселенной, Бруно пришел к концепции множественности планетных систем в бесконечной Вселенной. Бруно отвергал замкнутую сферу звезд, центральное положение Солнца во Вселенной и провозглашал тождество Солнца и звезд, множественность «солнечных систем» в бесконечной Вселенной, множественную населенность Вселенной. Указывая на колоссальные различия расстояний до разных звезд, он сделал вывод, что поэтому соотношение их видимого блеска может быть обманчивым. Он разделял небесные тела на самосветящиеся — звезды, солнца, и на темные, которые лишь отражают солнечный свет. Бруно утверждал, во-первых, изменяемость всех небесных тел, полагая, что существует непрерывный обмен между ними и космическим веществом, во-вторых, общность элементов, составляющих Землю и все другие небесные тела, и считал, что в основе всех вещей лежит неизменная, неисчезающая первичная материальная субстанция. Именно Бруно принадлежит первый и достаточно четкий эскиз современной картины вечной, никем не сотворенной, вещественной единой бесконечной развивающейся Вселенной с бесконечным числом очагов Разума в ней. В свете учения Бруно теория Коперника снижает свой ранг: она оказывается не теорией Вселенной, а теорией лишь одной из множества планетных систем Вселенной и, возможно, не самой выдающейся такой системы. Новое, ошеломляюще смелое учение Бруно, открыто провозглашавшееся им в бурных диспутах с представителями церковных кругов, определило дальнейшую трагическую судьбу ученого. К тому же дерзость его научных выступлений была предлогом, чтобы расправиться с ним и за его откровенную критику непомерного обогащения монастырей и церкви. Великий мыслитель был сожжен на площади Цветов в Риме 17 февраля 1600 г. А спустя почти три столетия на месте казни Бруно, где некогда был зажжен костер, был воздвигнут памятник с посвящением, начинающимся словами: «От столетия, которое он предвидел...» К середине XVII в. гелиоцентрическая теория окончательно победила геоцентризм. Коперниканизм был признан научной общественностью и стал рассматриваться как теория действительного строения Вселенной. На повестке дня оказалась проблема физического обоснования гелиоцентризма, и в середине XVII в. астрономическая революция закономерно перерастает в физическую революцию. 6. НАУЧНАЯ РЕВОЛЮЦИЯ XVII в.: ВОЗНИКНОВЕНИЕ КЛАССИЧЕСКОЙ МЕХАНИКИ Капитализм качественно преобразовывал как характер деятельности, так и тип общения людей. Изменения характера деятельности состояли в появлении принципиальной отчужденности в капиталистическом производстве субъективного мотива деятельности и ее объективного результата. В этих условиях складывается полное господство абстрактного труда, товарно-денежных отношений, общественные отношения превалируют над межличностными, происходит «овеществление» личных связей и отношений, всех видов деятельности, их обезличивание. Кардинально изменяется и тип общения. Индивид вырывается из системы корпоративно-сословной принадлежности и непосредственно включается в функционирование общественных связей, прежде всего экономических. На смену индивидуальной ценности личности производителя приходит ценность произведенных им вещей; посредником отношений между людьми становятся товары, формируется «товарный фетишизм», отношения личной зависимости сменяются зависимостью субъекта от продуктов собственной деятельности. Создание единого мирового рынка, универсальных общественных связей - достижения буржуазной эпохи. Только при капитализме история становится всемирной, складываются предпосылки универсализации личности, ее индивидуальный опыт обогащается социально-историческим опытом не только своей страны, региона, но и всего человечества; человек включается в ансамбль универсальных социальных отношений, становится носителем всемирно-исторического опыта. Высвобождая человека из системы личностной зависимости, атомизируя личность, капитализм делает эти прогрессивные шаги за счет доведения до крайности отчуждения личности от общества: на смену единству коллектива и индивида приходит их противопоставление, отчуждение человека от человека, а значит, и общества от природы. В этих условиях складывается такой тип сознания, в котором на первый план выдвигается потребность в накоплении не столько релятивизированных ценностей, сколько объективного знания о мире. Получение объективного знания о мире - задача мышления, разума. Не случайно, что именно в это время формируются идеалы рационализма, провозглашается господство «века Разума» и соответственно изменяются (по сравнению с античностью и средневековьем) представления о целях, задачах, методах естественно-научного познания. Формируется убеждение, что предметом естественно-научного познания являются природные явления, полностью подчиняющиеся механическим закономерностям. Природа при этом предстает как своеобразная громадная машина, взаимодействие между частями которой осуществляется на основе причинно-следственных связей. Задачей естествознания становится определение лишь количественно измеримых параметров природных явлений и установление между ними функциональных зависимостей, которые могут (и должны быть) выражены строгим математическим языком. В этих условиях механика выходит на первое место среди естественных наук. 6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит После работ Коперника дальнейшее развитие астрономии требовало значительного расширения и уточнения эмпирического материала, наблюдательных данных о небесных телах. Европейские астрономы продолжали пользоваться старыми античными результатами наблюдений. Но они устарели и часто были неточны. Проводимые же в ту пopy европейскими астрономами наблюдения характеризовались большими погрешностями. Кардинальные изменения наметились только в последней четверти XVI в., когда в 1580 г. в Дании на островке Вен (в 20 км от Копенгагена) построили невиданную еще астрономическую обсерваторию, названную Небесным замком (Ураниборгом). Инициатором и организатором строительства обсерватории и новых огромных инструментов для астрономических наблюдений (квадранта радиусом 2 м, точность которого доходила до 1/6', сектанта для измерения угловых расстояний между звездами, большого небесного глобуса и др.) был Тихо Браге, датский дворянин, посвятивший свою жизнь не воинским подвигам, а служению богине Неба — Урании. Первое выдающееся открытие Тихо Браге сделал еще в 1572 г., когда, наблюдая за вспыхнувшей яркой звездой в созвездии Кассиопеи, показал, что это вовсе не атмосферное явление (как это следовало из аристотелевой картины мира), а удивительное изменение в Сфере звезд *. Более двух десятков лет провел Браге в Ураниборге, определяя положение небесных объектов. Удивляет точность его данных, если помнить, что тогда еще не знали телескопов и других оптических инструментов. Так, при сравнении с современными данными оказалось, что средние ошибки при определении положений звезд у него не превышали 1, а для 21 опорной звезды — даже 40". * Это была вспышка сверхновой звезды. Тихо Браге был блестящим астрономом-наблюдателем, но не теоретиком. Это мешало ему в полной мере оценить учение Коперника. Однако Браге тоже ощущал недостатки птолемеевской геоцентрической системы и разработал систему, занимавшую промежуточное место между геоцентрической и гелиоцентрической. В этой системе Солнце движется по эксцентрической окружности вокруг неподвижной Земли, а планеты обращаются вокруг Солнца. К счастью, на своем жизненном пути Т. Браге встретил Иоганна Кеплера. На смертном одре Тихо Браге завещал Кеплеру все свои рукописи, содержавшие результаты многолетних астрономических наблюдений, с тем чтобы Кеплер доказал справедливость его, Браге, гипотезы о строении планетной системы. Это завещание не было и не могло быть исполнено. Но Кеплер сделал несравненно более великое открытие — он раскрыл главную тайну планетных орбит. Этот великий немецкий ученый (с удивительной судьбой, жизнь которого была полна невзгод и лишений) совершил величайший научный подвиг — заложил фундамент новой теоретической астрономии и учения о гравитации. Он показал, что законы надо искать в природе, а не выдумывать их как искусственные схемы и подгонять под них явления природы. Будучи глубоко религиозным человеком и увлекаясь в молодости астрологией, Кеплер поставил перед собой великую жизненную цель — проникнуть в божественные планы творения мира, постичь тайны строения Вселенной. Считая, что Бог как высшее творческое начало при сотворении мира должен был руководствоваться идеальными, математически совершенными числовыми отношениями и геометрическими формами, Кеплер пытался объяснить существование только шести планет Солнечной системы существованием всего пяти правильных многогранников *. Кеплер пытается математически связать орбиты планет со сферами, вписанными в многогранники и описанными вокруг них. Затем закономерно возникает и вопрос об отношениях радиусов орбит планет между собой, решение которого, в свою очередь, подводит Кеплера к поиску точных законов гелиоцентрического планетного мира и превращает эту задачу в главное дело жизни. * Во времена Кеплера было известно только шесть планет Солнечной системы, наблюдаемых невооруженным глазом: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Планета Уран была открыта В. Гершелем в 1781 г., Нептун открыт астрономом Галле и математиком Леверье в 1846., Плутон был обнаружен только в 1930г. В ходе длительной напряженной, колоссальной исследовательской работы проявились его гениальность как астронома и математика, смелость мысли, свобода духа, благодаря которым он сумел преодолеть тысячелетние традиции и предрассудки. Многолетние поиски числовой гармонии Вселенной, простых числовых отношений в мире завершились открытием действительных законов планетных движений, которые Кеплер изложил в сочинениях «Новая, изыскивающая причины астрономия, или Физика неба» (1609) и «Гармония мира» (1619). В начале XVII в. основные космологические идеи древних греков уже утратили свое научное значение, но тем не менее некоторые из них за столетия приобрели характер абсолютных истин, отказаться от которых не хватало смелости духа. К ним, в частности, относилось представление о том, что только круговое, равномерное, «естественное» движение единственно допустимо для небесных тел. Даже Коперник и Галилей остались во власти этого убеждения, считая древний космологический принцип незыблемым. Против этой научной догмы и выступил Кеплер. После пяти лет трудоемкой математической обработки огромного материала наблюдений Т. Браге за движением Марса Кеплер в 1605 г. открыл и в 1609 г. опубликовал первые два закона планетных движений (сначала для Марса, затем распространил их на другие планеты и их спутники). Первый утверждал эллиптическую форму орбит и тем разрушал принцип круговых движений в космосе; второй показывал, что планеты нe только движутся по эллиптическим орбитам, но и движутся по ним неравномерно. Скорость планет изменяется таким образом, что площади, описываемые радиусом-вектором в равные промежутки времени, равны между собой (закон постоянства площадей). Так рухнул и принцип равномерности небесных движений. Кеплер ввел пять параметров, определяющих гелиоцентрическую орбиту планеты (Кеплеровы элементы) и нашел уравнение для вычисления положения планеты на орбите в любой заданный момент времени (уравнение Кеплера). Таким образом, открытые им законы стали рабочим инструментом для наблюдателей. Далее Кеплер поставил вопрос о динамике движения планет. До Кеплера планетная космология, опиравшаяся на аристотелевский принцип «естественности» движений небесных тел, была кинематической. Авторы планетных теорий ограничивались разработкой кинематико-геометрических моделей мира, не пытаясь определить причины, вызывавшие движения небесных тел. Даже у Коперника схема орбитальных движений планет оставалась старой, кинематической. И только Кеплер увидел в гелиоцентрической картине движений планет действие единой физической силы и поставил вопрос о ее природе. Уже в 1596 г. в своем первом сочинении «Космографическая тайна» он обратил внимание на то, что с удалением от Солнца периоды обращения планет увеличиваются быстрее, чем радиусы их орбит, т.е. уменьшается скорость движения планет. Здесь возможны два объяснения: первое — движущая сила сосредоточена в каждой планете, и у далеких планет она почему-то меньше, чем у близких (так думал Т. Браге); второе — движущая сила едина для всей системы и сосредоточена в ее центре — Солнце, которое действует сильнее на близкие и слабее на далекие планеты. Кеплер остановился на втором, поскольку эта идея лучше объясняла первые два закона планетных движений. Через десять лет после опубликования первых двух законов Кеплер установил (1619) универсальную зависимость между периодами обращения планет и средними расстояниями их от Солнца: третий закон Кеплера — квадраты времен обращения планет вокруг Солнца относятся как кубы, средних расстояний этих планет от Солнца. Это окончательно убедило его в том, что движением планет управляет именно Солнце. Поэтому Кеплер впервые поставил вопрос о физической природе и точном математическом законе действия силы, движущей планеты. Действие Солнца на планеты Кеплер сравнивал с действием магнита. Такое сравнение было вполне в духе времени, для которого характерно особое увлечение магнитными явлениями. В 1600 г. английский врач и физик У. Гильберт, справедливо считая Землю большим магнитом, выдвинул идею универсальности магнетизма и сводил к нему силу тяжести. Магнитным влиянием Луны пытались объяснить морские приливы и отливы. Опираясь на эти идеи, Кеплер в 1609 г. развил представление о механизме действия силы, движущей планеты, как о вихре, возникающем в эфирной среде от вращения магнитного Солнца. Кеплер полагал, что сила действовала на планету непосредственно вдоль орбиты. Недостаточное развитие основ механики привело его к ошибочному выводу, что эта сила обратно пропорциональна расстоянию (а не его квадрату) от Солнца. Эксцентричность орбит он объяснял тем, что планеты — это большие круглые магниты с постоянным направлением магнитной оси, которые в зависимости от расположения магнитных полюсов то притягиваются, то отталкиваются от Солнца. Для установления истинного сложного характера причин орбитального движения планеты требовались уточнение основных физических понятий и создание основ механики. Это было делом будущего. Таким образом, в исследованиях механики неба Кеплер до предела исчерпал возможности современной ему физики. 6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории 6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики» В формировании классической механики и утверждении нового мировоззрения велика заслуга Г. Галилея. Год рождения Галилея — это год смерти Микеланджело и год рождения Шекспира. Галилей — выдающаяся личность переходной эпохи от Возрождения к Новому времени. С прошлым его сближает еще многое: неопределенная трактовка проблемы бесконечности мира; он не принимает Кеплеровых эллиптических орбит * и ускорений планет; у него нет еще представления о том, что тела движутся в «плоском» однородном пространстве благодаря их взаимодействиям; он еще не освободился от чувственных образов и качественных противопоставлений и др. Но в то же время он весь устремлен в будущее — он открывает дорогу математическому естествознанию. Он был уверен, что «законы природы написаны на языке математики»; его стихия — мысленные кинематические динамические эксперименты, логические конструкции; главный пафос его творчества — возможность математического постижения мира; смысл своего творчества он видит в физическом обосновании гелиоцентризма, учения Коперника. Галилей закладывает основы экспериментального естествознания: показывает, что естествознание требует умения делать научные обобщения из опыта, а эксперимент — важнейший метод научного познания. * Галилей считал их простым воскрешением древней пифагорейской идеи о роли числа во Вселенной, несовместимой с новым экспериментальным естествознанием, за которое он боролся. Поэтому он не обратил внимания и на Кеплеровы законы (возможно, он и не ознакомился с ними, хотя Кеплер послал ему свое сочинение 1609 г.). Еще будучи студентом (университета г. Пиза), Галилей делает открытие большой научной и практической значимости — открывает закон изотропности колебаний маятника, который сразу же нашел применение в медицине, астрономии, географии, прикладной механике. После изобретения зрительной трубы (1608) он усовершенствовал ее и превратил в телескоп с 30-кратным приближением, с помощью которого совершил ряд выдающихся астрономических открытий: спутников Юпитера, Сатурна, фаз Венеры, солнечных пятен, обнаружение того, что Млечный Путь представляет собой скопление бесконечного множества звезд, и др. За признание своих открытий Галилею пришлось вести борьбу с церковной ортодоксией. Ведь его деятельность происходила в атмосфере Контрреформации, усиления католической реакции. Это был трагический для естествознания период истории. Речь шла о суверенитете разума в поисках истины. В 1616 г. учение Коперника было запрещено, а его книга внесена в инквизиционный «Индекс запрещенных книг». После выхода в свет декрета начались сумерки итальянской науки, в научных кругах воцарилось мрачное безмолвие. Церковь дважды вела процессы против Галилея. После первого процесса в 1616 г. Галилей был вынужден перейти к методам «нелегальной борьбы» за коперниканизм. Но он продолжал исследование законов движения тел под действием сил в земных условиях. Основные итоги этих исследований он изложил в книге «Диалог о двух системах мира», которая была опубликована во Флоренции в 1632 г. Книга Галилея вызвала восторг в научных кругах всех стран и бурю негодования среди церковников. Иезуиты немедленно начали кампанию против Галилея, которая привела ко второму процессу инквизиции в 1633 г. Инквизиция пригрозила Галилею не только осудить его как еретика, но и уничтожить все его рукописи и книги. От него требовали признания ложности учения Коперника. Галилей вынужден был уступить. Ценой тягчайшей моральной пытки, невероятных унижений перед теми, кого он так страстно бичевал в своих произведениях, Галилей купил возможность завершения своего дела. Существует легенда, что 22 июня 1633 г. в церкви Святой Марии после прочтения текста формального отречения Галилей произнес фразу «Eppur si muove!» (И все-таки она движется!). Эта легенда вдохновила многих художников, писателей, поэтов. На самом деле эта фраза не была произнесена ни в этот день, ни позже. Но тем не менее эта непроизнесенная фраза выражает действительный смысл жизни и творчества Галилея после приговора. В годы, последовавшие за процессом, Галилей продолжал разработку рациональной динамики. Историческая заслуга Галилея перед естествознанием состоит в следующем: · он разграничил понятия равномерного и неравномерного, ускоренного движения; · сформулировал понятие ускорения (скорость изменения скорости); · показал, что результатом действия силы на движущееся тело является не скорость, а ускорение; · вывел формулу, связывающую ускорение, путь и время: S= 1/2 аt2 ; · сформулировал принцип инерции («если на тело не действует сила, то тело находится либо в состоянии покоя, либо в состоянии прямолинейного равномерного движения»); · выработал понятие инерциальной системы; · сформулировал принцип относительности движения (все системы, которые движутся прямолинейно и равномерно друг относительно друга (т.е. инерциальные системы) равноправны между собой в отношении описания механических процессов); · открыл закон независимости действия сил (принцип суперпозиции). На основании этих законов появилась возможность решения простейших динамических задач. Так, например, X. Гюйгенс получил решения задач об ударе упругих шаров, о колебаниях физического маятника, нашел выражение для определения центробежной силы. Исследования Галилея заложили надежный фундамент динамики, а также методологии классического естествознания. Дальнейшие исследования лишь углубляли и укрепляли этот фундамент. С полным основанием Галилея называют «отцом современного естетвознания». Огромное влияние на развитие теоретической мысли в физике ХVII в. оказал великий французский мыслитель и ученый Рене Декарт (Картезий). Критически пересмотрев старую схоластическую философию, он разработал рационалистическую методологию теоретического естествознания. («Оставим книги, посоветуемся с разумом!» — говорил Декарт.) Революционное значение для развития естествознания имело его знаменитое «Рассуждение о методе» (1637), где провозглашены новые принципы научного мышления и новые средства математического анализа в геометрии и оптике. Требование простоты и ясности — основной принцип методологии Декарта. Поэтому в научной системе Декарта первостепенную роль играют простота и очевидность математических аксиом и принципов. Выводы из аксиом (простых, очевидных положений) получаются логическим путем, путем математических рассуждений. В проверке результатов важную роль играет опыт. Рационалистическая методология вполне естественно приводит Декарта к аналитической геометрии и геометризации физики. Отвлеченные числовые соотношения проще и абстрактнее геометрических; отсюда вытекает задача сведения геометрических характеристик (положение точки в пространстве, расстояние между точками и др.) к числовым отношениям. Решая эту задачу, Декарт создает аналитическую геометрию. Декарт закладывает основы механистического мировоззрения, центральная идея которого — идея тождества материальности и протяженности. Мир Декарта — это однородное пространство, или, что то же самое, протяженная материя. «...Мир, или протяженная материя, составляющая универсум, не имеет никаких границ» *. Все изменения, которые наблюдаются в этом пространстве, сводятся к единственному простейшему изменению — механическому перемещению тел. «Дайте мне материю и движение, и я построю мир» — таков лейтмотив, идейное знамя картезианской физики. * Декарт Р. Первоначала философии // Соч.: В 2 т. М.. 1989. Т. 1. С. 359. Декарт — основоположник научной космогонии. Он автор первой новоевропейской теории происхождения мира, Вселенной. Хотя мир создан Богом, Бог не принимает участия в его дальнейшем развитии. Мир развивается по естественным законам. Законы природы достаточны для того, чтобы понять не только совершающиеся в природе явления, но и ее эволюцию. Декарт допускает, что природа была создана Богом в виде первоначального хаоса ее частей и их движений. По Декарту, однородная материя дробима на части, имеющие различные формы и размеры. В процессе дробления и взаимодействия формируются три группы элементов материи — легкие и разнообразной формы (огонь); отшлифованные частицы круглой формы (воздух); крупные, медленно движущиеся частицы (земля). Все эти частицы вначале двигались хаотически и были хаотически перемешаны. Однако, по мнению Декарта, законы природы таковы, что они достаточны, чтобы заставить части материи расположиться в весьма стройном порядке. Благодаря этим законам материя принимает форму нашего «весьма совершенного мира». Среди этих законов природы — принцип инерции * и закон сохранения количества движения. Из первоначального хаоса благодаря взаимодействиям частиц образовались вихри, каждый из которых имеет свой центр. Непрерывное трение частиц друг о друга шлифует их и дробит. Отшлифованные круглые частицы, находясь в непрерывном круговом движении, образуют материю «неба», раздробленные части выпираются к центру, образуя материю «огня». Этот огонь из тонких частиц, находящихся в бурном движении, формирует звезды и Солнце. Более массивные частицы вытесняются к периферии, сцепливаются и образуют тела планет. Каждая планета вовлекается своим вихрем в круговое движение около центрального светила. * Декарт следующим образом формулирует принцип инерции: «...Каждая частица материи в отдельности продолжает находиться в одном и том же состоянии до тех пор, пока столкновение с другими частицами не вынуждает ее изменить это состояние» (Декарт Р. Мир, или Трактат о свете // Соч.: В 2 т. Т. 1. С. 200). Космогоническая теория Декарта объясняла суточное движение Земли вокруг своей оси и ее годовое движение вокруг Солнца. Но объяснить не могла других особенностей Солнечной системы, в том числе законов Кеплера. Это была умозрительная космогония, натурфилософская схема, не обоснованная математически. И тем не менее ей присуще великое достоинство — идея развития, поразительно смелая для той эпохи. Эволюционная картина мира быстро распространялась в науке. Величием открывавшихся горизонтов учение Декарта захватило лучшие умы и надолго определило дальнейшее развитие физики и всего естествознания. Большая часть XVIII в. в истории естествознания прошла под знаком борьбы картезианства и ньютонианства. Несмотря на то что Ньютоново направление на том этапе развития науки было более прогрессивным, общие идеи Декарта продолжали оказывать серьезное влияние на формирование научных взглядов XVIII в. и даже XIX в., а разработанная им идея космического вихревого движения не раз возрождалась в астрономии и космогонии вплоть до ХХв. Великий Ньютон имел все основания заявить: «Если я вижу дальше Декарта, то это потому, что я стою на плечах гиганта». 6.2.3. Новые идеи в динамике Солнечной системы Ученые XVII в. внесли свой вклад в развитие предпосылок классической механики. Весьма значительной была роль парижского астронома Ж.Б. Буйо, который высказал в своей книге (1645) мысль о том, что поскольку сила, распространяемая вращающимся Солнцем, о которой писал И. Кеплер, действует не только в плоскости вращения планет, а от всей поверхности Солнца ко всей поверхности планеты, то она, следовательно, убывает обратно пропорционально квадрату расстояния от Солнца. Ньютон был знаком с этой книгой и упоминает ее автора в качестве одного из своих предшественников. Важную роль в становлении классической механики сыграло творчество итальянского астронома Дж. Борелли, которого Ньютон также числит в ряду своих предшественников. Разрабатывая теорию спутников Юпитера, Борелли в 1666 г. выдвинул идею о том, что если некоторая сила притягивает спутники к планете, а планеты — к Солнцу, то эта сила должна быть уравновешена противоположно направленной центробежной силой, возникающей при круговом движении. Таким образом он объясняет эллиптическое движение планет вокруг Солнца. У Борелли, в сущности, уже содержатся основные моменты понимания динамики Солнечной системы, но пока без ее математического описания. 1666 г. был весьма урожайным на идеи в области теории тяготения. В этом году Р. Гук на заседаниях Лондонского королевского общества дважды выступал с докладами о природе тяжести и пришел к выводу, что криволинейность планетных орбит порождена некоторой постоянно действующей силой. В этом же году у И. Ньютона возникает идея всемирного тяготения и идея о том, как можно вычислить силу тяготения. Результаты естествознания XVII в. обобщил Исаак Ньютон. Именно он завершил постройку фундамента нового классического естествознания. Вразрез с многовековыми традициями в науке Ньютон впервые сознательно отказался от поисков «конечных причин» явлений и законов и ограничился, в противоположность картезианцам, изучением точных количественных проявлений этих закономерностей в природе. Обобщив существовавшие независимо друг от друга результаты своих предшественников в стройную теоретическую систему знания (ньютоновскую механику), Ньютон стал родоначальником классической теоретической физики. Он сформулировал ее цели, разработал ее методы и программу развития, которую он сформулировал следующим образом: «Было бы желательно вывести из начал механики и остальные явления природы». В основе ньютоновского метода лежит экспериментальное установление точных количественных закономерных связей между явлениями и выведение из них общих законов природы методом индукции. Родился И. Ньютон в небольшой деревушке Вульсторп в графстве Линкольн 5 января 1643 г. в семье мелкого фермера. Детские и отроческие годы прошли в среде фермеров и сельских пасторов. В детстве Исаак жил в основном на попечении бабушки. Склонный к одиночеству, размышлениям, упорный в учебе мальчик закончил школу первым и в 1660 г. поступил в Кембриджский университет. Все свои великие открытия он сделал или подготовил в молодые годы, в 1665— 1667 гг., спасаясь в родном Вульсторпе от чумы, свирепствовавшей в городах Англии. (К этому периоду относится известный анекдот об упавшем яблоке, наведшем Ньютона на мысль о тяготении.) Среди этих открытий: законы динамики, закон всемирного тяготения, создание (одновременно с Г. Лейбницем) новых математических методов — дифференциального и интегрального исчислений, ставших фундаментом высшей математики; изобретение телескопа-рефлектора, открытие спектрального состава белого света и др. 6.3.1. Создание теории тяготения С именем Ньютона связано открытие или окончательная формулировка основных законов динамики: закона инерции; пропорциональности между количеством движения mv и движущей силой равенства по величине и противоположности по направлению сил при центральном характере взаимодействия. Вершиной научного творчества Ньютона стала его теория тяготения и провозглашение первого действительно универсального закона природы — закона всемирного тяготения. В 1666 г. у Ньютона возникает идея всемирного тяготения, его родства с силой тяжести на Земле и идея о том, каким образом можно вычислить силу тяготения. Доказательство тождества силы тяготения и силы тяжести на Земле Ньютон проводит на основе вычисления центростремительного ускорения Луны в ее обращении вокруг Земли; уменьшив это ускорение пропорционально квадрату расстояния Луны от Земли, он устанавливает, что оно равно ускорению силы тяжести у земной поверхности. Обобщая эти результаты, Ньютон сделал вывод, что для всех планет имеет место притяжение к Солнцу, что все планеты тяготеют друг к другу с силой, обратно пропорциональной квадрату расстояния между ними. Далее Ньютон выдвинул тезис, в соответствии с которым сила тяжести пропорциональна лишь количеству материи (массе) и не зависит от формы материала и других свойств тела. Развивая это положение, Ньютон формулирует закон всемирного тяготения в общем виде: Древняя идея взаимного стремления тел друг к другу («любви») благодаря Ньютону освободилась от антропоморфности и таинственности. В теории Ньютона тяготение предстало как универсальная сила, которая проявляется между любыми материальными частицами независимо от их конкретных качеств и состава, всегда пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Ньютон показал неразрывную связь, взаимообусловленность законов Кеплера и закона изменения действия силы тяготения обратно пропорционально квадрату расстояния. Законы движения планет предстали как следствия закона всемирного тяготения. Причину и природу тяготения Ньютон не считал возможным обсуждать, не имея на этот счет достаточного количества фактов («Гипотез не измышляю!»). Не будет преувеличением сказать, что 28 апреля 1686 г. — одна из величайших дат в истории человечества. В этот день Ньютон представил Лондонскому королевскому обществу свою новую всеобщую теорию — механику земных и небесных процессов. В систематической форме изложение классической механики было дано Ньютоном в книге «Математические начала натуральной философии», которая вышла в свет в 1687 г. Современники Ньютона высоко оценили этот уникальный труд. Разработанный Ньютоном способ изучения явлений природы оказался исключительно плодотворным. Его учение о тяготении — не общее натурфилософское рассуждение и умозрительная схема, а логически строгая, точная (и более чем на два века единственная) фундаментальная теория, которая стала рабочим инструментом исследования окружающего мира, прежде всего движения небесных тел. Физический фундамент небесной механики — закон всемирного тяготения. Из этого закона Ньютон вывел в качестве простых следствий (и уточнил при этом) Кеплеровы законы эллиптического движения планет, показал, что в общем случае движение тел Солнечной системы может происходить по любому коническому сечению, включая параболу и гиперболу; он сделал вывод о единстве законов движения комет и планет и впервые включил кометы в состав Солнечной системы; дал математический метод вычисления истинной орбиты комет * по их наблюдениям; четко объяснил приливы и отливы, сжатие планет (уже обнаруженное тогда у Юпитера), прецессию; сформулировал вывод о сплюснутой у полюсов форме Земли. Ньютону принадлежит и великая заслуга объяснения возмущенного движения в Солнечной системе как неизбежного следствия ее устройства. * Это вскоре позволило английскому астроному Э. Галлею открыть первую периодическую комету (комета Галлея). Формирование основ классической механики — величайшее достижение естествознания XVII в. Классическая механика была первой фундаментальной естественно-научной теорией. В течение трех столетий (с XVII в. по начало XX в.) она выступала единственным теоретическим основанием физического познания, а также ядром второй естественно-научной картины мира — механистической. Нельзя не сказать о математических достижениях Ньютона, без которых не было бы и его гениальной теории тяготения. Свой метод расчета механических движений на основе бесконечно малых приращений величин — характеристик исследуемых движений Ньютон назвал «методом флюксий» и описал его в сочинении «Метод флюксий и бесконечных рядов с приложением его к геометрии кривых» (закончено в 1671 г., полностью опубликовано в 1736 г.). Вместе с методом Г. Лейбница он составил основу дифференциального и интегрального исчислений. В математике Ньютону принадлежат также важнейшие труды по алгебре, аналитической и проективной геометрии и др. 6.3.2. Корпускулярная теория света Оптика — важнейшая часть физики, более «молодая», чем механика. Начало научной оптики связано с открытием законов отражения и преломления света в начале XVII в. (В. Снеллиус, Р. Декарт). Большую трудность для зарождающейся оптики представляло объяснение цветов. Поэтому по праву вторым великим достижением Ньютона было открытие (1666) того, что белый свет состоит из света различных цветов и, следовательно, цветной свет имеет более простую природу, чем белый. Значительная часть необъятного научного наследия Ньютона стала фундаментом создания физической оптики и дальнейшего развития наблюдательной астрономии. Ньютон был тонким экспериментатором-универсалом: металлургом, химиком, но главным образом оптиком. Он, как и многие его современники, занимался шлифовкой линз для рефракторов и упорно искал форму объектива, свободного от аберраций, особенно ахроматической. После открытия сложного состава белого света Ньютон приступил к исследованиям преломления монохроматических лучей, котоpoe оказалось зависящим от цвета луча. Последнее открыло Ньютону причину хроматической аберрации линзовых объективов. Сделав вывод о принципиальной неустранимости этого дефекта стеклянных объективов (что было верно для однолинзовых объективов), он в поисках ахроматического объектива изобрел в 1668 г. отражательный зеркальный телескоп — рефлектор. В 1672 г. он построил первый в мире рефлектор. Это был по нынешним меркам очень маленький инструмент: с трубой длиной всего 15 см и объективом диаметром 2,5 см. Но он тем не менее позволил наблюдать спутники Юпитера и стал прародителем будущих могучих орудий зондирования глубин Вселенной. В 1672 г. Ньютон изложил перед членами Лондонского королевского общества и свою новую корпускулярную концепцию света. В соответствии с этой концепцией свет представляет собой поток «световых частиц», наделенных изначальными неизменными свойствами и взаимодействующих с телами на расстоянии. Корпускулярная теория хорошо объясняла, аберрацию и дисперсию света, но плохо объясняла интерференцию, дифракцию и поляризацию света. Вместе с тем Ньютон со вниманием относился и к высказанной нидерландским ученым X. Гюйгенсом волновой теории света (1690), в соответствии с которой свет — это волновое движение в эфире. Некоторое время он даже сам пытался развивать следствия из этой теории, но в конечном счете все-таки склонился к мысли о ее несостоятельности. В XVII в. широко обсуждался и вопрос о том, конечна или бесконечна скорость света. Долгое время для эмпирического обоснования ответа на этот вопрос не было достаточных фактов. Большое значение для развития физических идей имело открытие О. Ремера, сделанное им на основе наблюдений затмения одного из спутников Юпитера в 1676 г., что скорость света в пустом пространстве конечна и равна 300 000 км/с. Несмотря на свой знаменитый девиз «Гипотез не измышляю!», Ньютон как мыслитель крупнейшего масштаба не мог не задумываться и над общими проблемами мироздания. Так, в частности, он распространил свою теорию тяготения на проблемы космологии. Но и здесь он был не склонен давать волю фантазии и стремился анализировать прямые логические следствия из уже установленных законов. Распространив закон тяготения, подтвержденный тогда лишь для Солнечной системы, на всю Вселенную, Ньютон рассмотрел главную космологическую проблему: конечна или бесконечна Вселенная. Вопрос выглядел так: в каком случае возможна гравитирующая Вселенная, когда она конечна или когда она бесконечна? Он пришел к выводу, что лишь в случае бесконечности Вселенной материя может существовать в виде множества космических объектов — центров гравитации. В конечной Вселенной материальные тела рано или поздно слились бы в единое тело в центре мира. Это было первое строгое физико-теоретическое обоснование бесконечности мира. Ньютон задумывался и над проблемой происхождения упорядоченной Вселенной. Однако здесь он столкнулся с задачей, для решение которой еще не располагал научными фактами. Он первым отчетливо осознал, что одних только механических свойств материи для этого недостаточно. Ньютон критиковал концепции атомистов и картезианцев, справедливо утверждая, что только из одних неупорядоченных механических движений частиц не могла возникнуть вся сложная организация мира. Он считал, что материя сама по себе косна, пассивна и не способна к движению. И потому, например, для него тайной являлось начало орбитального движения планет. Для раскрытия этой тайны оставалось прибегнуть лишь к некоей более могучей, чем тяготение, силе — к Богу. Поэтому Ньютон вынужден был допустить божественный «первый толчок», благодаря которому планеты приобрели орбитальное движение, а не упали на Солнце (см. 7.2.3). Понадобилось всего полвека для того, чтобы в естествознании сформировалась идея естественной эволюции материи, опровергающая божественный «первотолчок». Заслуга формирования этой идеи принадлежит И. Канту. 6.4. Изучение магнитных и электрических явлений в XVII в. Но XVII в. — это не только время радикальных революционных преобразований в механике и астрономии. В XVII в. начинается систематическое изучение магнитных и электрических явлений, результаты которого, как мы видели в творчестве Кеплера, также влияли на развитие механических и астрономических концепций. Первые сведения об электрических и магнитных явлениях были накоплены еще в древности. Так, античные ученые знали свойство натертого янтаря притягивать легкие предметы *, а также о существовании особого минерала — железной руды (магнитный железняк), способной притягивать железные предметы **. В древности магнит уподоблялся живому существу. Но уже тогда предпринимались попытки научного объяснения магнитных явлений. Наиболее удачные из таких объяснений принадлежали атомистам; например, Лукреций Кар в своей поэме «О природе вещей» объяснял действие магнита существованием потоков мельчайших атомов, вытекающих из него. * Само слово «электричество» происходит от греческого слова «электрон», что значит янтарь. ** Залежи этого минерала находились возле греческого города Магнесии, названию которого и обязано происхождение слова «магнит». Главное практическое применение магнитных явлений было связано с компасом и явилось результатом наблюдений направляющего действия земного магнетизма на естественные магниты. Первое дошедшее до нас описание водяного китайского компаса относится к XI в. Как компас попал в Европу, неизвестно до сих пор. Но в одном из сказаний XII в. уже есть ссылка на него, как на нечто хорошо известное. В XIII в. появилось сочинение «Письмо о магнитах» француза Пьера Пилигрима (из Мерикура), посвященное описанию магнитных явлений. Автор описывает изготовленный им шарообразный магнит, действие его на магнитную стрелку, способ намагничивания железа и т.д. Это первая дошедшая до нас оригинальная научная работа западного христианского мира. Развитие мореплавания делает все более и более важным изучение магнитного поля Земли, а вместе с тем и магнитных явлений вообще. Видимо, уже в XV в. было известно магнитное склонение, во всяком случае Колумб уже понимал важность знания магнитного склонения для дальних океанических странствий. Потребности мореплавания стимулируют изучение земного магнетизма, составление карт магнитных склонений и т.д. С развитием навигационной техники возникает ряд практических задач, относящихся к магнетизму: изготовление искусственных магнитов, устранение влияния железных частей корабля на компас и т.д. Все это не могло не оказать сильного влияния на изучение магнитных явлений вообще. Существенным шагом вперед в исследовании магнетизма была книга английского ученого, врача королевы Елизаветы У. Гильберта «О магните, магнитных телах и великом магните Земли», вышедшая в 1600 г. В книге изложены экспериментально установленные свойства магнитных явлений: магнитные свойства присущи только магнитной руде, железу и стали; магнит всегда имеет два полюса и одноименные полюса отталкиваются, а разнополюсные — притягиваются; описывается явление магнитной индукции. Гильберт высказывал также гипотезу о земном магнетизме: Земля представляет собой большой шарообразный магнит, полюса которого расположены возле географических полюсов. Свою гипотезу он обосновывал следующим опытом: если приближать магнитную стрелку к поверхности большого шара, изготовленного из естественного магнита, то она всегда устанавливается в определенном направлении, подобно стрелке компаса на Земле. В своей работе Гильберт уделил внимание исследованию электрических явлений и показал, что электрические явления следует отличать от магнитных. Электрические свойства в отличие от магнитных присущи многим веществам: янтарю, алмазу, хрусталю, стеклу, сере и др. Тот факт, что Гильберт, исследуя магнитные явления, затронул и электрические явления, не случайно. Электрические и магнитные явления, даже если не знать о их внутреннем единстве, схожи. Их сначала даже путали между собой. Поэтому исследования в области магнетизма вызывали исследования электрических явлений, и наоборот. После работ Гильберта в течение всего XVII в. в учении об электричестве и магнетизме было получено мало новых результатов. 7. ЕСТЕСТВОЗНАНИЕ XVIII -ПЕРВОЙ ПОЛОВИНЫ XIX в. XVIII в. — век Просвещения. Его называют также «золотым веком истории культуры». Это век расцвета материалистического мировоззрения, идеалов рационализма, выдающихся успехов классического естествознания. 7.1. Общая характеристика развития физики 7.1.1. Становление основных отраслей классической физики На развитие физики в XVIII в. существенное влияние оказало наследие предыдущего, XVII в. и особенно учение Ньютона. Ньютонианство окончательно побеждает картезианство. Развитие физики в XVIII в. предстает именно как развитие идей Ньютона, выполнение завещанной им программы распространения основных положений механики на всю физику. Особенно быстрыми темпами развивается механика. Трудами так называемых континентальных математиков закладываются основы аналитической механики. Работами Л. Эйлера, Ж. Д'Аламбера, Ж. Лагранжа и др. создается аналитический аппарат механики, развивается аналитическая механика. На развитие физики существенное влияние оказывает и технический прогресс. Развитие производительных сил определяет потребность в разработке теории машин и механизмов, механики твердого тела. Исследование законов теплоты — одна из центральных тем физики XVIII в. Термометрия, калориметрия, плавление, испарение, горение — все эти вопросы становятся особенно актуальными. Проводятся серьезные исследования по теплофизике, электричеству и магнетизму. Эти разделы физики оформляются в самостоятельные области физической науки и достигают первых успехов. Таким образом, в XVIII в. в качестве самостоятельных складываются все основные разделы классической физики. В меньшей мере развивается оптика. Но и здесь получены отдельные важные результаты: зарождается фотометрия; изучается люминесценция. В связи с открытием аберрации света английским астрономом Дж. Брадлеем в 1728 г. впервые возникает вопрос о влиянии движения источников света и приемников, регистрирующих световые сигналы, на оптические явления. Наблюдая за неподвижными звездами, Брадлей заметил, что они с Земли кажутся не совсем неподвижными, а описывают в течение года малые замкнутые траектории на небесной сфере. Придерживаясь господствовавшей тогда корпускулярной теории света, Брадлей очень просто объяснил это явление. Причиной его является движение телескопа вместе с Землей, в результате которого за то время, пока световая частица движется внутри трубы телескопа, весь телескоп (с окуляром) перемещается вместе с движением Земли. В простейшем случае, когда направление движения световой частицы и направление движения Земли составляют прямой угол, угол аберрации вычисляется по простой формуле tgδ=v/c , гдеv - скорость движения Земли по орбите, с — скорость света. Измерив величину аберрации (изменение угла аберрации в течение года) и зная скорость движения Земли по орбите, Брадлей подсчитал скорость света с и получил значение, близкое к полученному ранее О. Ремером из наблюдений за движением спутников Юпитера. Характерной особенностью физики на этом этапе является обособленность механики, оптики, тепловых, электрических и магнитных явлений. Перед физикой еще не встал вопрос об исследовании закономерностей превращений различных физических форм движения. Пока еще физика, выделившись из натурфилософии, не стремится к построению единой физической картины мира. Она нацелена главным образом на количественные исследования отдельных явлений, установление отдельных экспериментальных фактов, выявление частных закономерностей. Огромные успехи небесной механики, достигнутые благодаря введению понятия силы (тяготения), способствовали распространению такой постановки вопроса и в других разделах физики. Не только движение планет, но и другие физические явления пытались представить как результат движения материальных тел под действием сил. Последователи Ньютона пытались объяснить различные физические явления, введя понятия о различного рода силах: магнитных, электрических, химических и др., которые действуют на расстоянии так же, как и сила тяготения. Носители сил — тонкие невесомые «материи», определяющие те или иные свойства тел. Так появляется характерное для физики XVIII в. учение о «невесомых». Но как это обычно бывает, большинство последователей Ньютона нередко отходили от его подлинно глубоких идей, забыв или вовсе не зная о его осторожных и тонких замечаниях. В XVIII в. они крайне упростили ту физическую картину мира, которая проступала перед мысленным взором Ньютона. Так, например, утвердилось представление о существовании бесконечного пустого межпланетного и межзвездного мирового пространства, между тем как Ньютон склонялся к идее крайней разреженности мировой материи, не вызывающей заметного торможения планет. Утвердился также и жесткий принцип дальнодействия как передачи действия тяготения через пустоту и мгновенно, т.е. с бесконечной скоростью. Принцип дальнодействия гласит, что если тело А, находящееся в точке а, действует на другое тело В, то тело В, находящееся в точке b , испытывает это воздействие в тот же момент. Ньютон же считал необходимым наличие некоего передатчика этого действия, «агента», правда, допуская его, быть может, нематериальную природу. Но подобные тонкости уже не вдохновляли физиков века Просвещения, когда научная революция закончилась и набирало темпы развития экспериментальное естествознание. Критерии к результатам научных исследований на эволюционном этапе развития физики (по сравнению со временем ньютонианской революции) изменились — они стали более упрощенными, стандартизованными; при этом были нужны немедленный эффект и простейшее обоснование. Принцип дальнодействия утвердился в физике еще и потому, что гравитационное взаимодействие макроскопических объектов незаметно, поскольку притяжение слишком слабо, чтобы его ощутить. Лишь высокочувствительные устройства в состоянии уловить гравитационные эффекты. Только в 1774 г. английский ученый Н. Маскелайн обнаружил незначительное отклонение отвеса от вертикали, вызванное гравитационным притяжением находящейся поблизости горы. В 1797 г. Г. Кавендиш поставил знаменитый эксперимент по измерению едва уловимой силы притяжения между двумя шариками, прикрепленными на концах горизонтально подвешенного деревянного стержня, и двумя большими свинцовыми шарами; это было первое лабораторное наблюдение гравитационного притяжения между двумя телами. Если силы тяготения действуют между всеми материальными телами, то магнитными силами обладает только железо в намагниченном состоянии, а электрические силы присущи многим телам, но только в наэлектризованном состоянии. Поэтому физики стали приписывать эти силы не частицам вещества, а якобы находящимся в порах обычных материальных тел неким тонким жидкостям, или «материям». Между этими жидкостями и частицами вещества действуют определенного рода силы. Так объясняли и природу теплоты. Нагревание тела связывали с присутствием некой жидкости — теплорода, частицам которого также присущи определенные силы. Например, между частицами теплорода действуют отталкивающие силы, а между частицами теплорода и частицами материальных тел — силы притяжения. Тепловые явления изучали вне связи с другими физическими явлениями, не затрагивая процессы превращения теплоты в работу. Физики имели дело главным образом с явлениями перераспределения теплоты и ее передачей, когда общее количество теплоты остается неизменным. Они полагали, что теплота переходит от одного тела к другому, сохраняя свое общее количество, подобно жидкости, переливаемой из одного сосуда в другой. Они также считали, что теплота «перетекает» по телу, например стержню, без потерь, подобно воде по трубам. Это хорошо укладывалось в представление о теплоте как о веществе. С помощью вещественной теории теплоты объяснялось наличие теплового баланса при калориметрических измерениях, явление теплопроводности и т.п. Первые серьезные сомнения в теории теплорода принадлежат американцу Румфорду. Он обратил внимание на выделение тепла при свержении пушек и пришел к выводу (1798), что количество выделяемой теплоты не зависит от объема вещества, из ограниченного количества материи может быть получено неограниченное количество теплоты. Это опровергало теорию теплорода (теплота как субстанция, вещество) и прокладывало дорогу для понимания теплоты как формы движения. Теория теплорода, будучи весьма простой, удовлетворяла эмпирическим и формалистическим тенденциям физиков и химиков, общей направленности ньютонианской физики и была исторически необходимым этапом в развитии физики. Она сыграла и положительную роль, объединив целый ряд накопленных фактов и частных теорий, и позволила их систематизировать с единой точки зрения. Хотя и в искаженной форме, эта теория отражала некоторые действительные закономерности тепловых явлений. Поэтому она продержалась более столетия, так как не тормозила развитие физической науки и не сразу пришла в противоречие с действительностью. 7.1.4. Развитие учения об электричестве и магнетизме в XVIII в. В первой половине XVIII в. были получены качественно новые результаты в области изучения электрических явлений. Так, в 1729 г. англичанин С. Грей открыл явление электрической проводимости. Он обнаружил, что электричество способно передаваться некоторыми телами, и все тела разделил на проводники и непроводники. Француз Ш.Ф. Дюфе открыл существование отрицательного и положительного электричества и обнаружил, что «однородные электричества отталкиваются, а разнородные притягиваются». Важным шагом в изучении электрических явлений стало изобретение в 1745 г. лейденской банки, благодаря которому физики могли получать значительные электрические заряды и экспериментировать с ними. Это усилило интерес к изучению электрических явлений и способствовало утверждению представления о возможности практического применения электричества, в том числе в лечебных целях. Опыты с электричеством стали модными: их проводили и в лабораториях ученых, и в аристократических гостиных, и даже в королевских дворцах, где они превратились в забаву. Известно, например, французский король Людовик XV и его двор забавлялись, пропуская разряд электричества через цепь солдат. Появляется мысль, что электричество играет важную роль в жизнедеятельности живого организма. Многие ученые, врачи занялись изучением действия электричества на человеческий организм. Появились трактаты об «электричестве человеческого тела», об «электрической лечебной материи» и т.п.* И хотя широкое использование свойств электрических (и магнитных) явлений в медицине (физиотерапия, например) пришло гораздо позже, тем не менее зарождение в ХVIII в. идей о возможных способах такого применения стимулировало развитие исследований электрических явлений. * В качестве примера можно назвать сочинение одного из вождей Великой Французской революции Ж.П. Марата, врача по образованию. В 1738 г. он написал сочинение по электротерапии и представил его на конкурс, объявленный Руанской академией на тему «Насколько и в каких условиях можно рассчитывать на электричество как на положительное в лечении болезней». Изобретение лейденской банки способствовало и открытию электрической природы молнии. Известный ученый, общественный деятель, активный участник войны за независимость Североамериканских колоний Б. Франклин, много занимавшийся исследованием электрических явлений, предложил гипотезу об электрической природе молнии и экспериментальный метод ее проверки, а также идею громоотвода. В работах Франклина, который рассматривал электрические явления как проявление некоторой «электрической материи», формулируется понятие электрического заряда и закон его сохранения. В России исследования атмосферного электричества проводили М.В. Ломоносов и Г. Рихман, который, проводя эксперименты во время грозы 26 июля 1753 г., был убит шаровой молнией. Во второй половине XVIII в. учение об электричестве и магнетизме развивается более быстрыми темпами. Среди многих ярких открытий этого времени — изобретение А. Вольта источника постоянного тока («Вольтов столб»). В это же время намечаются две основные концепции в понимании электрических и магнитных явлений — дальнодействия и близкодействия. Новый этап в истории учения об электричестве и магнетизме начинается с непосредственного измерения в 80-х гг. французским физиком Ш.О. Кулоном величины сил, действующих между электрическими зарядами, и установления основного закона электростатики — закона Кулона, который гласит, что электрические силы ослабевают обратно пропорционально квадрату расстояния, т.е. так же, как гравитационная сила. Но по величине электрические силы намного превосходят гравитационные. В отличие от слабого гравитационного взаимодействия, наличие которого Г. Кавендишу удалось продемонстрировать только с помощью специального прибора, электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Таким образом, к рубежу XVIII-XIX вв. природа электричества частично прояснилась. 7.1.5. Физика первой половины XIX в.: общая характеристика Первая половина XIX в. — время бурного развития капиталистического способа производства в Европе и Америке. Французская революция, а затем наполеоновские войны способствовали разложению феодализма и открывали простор росту капитализма в странах Европы. В первой половине XIX в. в передовых странах Европы происходит промышленный переворот — переход от мануфактурного к машинному производству. Промышленный переворот стимулирует развитие крупной машинной индустрии. Еще более высокими темпами, чем в XVIII в., развиваются металлургическая, горнодобывающая, химическая, металлообрабатывающая и другие отрасли промышленности. Машинная индустрия требует постоянного совершенствования техники — внедрения новых технологических методов, улучшения организации производства и т.д., а это в свою очередь требует применения и постоянного развития естественно-научных знаний. Естествознание все в большей степени становится элементом производительных сил, его развитие теснейшим образом связывается с развитием практики, промышленного и сельскохозяйственного производства. Все чаще развитие практики, ее потребности определяют цели и задачи естествознания. В этих условиях физическая наука развивается более быстрыми темпами. Производство непрерывно ставит перед ней все новые и новые проблемы, доставляя одновременно и новый эмпирический материал. В тесном единстве с естествознанием происходит становление прикладных наук, прежде всего технических. Например, значительное развитие получает новая отрасль—теплотехника. Ее возникновение было непосредственной реакцией на промышленный переворот, энергетической основой которого являлась паровая машина. Изобретенная еще в XVIII в. паровая машина становится универсальным двигателем и применяется не только на промышленных предприятиях, но и на транспорте *. * В 1807 г. в Америке Р. Фултоном был построен первый пассажирский колесный пароход. Интересно, что на первых порах Р. Фултону пришлось затратить немало усилий для убеждения людей в практической возможности парохода. Даже Наполеон не поверил изобретателю и выгнал его из своего кабинета со словами: «Он уверял меня, что можно двигать суда с помощью кипятка». В 30-е гг. налаживаются регулярные речные, морские и океанские пароходные сообщения. Паровую машину используют в качестве двигателя и на сухопутном транспорте. Первая железная дорога (с локомотивом Дж. Стефенсона) была открыта в 1825 г. в Англии. В течение короткого времени сеть железных дорог покрыла территорию Европы и Северной Америки. В России пассажирское железнодорожное сообщение (на линии Петербург— Царское село) было открыто в 1837 г. В первой половине XIX в. теплотехника своими обобщениями и потребностями оказывала значительное влияние на развитие физики. Зарождающаяся электротехника изучает закономерности применения электричества в технике. Прежде всего электричество используют для связи. Вскоре после открытия Х.К. Эрстедом в 1819 г. действия электрического тока на магнитную стрелку возникает идея построить электромагнитный телеграф *. Были предприняты первые попытки использовать электричество в качестве двигательной силы. Возникает новая область электротехники — гальванопластика, изобретателем которой был русский академик Б.С. Якоби. * В 1832 г. в Петербурге уже демонстрировался первый практически действующий телеграф русского изобретателя П.Л. Шиллинга. Вскоре появляются другие конструкции телеграфа. В 1844 г. в Америке была построена первая телеграфная линия, а в конце 40-х гг. их там было уже несколько десятков. В середине века телеграфные линии начинают появляться и в Европе. Говоря о технике первой половины XIX в., следует упомянуть о фотографии. Первый практически применимый метод получения фотографических снимков (так называемый метод дагеротипий) был разработан французом Л. Дагером в 1839 г. Позитивное изображение получалось на стеклянной пластинке, покрытой светочувствительной пленкой. Несмотря на несовершенство, метод Дагера быстро получил распространение. В 50-х гг. его заменяет обычный метод фотографирования. Изобретение фотографии и ее совершенствование оказали несомненное влияние на развитие оптики, а в дальнейшем и других разделов физики, особенно после того как фотографию стали широко применять в экспериментальных исследованиях. В первой половине XIX в. быстро развиваются все разделы физики, но особенно оптика, а также учение об электричестве и магнетизме, возникает новый, быстро развивающийся раздел — учение об электромагнетизме. В этот период складываются основы волновой оптики, теории дифракции, интерференции и поляризации. Результаты развития технических наук (например, теплоэнергетики в связи с усовершенствованием парового двигателя, электротехники и др.) ставят на повестку дня проблему исследования не просто отдельных форм движения, а их взаимных превращений и переходов. Физика ориентируется на изучение не только отдельных типов физических явлений, но и связей между ними (превращение теплоты в механическое движение, и наоборот, связь между электричеством и магнетизмом, между химическими и электрическими процессами и т.д.). Выясняется, что электрические и магнитные явления связаны между собой, а теплота есть движение, и для ее производства необходимы затраты механической или электрической, или, наконец, химической энергии. Постепенно отмирает взгляд на физические явления, основанный на представлении о невесомых. Сначала исключают световую материю, затем — магнитную жидкость. В 40-х гг. XIX в. весь ход развития физических наук по пути изучения связей между различными физическими явлениями, взаимных превращений различных форм энергии завершается установлением закона сохранения и превращения энергии. Интерес к оптическим проблемам в начале XIX в. был продиктован развитием учения об электричестве, химии и паротехнике. Казалось очень вероятным, что в природе теплоты, света и электричества есть нечто общее. Открытие и изучение фотохимических реакций, химических реакций с выделением теплоты и света, тепловых и химических действий электричества — все это заставляло думать, что изучение света окажется полезным для решения важных научных и практических задач. В XVIII в. подавляющее большинство ученых придерживалось корпускулярной теории света, которая хорошо объясняла многие, но не все оптические явления. В начале XIX в. в поле зрения физиков попадают вопросы интерференции, дифракции и поляризации света, которые неудовлетворительно объяснялись корпускулярной теорией. Это приводит к возрождению, казалось, забытых идей волновой оптики. В оптике происходит настоящая научная революция, закончившаяся победой волновой теории света над корпускулярной. Первым в защиту волновой теории света выступил в 1799 г. врач Т. Юнг, разносторонне образованный человек, занимавшийся исследованиями в области математики, физики, механики, ботаники и т.д., обладавший обширными знаниями в литературе, истории, многое сделавший для расшифровки египетских иероглифов. Юнг критиковал корпускулярную теорию света, указывая на явления, которые нельзя объяснить с ее позиций, в частности, одинаковые скорости световых корпускул, выбрасываемых слабыми и сильными источниками, а также то обстоятельство, что при переходе из одной среды в другую одна часть лучей постоянно отражается, а другая постоянно преломляется. Т. Юнг предложил рассматривать свет как колеблющееся движение частиц эфира: «...Светоносный эфир, в высокой степени разреженный и упругий, заполняет Вселенную... Колебательные движения возбуждаются в этом эфире каждый раз, как тело начинает светиться». Он поставил опыт, демонстрирующий явление интерференции света от двух источников и состоящий в следующем. В экране прокалывают два маленьких отверстия на близком расстоянии друг от друга и освещают его солнечным светом, проходящим через отверстие в окне. За этим экраном помещают второй экран, на который падают два световых конуса, образовавшиеся за первым экраном. В том месте, где эти конусы перекрываются, на втором экране видны полосы интерференции. Если закрыть одно отверстие, то полосы пропадают, а на экране видны только дифракционные кольца. Измеряя расстояние между кольцами, Юнг определил длины волн красного, фиолетового и некоторых других цветов. Он рассмотрел и некоторые случаи дифракции света. Появление дифракционных полос он объяснял интерференцией двух волн: прошедшей прямо и отраженной от края препятствия. Хотя работы Юнга свидетельствовали в пользу волновой теории света, они тем не менее не поколебали корпускулярную теорию, которая еще господствовала в оптике. В 1815 г. против корпускулярной теории выступил французский ученый О. Френель. После окончания Политехнической школы в Париже он работал в провинции инженером по прокладке и ремонту дорог, а в свободное время занимался научными исследованиями. Заинтересовавшись вопросами оптики, он сделал ряд открытий и самостоятельно пришел к убеждению, что справедлива не корпускулярная, а волновая теория света. В 1818 г. Френель объединил полученные результаты и изложил их в работе о дифракции света, представленной на конкурс, объявленный Французской академией наук. Работу Френеля рассматривала специальная комиссия в составе Ж.Б. Био, Д.Ф. Араго, П.С. Лапласа, Ж.Л. Гей-Люссака и С.Д. Пуассона. Члены комиссии были сторонниками корпускулярной теории и не могли испытывать симпатий к работе Френеля. Но результаты работы настолько соответствовали эксперименту, что просто отвергнуть ее было невозможно. Пуассон заметил, что из теории Френеля можно вывести следствие, противоречащее здравому смыслу: как будто в центре тени от круглого экрана должно наблюдаться светлое пятно. Эту «несообразность» подтвердил опыт: возражение превратилось в свою противоположность. Комиссия в конце концов признала правильность результатов волновой теории Френеля и присудила ему премию. Однако теория Френеля еще не стала общепринятой, и большинство физиков продолжало придерживаться старых взглядов. Заключительным аккордом в борьбе корпускулярной и волновой теорий света явились результаты измерения скорости света в воде. Согласно корпускулярной теории, скорость света в оптически более плотной среде должна быть больше, чем в оптически менее плотной, а по волновой теории — наоборот. В 1850 г. французский физик Ж.Б. Фуко, измеряя скорость света с помощью вращающегося зеркала, показал, что скорость света в воде меньше, чем в воздухе, и тем самым окончательно подтвердил волновую теорию света. Правда, к середине XIX в. приверженцев корпускулярной теории света осталось уже мало. Любая новая теория, решая одни проблемы, вместе с тем ставит и ряд новых. Так случилось и с волновой теорией света. В отличие от корпускулярной волновая теория света должна была решить вопрос о свойствах среды — носителя световой волны. Такую среду назвали эфиром. Ответ на вопрос, каковы свойства эфира, предполагал решение двух фундаментальных проблем: во-первых, какую волну представляют собой световые колебания — продольную или поперечную. Если бы световые волны были продольными, как звуковые колебания, то теорию эфира следовало строить по аналогии с акустикой и теорией газов. Теория поперечных колебаний гораздо сложнее, поскольку такие колебания распространяются только в твердых (не газообразных) средах; во-вторых, каким образом эфир взаимодействует с движущимся источником света. Иначе говоря, может ли эфир служить абсолютной системой отсчета для механического движения, поиск которой считал необходимым для обоснования физического знания И. Ньютон. Для ответа на первый вопрос решающим оказалось объяснение (поляризации света, которое было возможным только на основе гипотезы поперечных колебаний. Теорию поляризации света также разработал Френель. Согласно этой теории свет, испускаемый светящимся телом, не является поляризованным. Хотя каждая молекула тела в каждый момент времени излучает плоскополяризованный свет, но вследствие хаотичности движения каждой молекулы они колеблются в разных направлениях, причем направление колебаний каждой молекулы непрерывно изменяется в результате беспорядочных толчков, которые испытывает молекула нагретого тела. Складываясь, волны, испускаемые молекулами светящегося тела, дают одну волну, которая колеблется непрерывно и хаотично, меняя направление колебаний. Это и есть естественный свет. Поляризация света в кристалле объясняется разложением колебаний естественного света по двум взаимно перпендикулярным направлениям. А из того, что поляризованные лучи не интерферируют, не влияют друг на друга, Френель сделал правильный вывод о поперечности световых колебаний. Работы по поляризации и двойному лучепреломлению Френеля, представленные во Французскую академию наук в начале 20-х гг., были встречены настороженно, как и предыдущие работы по интерференции и дифракции. Даже Араго, который уже встал на точку зрения волновой теории света, не решился защитить идею о поперечности световых волн. Тем не менее результаты работ Френеля нельзя было не признать. Но выявление поперечного характера световых колебаний привело к ряду новых затруднений: с одной стороны, эфир как носитель поперечных колебаний должен быть чрезвычайно твердым веществом, а с другой стороны, он не должен оказывать заметного препятствия прохождению через него небесных тел. Объяснить это противоречие было очень сложно. Выдвигалось множество (в том числе и очень остроумных) гипотез по поводу свойств эфира, но ни одна из них не удержалась в науке. В волной теории света возникает еще одна кардинальная проблема — определение характера взаимодействия между движущейся Землей и эфиром как носителем световых волн; более широко — проблема взаимодействия между эфиром и веществом. Конкретно она выражалась в вопросе: увлекается или не увлекается эфир Землей при ее движении в Космосе. Если эфир не увлекается движущимися телами, значит, он является абсолютной системой отсчета, и тогда механические, электрические, магнитные и оптические процессы можно связать в единое целое. Если эфир увлекается движущимися телами, то он не является абсолютной системой отсчета, значит, существует взаимодействие между эфиром и веществом в оптических явлениях, но такое взаимодействие отсутствует в механических явлениях, следовательно, необходимо было по-разному объяснять явление аберрации, эффект Допплера и др. Эта проблема в течение всего XIX в., вплоть до возникновения специальной теории относительности, определяла развитие фундаментальных проблем теоретической физики. Особенно она обострилась после создания Дж.К. Максвеллом теории электромагнитного поля. 7.1.8. Возникновение полевой концепции Для физика начала XIX в. не существовало понятия о поле как реальной среде, являющейся носителем определенных сил. Но в первой половине XIX в. началось становление континуальной, полевой физики. Одновременно с возникновением волновой теории света формировалась совершенно новая парадигма физического исследования — полевая концепция в физике. Здесь особая заслуга принадлежит великому английскому физику М. Фарадею. Даже в плеяде величайших физиков последних трех столетий М. Фарадей особенно выделяется. Его взгляды на проблемы физической науки, на материю, движение, на метод исследования в области физики и ее задачи были необычными. То, что научные взгляды Фарадея сильно отличались от воззрений его современников, не случайно. Это определялось своеобразием его пути в науку. Выходец из предместья Лондона, из семьи кузнеца, он не получил систематического образования, был гениальным самоучкой, самостоятельно поднялся до вершин физического знания. Те пути в науке, которые он выбирал, не были скованы традициями и предрассудками. Получив лишь начальное образование, в 13 лет он был отдан в обучение к книготорговцу и переплетчику. Работая в книжной лавке, Фарадей пристрастился к чтению. Он познакомился с сочинениями видных ученых и философов XVIII — начала XIX в., а особенный интерес проявил к химии. Это пробудило у Фарадея стремление заняться наукой, которое укрепилось после посещения публичных лекций Г. Дэви. В 1812 г. по просьбе Фарадея Дэви взял его к себе переписчиком. Затем Фарадей получил место лаборанта, а в 1815 г. — ассистента. С 1816 г. Фарадей занимается самостоятельными научными исследованиями. Первоначально его интересует химия, однако, узнав об открытии датского физика Х.К. Эрстеда, он сосредоточился на исследовании электрических и магнитных явлений. В начале XIX в. выяснилось, что между электричеством и магнетизмом существует глубокая связь. Эрстед обнаружил, что электрический ток создает вокруг себя магнитное поле. Мысль о тесной двусторонней связи электричества и магнетизма кажется Фарадею совершенно очевидной, и уже в 1821 г. он ставит перед собой задачу «превратить магнетизм в электричество». Но только в 1831 г. М. Фарадей показал, что переменное магнитное поле индуцирует в проводнике электрический ток. Эти открытия легли в основу разработки электродвигателя и электрогенератора, играющих ныне столь важную роль в технике. Фарадей придерживался оригинальных взглядов на природу материи. Он полагал, что материя активна и немыслима без движения, и возражал против атомистического взгляда на строение вещества: наличие атомов и пустого пространства между ними. Если пустота — проводник, то все тела должны быть проводниками, а если пустота — непроводник, то все тела должны быть изоляторами. Но ни того, ни другого не наблюдается. Фарадей создает новую теорию структуры вещества: исходным материальным образованием являются не атомы, а поле; атомы — лишь сгустки силовых линий поля. Материя, по Фарадею, занимает все пространство. Ее основными характеристиками являются силы притяжения и отталкивания. Под силой Фарадей подразумевает характеристику активности тела или материи вообще, т.е. его понятие силы скорее ближе к понятию движения, чем собственно силы *. Атомы, по Фарадею, являются лишь центрами этих сил притяжения и отталкивания **. Они проницаемы и простираются на бесконечно большое пространство. Таким образом, в концепции Фарадея среда между зарядами выступает не просто передатчиком взаимодействия одного заряда с другим, а является носителем сил; заряды же он низводит до ранга вторичных образований, продуктов такого реального силового поля. * Не случайно Фарадей наряду со словом «force» употреблял часто и слово «power», что значит еще и способность, мощность, энергия. ** См.: Фарадей М . Экспериментальные исследования по электричеству. М.; Л., 1951. Т. II. С. 400. Общие взгляды Фарадея на материю нашли конкретное выражение в его понимании электромагнитных явлений, основанном на представлении о поле. В основе его теории электричества и магнетизма лежит представление об электрических и магнитных силовых линиях. Фарадей тем не менее не конкретизировал, что представляют собой эти силовые линии. Он писал: «Те, кто в какой-нибудь мере придерживаются гипотезы эфира, могут рассматривать эти линии как потоки, или как распространяющиеся колебания, или как стационарные волнообразные движения, или как состояние напряжения». В любом случае, силовые линии для него — это не просто математический прием, а физическое понятие, имеющее реальный аналог в природе. Силовые линии есть характеристики поля — некоторого особого вида материи, носителя и передатчика энергии. Возникновение полевой концепции стало началом становления континуальной физики. Экспериментальные открытия Фарадея были хорошо известны, и он еще при жизни приобрел огромный авторитет и славу. Однако к его теоретическим взглядам современники в лучшем случае оставались безразличными. Первым обратил на них серьезное внимание Дж.К. Максвелл. Он воспринял эти представления, развил их и построил теорию электромагнитного поля. Выработанное в оптике понятие «эфир» и сформулированное в теории электрических и магнитных явлений понятие «электромагнитное поле» сначала сближаются, а затем, уже в начале XX в., с созданием специальной теории относительности, полностью отождествляются. Таким образом, понятие поля оказалось очень полезным. Будучи вначале лишь вспомогательной моделью, это понятие становится в физике XIX в. все более и более конструктивной абстракцией. Она позволяла понять многие факты, уже известные в области электрических и магнитных явлений, и предсказывать новые явления. Со временем становилось все более очевидным, что этой абстракции соответствует некоторая реальность. Постепенно понятие поля завоевало центральное место в физике и сохранилось в качестве одного из основных физических понятий. 7.1.9. Закон сохранения и превращения энергии В первой половине XIX в. постепенно вызревает и утверждается идея единства различных типов физических процессов, их взаимного превращения. Изучение процесса превращения теплоты в работу и обратно, установление механического эквивалента теплоты сыграли основную роль в открытии закона сохранения и превращения энергии. Все большее и большее место в физических исследованиях занимали исследования явлений, в которых имело место взаимопревращение различных форм движения. Исследования химических, тепловых, световых действий электрического тока, изучение его моторного действия, процессов превращения теплоты в работу и т.д. — все это способствовало возникновению и развитию идеи о взаимопревращаемости «сил» природы. Энергия не возникает из ничего и не уничтожается, она лишь переходит из одного вида в другой — так гласит закон сохранения и превращения энергии. Эту идею в первой половине XIX в. все чаще высказывали ученые, и нужен был один шаг, чтобы эта идея оформилась в физический закон. Этот шаг в 40-х гг. был сделан многими учеными. Основную роль в установлении закона сохранения и превращения энергии сыграли: немецкий врач Р. Майер, немецкий ученый Г. Гельмгольц и англичанин Дж. Джоуль — манчестерский пивовар, занимавшийся изобретательством и физическими исследованиями. Значение этого закона выходило далеко за пределы физики и касалось всего естествознания. Наряду с законом сохранения масс этот закон, выражая принцип неуничтожимости материи и движения, образует краеугольный камень материалистического мировоззрения естествоиспытателей. Логическим его развитием и обобщением выступал принцип материального единства мира. Закон сохранения энергии и в настоящее время является важнейшим принципом физической науки. Новая форма действия этого закона основана, в частности, на учете взаимосвязи массы и энергии (Е= m с2 ): закон сохранения массы применяется в современной физике совместно с законом сохранения энергии. 7.1.10. Концепции пространства и времени В обосновании классической механики большую роль играли введенные И. Ньютоном понятия абсолютного пространства и абсолютного времени. Эти понятия лежат в основании субстанциальной концепции пространства и времени, в соответствии с которой материя, абсолютное пространство и абсолютное время — три независимые друг от друга субстанции, начала мира. Абсолютное пространство — это чистое и неподвижное вместилище тел; абсолютное время — чистая длительность, абсолютная равномерность событий. Ньютон считал, что вполне возможно допустить существование мира, в котором есть только одно абсолютное пространство и нет ни материи, ни абсолютного времени; либо же существование мира, в котором есть пространство и время, но нет материи; либо же существование мира, в котором есть только время, но нет ни пространства, ни материи. По мнению Ньютона, абсолютное пространство и абсолютное время — это реальные физические характеристики мира, но они не даны непосредственно органам чувств, и их свойства могут быть постигнуты лишь в абстракции; возможно, только в будущем физика сумеет найти реальные системы, соответствующие абсолютному пространству и абсолютному времени. В своей же повседневной действительности человек имеет дело с относительными движениями, связывая системы отсчета с теми или иными конкретными телами, т.е. имеет дело с относительным пространством и относительным временем. Физики долгое время полностью придерживались субстанциальной концепции Ньютона, повторяли его определения понятий абсолютного пространства и времени. Только некоторые философы критиковали понятия абсолютного пространства и абсолютного времени. Так, Г.В. Лейбниц, «вечный оппонент» Ньютона, выступил с критикой субстанциальной концепции и отстаивал принципы реляционной теории пространства и времени , считая «пространство , так же как и время, чем-то чисто относительным: пространство — порядком существований , а время — порядком последовательностей. Ибо пространство... обозначает порядок одновременных вещей, поскольку они существуют совместно, не касаясь их специфического способа бытия» *. Однако в XVIII в. критика субстанциальной концепции Ньютона и философская разработка реляционной теории пространства и времени не оказали существенного воздействия на физику. Естествоиспытатели продолжали пользоваться представлениями Ньютона об абсолютном пространстве и времени, различаясь между собой лишь признанием или непризнанием наличия пустого пространства. * Лейбниц Г.В. Переписка с Кларком // Соч.: В 4 т. М., 1982. Т. 1. С. 441. Проблема пространства — особая проблема, объединяющая физику и геометрию. Долгое время молчаливо предполагалось, что свойства физического пространства являются свойствами евклидового пространства. Для многих это была само собой разумеющаяся истина. «Здравый смысл» был философски воплощен И. Кантом в его взглядах на пространство и время как неизменные априорные «формы чувственного созерцания». Из этого взгляда следовало, что те представления о пространстве и времени, которые выражены в геометрии Евклида и механике Ньютона, вообще являются единственно возможными. Впервые по-новому вопрос о свойствах пространства был поставлен в связи с открытием неевклидовой геометрии. Безуспешность попыток ряда ученых многих поколений доказать пятый постулат Евклида привела к мысли о его недоказуемости, а вместе с тем и о возможности построения геометрии, основанной на других постулатах. Одним из первых пришел к этой мысли К.Ф. Гаусс, который еще в начале XIX в. начал размышлять над вопросом о возможности создания другой, неевклидовой, геометрии. Гаусс высказал мысль, что представления о свойствах пространства не являются априорными, а имеют опытное происхождение. Однако он не пожелал втягиваться в острую дискуссию и скрывал от современников свои идеи о возможности неевклидовых геометрий. Родиной неевклидовых геометрий стала Россия. В 1826 г. на заседании физико-математического факультета Казанского университета Н.И. Лобачевский сделал сообщение об открытии им неевклидовой геометрии, а в 1829 г. опубликовал работу «Начала геометрии», в которой показал, что можно построить непротиворечивую геометрию, отличную от всем известной и казавшейся единственно возможной геометрии Евклида *. При этом Лобачевский считал, что вопрос о том, законам какой геометрии подчиняется реальное пространство — евклидовой или неевклидовой геометрии — должен решить опыт, и прежде всего астрономические наблюдения. Он полагал, что свойства пространства определяются свойствами материи и ее движения, и считал вполне возможным, что «некоторые силы в природе следуют одной, другие своей особой геометрии» **, а вопрос о выборе той или иной геометрии должен решать астрономический опыт. * В 1832 г. венгерский математик Я. Больяй опубликовал работу, в которой (независимо от Лобачевского) также развил основные идеи неевклидовой геометрии. ** Лобачевский Н.И. Полн. собр. соч. М.; Л., 1949. Т. 2. С. 159. Спустя почти 40 лет после работ Лобачевского, в 1867 г. была опубликована работа Б. Римана «О гипотезах, лежащих в основании геометрии». Опираясь на идею о возможности геометрии, отличной от евклидовой, Риман подошел к этому вопросу с несколько иных позиций, чем Лобачевский. Он вводит обобщенное понятие пространства как непрерывного многообразия п -го порядка или совокупности однородных объектов — точек, определяемых системой чисел (x1 , х2 ,..., х n ). Используя работы Гаусса по геометрии поверхностей в обычном трехмерном пространстве, Риман вводит для характеристики многообразия n -го порядка понятие расстояния между бесконечно близкими точкамиds и понятие кривизны для каждой точки этого многообразия. В искривленном пространстве нет прямых линий, а свойства геометрических фигур другие, чем на плоскости. Прямая заменена здесь линиями, которые являются кратчайшими расстояниями между точками. С точки зрения Римана, вопрос о том, является ли геометрия нашего физического пространства евклидовой, что соответствует его нулевой кривизне, или эта кривизна не равна нулю, должен решить эксперимент. При этом он допускает, что свойства пространства должны зависеть от материальных тел и процессов, которые в нем происходят. Кроме того, Риман высказал новое понимание бесконечности пространства. По его мнению, пространство нужно признать неограниченным; однако если оно может иметь положительную постоянную кривизну, то оно уже не бесконечно, подобно тому как поверхность сферы хотя и не ограничена, но тем не менее ее размеры не являются бесконечными. Так зарождалось представление о разграничении бесконечности и безграничности пространства (и времени). Идеи неевклидовых геометрий первое время имели весьма мало сторонников, так как противоречили «здравому смыслу» и устоявшимся в течение многих веков воззрениям. Перелом наступил только во второй половине XIX в. Окончательные сомнения в логической правильности неевклидовой геометрии Лобачевского были развеяны в работах итальянского математика Э. Бельтрами, который, развивая идеи К. Гаусса в области дифференциальной геометрии для решения задач картографии, показал, что на поверхностях постоянной отрицательной кривизны (псевдосферы) осуществляется именно неевклидова геометрия. Интерес к работам Лобачевского и Римана вновь ожил и вызвал многочисленные исследования в области неевклидовых геометрий и оснований геометрии. Здесь следует упомянуть «Эрлангенскую программу Ф. Клейна» (1872), которая вплоть до настоящего времени является руководящей не только для построения новых систем геометрии, но и для теоретической физики. По Ф. Клейну, для построения геометрии необходимо задать: некоторое многообразие элементов; группу преобразований, дающую возможность отображать элементы заданного многообразия друг на друга. А геометрия должна изучать те отношения элементов, которые инвариантны при всех преобразованиях данной группы. С этих позиций геометрические теории могут быть типологизированы следующим образом: геометрия Евклида, изучающая инварианты перемещений; аффинная геометрия; проективная геометрия (геометрия Лобачевского трактуется как часть проективной геометрии); конформная геометрия; топология (геометрия групп непрерывных преобразований, т.е. таких, при которых сохраняется бесконечная близость точек), играющая большую роль в современной космологии, квантовой теории гравитации и др. Развитие теории неевклидовых пространств привело в свою очередь к задаче построения механики в таких пространствах: не противоречат ли неевклидовы геометрии принципам механики? Если механику невозможно построить в неевклидовом пространстве, то значит реальное неевклидово пространство невозможно. Однако исследования показали, что механика может быть построена в неевклидовом пространстве. И тем не менее появление неевклидовых геометрий, а затем «неевклидовой механики» на первых порах не оказало влияния на физику. В классической физике пространство оставалось евклидовым, и большинство физиков не видели никакой необходимости рассматривать физические явления в неевклидовом пространстве. 7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.) К середине XIX в. в основном завершилось становление системы методологических установок классической физики — того теоретико-методологического каркаса, в рамках которого получали свое обоснование и понимание основные понятия, категории, принципы и допущения классической теоретической физики. Смена этой системы установок происходит только в ходе научных революций. К методологическим установкам классической физики относятся следующие представления. · Важнейшей исходной предпосылкой классической физики (как и всей науки) является признание объективного существования физического мира , т.е. признание того, что физический мир (как совокупность устойчивых явлений, вещей, процессов, расположенных в определенном порядке в пространственно-временном континууме) существует до и независимо от человека и его сознания. · Каждая вещь, находясь в определенном месте пространства, существует в определенный промежуток времени независимо (в пространственно-временном отношении) от других вещей . Хотя вещи и способны в принципе взаимодействовать друг с другом, это не приводит к существенному изменению структуры взаимодействующих тел, а если и приводит, то всегда можно уточнить характер происшедших изменений и ввести соответствующую поправку, восстановив тем самым идеальный образ первоначального состояния. · Все элементы физического мира, заполняя пространственно-временной континуум, связаны между собой причинно-следственными связями таким образом, что, зная в определенный момент времени координаты каждого элемента, можно в принципе абсолютно точно, однозначно предсказать положение этого элемента через любой промежуток времени. · Для классической физики свойственна уверенность в том, что на основе знания о существующем состоянии элементов физической системы в принципе возможно однозначно и абсолютно точно предсказать поведение элементов системы через любой промежуток времени (лапласовский детерминизм ). · Материальный мир познаваем , на основе имеющихся в наличии исследователя познаваемых средств (теоретических и эмпирических) возможно в принципе объективно описать и объяснить все исследуемые физические явления. · Основой физического познания и критерием его истинности является эксперимент, ибо только в эксперименте исследователь через средства исследования непосредственно взаимодействует с объектом; при этом исследователь свободен в выборе условий проведения эксперимента. · В процессе исследования физический объект по существу остается неизменным, он не зависит от условий познания . Если же прибор и оказывает какое-либо воздействие на объект, то это воздействие всегда можно учесть, внеся соответствующую поправку. В процессе исследования всегда можно четко разграничить поведение объекта и поведение средств исследования, средств наблюдения, экспериментирования. Поэтому описание поведения объектов и описание поведения приборов осуществляются одинаковыми средствами научного языка. · Возможно обособление элементов физического мира : в принципе возможно экспериментальными средствами неограниченное (по отношению к атому) разложение физических объектов на множество независимых вещей и элементов. · Все свойства исследуемого объекта могут экспериментально определяться с помощью одной установки одновременно . Нет принципиальных препятствий для того, чтобы полученные таким путем данные могли быть объединены в одну картину объекта. · В принципе возможно получение абсолютно объективного знания, т.е. такого знания, которое не содержит ссылок на познающего субъекта (на условия познания). При этом основными критериями объективности считались: отсутствие в содержании физического знания ссылок на субъект дознания; однозначное применение понятий и системы понятий для описания физических явлений; наглядное моделирование — эквивалент объективности знания. · Данные о состоянии исследуемых явлений выражаются через величины, имеющие количественную меру . Через измеримые величины выражаются также и физические законы, которые должны быть сформулированы на языке математики (программа Галилея). При этом динамические закономерности поведения элементов физического мира исчерпывающим образом описываются системой дифференциальных уравнений (т.е. на континуальной основе). Физические системы, как правило, замкнуты, обратимы (направленность времени для них не важна) и линейны. · Возможность пренебречь атомным, строением измерительных приборов — одна из общих черт классического, релятивистского и квантового способов описания. · Уверенность в том, что структура познания в области физики, так же как и структура мира физических элементов, не претерпевает существенных качественных изменений , что классический способ описания вечен и неизменен. Как качественно неизменен физический мир, движение элементов которого сводится к непрерывному механическому перемещению частиц материи, неизменны физические закономерности, так же неизменен и метод познания этого мира и его законов. · Теоретическое описание мира осуществляется с помощью трех видов логических форм: понятий, теорий и картины мира . Различие между физической теорией и физической картиной мира — количественное (по степени обобщения), но не качественное; фундаментальная физическая теория и есть (в силу наглядности ее понятий) физическая картина мира. Кардинальные изменения в понимании природы физического познания, структуры его познавательных средств произошли в методологии физики в начале XX в. и были одним из следствий физической революции, которая перевела физику на уровень ее «неклассического» развития. 7.2. Развитие астрономической картины мира 7.2.1. Создание внегалактической астрономии В течение столетий астрономия развивалась как наука о Солнечной системе, а мир звезд оставался целиком загадочным. Только в XVIII в. обозначился переход астрономии к изучению мира звезд и галактик. Начальные шаги на этом пути были связаны с первыми оценками межзвездных расстояний. Основой для этого служили измерения О. Ремером скорости света и открытие И. Кеплером закона ослабления силы света с расстоянием. Опираясь на эти данные, X. Гюйгенс показал, что свет от Сириуса до нас идет несколько лет, а в 1761 г. И. Ламберт уточнил эти данные и показал, что от Сириуса свет до нас идет 8 световых лет. Постепенно осознавалась колоссальность межзвездных расстояний. Важным достижением астрономии XVIII в. было и открытие собственных движений звезд (Э. Галлей, 1718). В XVIII в. по мере увеличения возможностей телескопов удалось выявить новый тип космических объектов — туманности, большинство из которых оказались колоссальными, удаленными от нас на огромные расстояния скоплениями звезд — галактиками *. Астрономия постепенно становилась внегалактической. Выдающаяся роль в создании внегалактической астрономии принадлежит В. Гершелю, который был конструктором уникальных для его времени телескопов (с зеркалом диаметром 1,5 м), выдающимся наблюдателем, основателем звездной и внегалактической астрономии. * Мы пишем слово «Галактика» с прописной буквы, когда речь идет о той галактической системе, к которой принадлежит наше Солнце. Когда же идет о других галактических системах или об общем понятии такой системы употребляем слово «галактика» (со строчной буквы). То же относится и к термину «вселенная»: мы пишем «Вселенная» с прописной буквы там, где речь идет о наблюдаемой нами Вселенной, в которой мы реально живем; если мы говорим о модельных (возможных, иных) вселенных, мы пишем «вселенная» (со строчной буквы). Мировую славу Гершелю принесли его открытия в Солнечной системе: открытие планеты Уран (1781), нескольких спутников Урана и Сатурна, сезонных изменений полярных «шапок» Марса, периода вращения кольца Сатурна, движения всей Солнечной системы в пространстве в направлении к созвездию Геркулеса и др. Гершель установил существование двойных и кратных звезд как физических систем, уточнил оценки блеска у 3 тыс. звезд, обнаружил переменность в некоторых из них, первым отметил различное распределение энергии в спектрах звезд в зависимости от их света и др. Совершенно особой заслугой Гершеля являются его исследования туманностей. Он открыл свыше 2,5 тыс. новых туманностей. Хотя к его времени их было известно уже около 150, о природе этих объектов высказывались лишь смутные и противоречивые догадки. Гершель стал первым изучать мир туманностей, увидев в этом путь к познанию не только строения, но и истории Вселенной. Он впервые попытался измерить Галактику и оценить размеры и расстояния до других туманностей, допуская их сходство с нашей Галактикой. Гершель впервые отметил закономерности крупномасштабной структуры мира туманностей в целом, тенденцию туманностей к скапливанию, стремление их объединяться в крупные протяженные «пласты» , состоящие как из отдельных туманностей, так и из их скоплений. Исследования Гершеля способствовали становлению теории островной Вселенной: расстояния между туманностями сильно превосходили размеры объектов (туманностей). Эта теория была высказана Т. Райтом и оказала большое влияние на формирование И. Кантом его космогонической гипотезы. Важным элементом астрономической картины мира XVIII в. явилась высказанная Э. Сведенборгом, И.Г. Ламбертом и независимо от них И. Кантом идея космической иерархии — субординированное отношение космических систем разной степени организации, включенность систем низших порядков в системы высших порядков. Так, например, Ламберт утверждал, что существуют во Вселенной системы нескольких порядков: планеты со спутниками; Солнце (равно как и другие звезды) с планетами; большие звездные сгущения в Млечном Пути; Млечный Путь и другие подобные ему скопления звезд, видимые из-за огромных расстояний как туманности; гипотетические системы высших порядков, включающие в себя туманности. Все эти системы Ламберт считал находящимися в непрерывном движении — каждая вокруг своего центра тяжести, т.е. подчиняющимися закону всемирного тяготения. 7.2.2. Формирование идеи развития природы Идея развития природы — это представление о том, что природа в ходе непрерывного движения и изменения своих форм с течением времени образует (либо сама, либо с помощью надприродных, сверхъестественных сил, бога, например) из простейших, низших, мало организованных форм качественно новые, высшие, более сложные, более организованные формы (уровни, системы). Такая направленность развития от низшего к высшему называется прогрессом. Эта идея созревала долго и сложно. Так, в античной культуре еще не было понятий о развитии и прогрессе. Движение природы и общества во времени трактовалось античными мыслителями как чередование неизменных в своей основе событий — как круговорот, циклическое возвращение к старому (например, учение Гераклита о периодическом мировом пожаре и др.). На этапе феодально-религиозной культуры складывались лишь отдельные предпосылки идеи развития (образ качественной противоположности материального и духовного миров и др.). Но формирования самой идеи развития не произошло, поскольку для феодализма, как и для всех обществ с простым воспроизводством, свойственны апология старины, установка на незыблемость традиций, неизменность сложившихся общественных и природных форм, недоверие ко всему новому. Феодальная культура консервативна, сковывает творческие возможности человека, для нее характерна боязнь исторической перспективы. Только в условиях зарождения капиталистических, товарно-денежных отношений, с утверждением в общественном сознании атмосферы исторического оптимизма формируется идея развития, прогресса природы и общества. В XVII в. идея прогресса возникает как механистически трактуемая идея эволюции природы (в трудах Р. Декарта по космогонии и др.). Под влиянием результатов Нидерландской (XVI в.) и Английской (XVII в.) буржуазных революций идея прогресса природы постепенно перерастает в идею неограниченного социального прогресса, прогресса общества, науки и культуры. Их объединение завершилось в середине XVIII в., и с этого времени идеи прогресса природы, общества и культуры (науки) оказались тесно связанными между собой. Но одно дело идея развития, а совсем другое дело — теория развития, которая не просто констатирует существование развития, а объясняет его, указывает на его предпосылки, условия, факторы, закономерности, вскрывает направление развития, определяет его типы и т.д. В настоящее время существуют разные теории развития: метафизические, диалектические, эмерджентные, системно-синергетические и др. В XVII—XVIII вв. существовали лишь метафизические теории развития. Согласно этим теориям развитие — это простое количественное изменение (без скачков, перерывов постепенности, переходов количества в качество, борьбы противоположностей и др.), в котором возможно участие нематериальных (сверхъестественных, божественных) сил. Ведущая тенденция в естествознании XVII—XVIII вв. состояла в том, чтобы свести до минимума участие божественных факторов в объяснении развития природы и общества, а в лучшем случае — и вовсе избавиться от них *. Наиболее ярко, контрастно эта тенденция проявилась в астрономии. * Так, великий французский ученый П. Лаплас, отвечая на вопрос Наполеона, какое место в созданной им космогонической теории отведено Богу, гордо ответил: «Я не нуждаюсь в этой гипотезе!» 7.2.3. Идея развития в астрономии Идею развития природы внес в новоевропейскую науку Р. Декарт в своей космогонии (см. 6.2.2). Декарт отвергал библейскую догму о происхождении мира в шесть дней и создал теоретическую модель о происхождения мира естественным образом, поставив тем самым деосмогонию на почву науки. Богу здесь отводилась лишь роль творца материи и движения; все последующее развитие материи было естественным и в божественном участии не нуждалось. Качественно новая ситуация в космогонии сложилась с созданием классической механики. И. Ньютон теоретически обосновал идею бесконечности Вселенной и таким образом в космологии (науке о структуре Вселенной как целого) сделал шаг вперед по сравнению с Декартом. Сложнее обстояло дело в космогонии (учении о происхождении Вселенной, мира) (см. 6.3.3). Ньютон ясно понимал, что закономерностей гравитационного взаимодействия масс недостаточно для последовательно механистического объяснения структуры Вселенной. Во-первых, ему была непонятна сущность тангенциальной составляющей орбитального движения планет (закон всемирного тяготения объясняет центростремительное ускорение планет, но не объясняет, откуда взялось движение планет, которое стремится удалить планету по касательной к орбите). Ньютон делает вывод, что, по-видимому, нужно допустить существование божественного «первого толчка», благодаря которому планета приобретает орбитальное движение и не падает на Солнце. Во-вторых, в движении планет и спутников существуют возмущения, которые могут нарастать со временем. Значит, сделал вывод Ньютон, Бог должен время от времени «подправлять» движения небесных тел, возвращать их на свои орбиты. Эти два обстоятельства вынудили Ньютона отказаться от попыток научного объяснения происхождения Вселенной и отдать его на откуп теологии. Первая всеобъемлющая теория развития Вселенной на основе теории гравитации была создана Иммануилом Кантом, великим немецким мыслителем, философом, ученым-естествоиспытателем. Теория Канта не была чисто умозрительным построением (как теория Р. Декарта); она опиралась на конкретные геометрические, кинематические и динамические параметры, данные наблюдений, физические закономерности. Исходная позиция Канта — несогласие с выводом Ньютона о необходимости божественного «первотолчка» для возникновения орбитального движения планет. По Канту, происхождение тангенциальной составляющей непонятно до тех пор, пока Солнечная система рассматривается как неизменная, данная, вне ее истории. Но достаточно допустить, что межпланетное пространство в отдаленные времена было заполнено разреженной материей, простейшими элементарными частицами, определенным образом взаимодействующими между собой, то появляется реальная возможность на основе физических закономерностей объяснить, не прибегая к помощи божественных сил, происхождение и строение Солнечной системы. «Дайте мне только материю, и я построю вам из нее целый мир!» — любил повторять И. Кант. Однако И. Кант — не атеист, он признает существование Бога, но отводит ему только одну роль — создание материи в виде первоначального хаоса с присущими ей (механистическими) закономерностями. Все дальнейшее развитие материи осуществляется естественным образом, без вмешательства Бога. Основные силы, привлекаемые Кантом для объяснения развития материи: притяжение (гравитационное тяготение); отталкивание (по аналогии с газами); химическое соединение (различие частиц по плотности). В результате действия этих трех фундаментальных сил осуществлялось, по мнению Канта, развитие материи, создавались начальные неоднородности в распределении плотности материи. Различие частиц по плотности обусловило возникновение сгущений, которые стали центрами притяжения более легких элементов, притягиваясь в то же время к более плотным сгущениям. Но благодаря наличию силы отталкивания, этот процесс сгущения не привел к концентрации материи в одном месте. Взаимодействие, борьба силы отталкивания и силы притяжения определяют возможность длительного развития мира. Движения частиц, направленные к центральному сгущению, наталкиваясь на действие силы отталкивания, превращались в вихревые движения вокруг этих сгущений. В процессе вращения вихрей большое количество частиц падало на центр сгущения, увеличивая его массу, сообщая ему взаимное движение и нагревая его. Так Кант объясняет возникновение Солнца и звезд. Не упавшие на Солнце частицы вращаются вокруг Солнца и постепенно концентрируются в плоскости солнечного экватора, образуя пояс, кольцо частиц. В этом поясе в силу неоднородности различий плотности его частей возникают новые центры тяготения, которые постепенно сгущаются, в них концентрируется масса частиц и постепенно образовываются планеты. Аналогичным образом формируются спутники планет. В своей концепции Кант дает объяснение следующим особенностям Солнечной системы: эллиптической форме орбит; отклонению орбитальных плоскостей планет от плоскости солнечного экватора; обратной зависимости масс и объемов планет от степени их удаления от Солнца; неодинаковому числу спутников у различных планет, наличию колец у Сатурна и др. Кант не ограничился построением модели развития лишь Солнечной системы. Он распространяет свои принципы на объяснение развития Вселенной в целом, понимаемой им как иерархически организованная сверхсистема галактик. Развитие Вселенной, по Канту, это процесс, который имеет начало, но не имеет конца. В каждый момент времени происходит образование новых космических систем на все более далеких расстояниях от центра — места, где этот процесс начался (предположительно в районе Сириуса). В старых областях Вселенной космические системы постепенно разрушаются и гибнут. Правда, на месте погибших систем могут возникнуть новые: на потухшие солнца падают замедлившиеся планеты и кометы, и вновь нагревают их. Кант сформулировал много пророческих идей: о существовании двойных звезд, о существовании за Сатурном планет Солнечной системы, идею непрерывного перехода от планет к кометам, идею случайной флуктуации плотности, о метеорном составе кольца Сатурна, о существовании колец, подобных кольцу Сатурна, у близких планет и др. Вместе с тем концепции Канта присущи и принципиальные недостатки. Первый из них — представление о самопроизвольном возникновении вращения изолированной системы, первоначально находившейся в покое. Это представление противоречит закону сохранения момента количества движения в изолированной системе. Поэтому П. Лаплас, разрабатывавший космогоническую концепцию (1796), во многом похожую на теорию Канта и опиравшуюся на строгие математические и механические закономерности, был вынужден исходить из вращающегося облака материи как начального пункта. Второй недостаток — противоречие с закономерностью распределения в Солнечной системе момента количества движения (mvr ). На единицу массы вещества планет приходится в десятки тысяч раз больше лишнего количества движения, чем на такую же массу Солнца. Этого противоречия не избежал и Лаплас в своей космогонической модели Вселенной. Кантовская теория происхождения Вселенной была величайшим достижением астрономии со времен Коперника. Как Коперник разрушил геоцентризм — ядро аристотелевской картины мира, так Кант разрушил ядро метафизического мировоззрения — представления о том, что природа не имеет истории во времени. Кант впервые убедительно показал, что понять настоящее состояние природных систем можно только через знание истории развития этих систем. Сформулированная в космогонии идея развития природы во второй половине XVIII — первой половине XIX в. постепенно переходит в геологию и биологию. 7.2.5. Методологические установки классической астрономии Методологические установки классической физики стали принципиальной методологической базой всего классического естествознания. Методологические установки других естественных наук выступали в роли особенного по отношению к такому общему, как определенные модификации, учитывающие своеобразие объекта и процесса познания в данной науке. В полной мере это относится к астрономии. Методологические установки классической астрономии состоят в следующем. · Признание объективного существования предмета познания астрономической науки — космических тел, их систем и Вселенной в целом, т.е. признание того, что мир астрономических объектов существует до и независимо от человека и его сознания . В рамках метафизического мировоззрения XVII—XIX вв. такая материалистическая установка не дополнялась последовательным материалистическим решением проблемы происхождения мира. В качестве компромисса не исключалась деистическая трактовка происхождения мира. Вместе с тем проблемы космогонии не играли значительной методологической роли в классической астрономии. Как писал Дж. Гершель, «начало вещей и умозрение о творении не составляет задачи естествоиспытателя» *. Гершель Дж. Философия естествознания. СПб., 1868. С. 38. · Объективно существующая Вселенная (как объект астрономического познания) единственна, вечна во времени, бесконечна и безгранична в пространстве . Она представляет собой некую механическую систему множества миров (при этом не исключалась возможность их населенности), подобных нашей Солнечной системе (Дж. Бруно). Исходными составляющими космических тел являются атомы, движущиеся в пустоте. · Мир космических образований (в том числе Вселенная в целом) обладает определенной объективной структурой , изучение которой является главной задачей астрономии. Но классическая астрономия не доводит идею структурности до представления о целостной организации структурных компонентов Вселенной. Кроме того, структура космических объектов рассматривалась как неизменная (пусть даже и ставшая во времени), что обосновывалось постоянством силы тяготения. Эта установка классической астрономии уточнялась в ряде более конкретных допущений: во-первых, Вселенная в целом и в отдельных частях макроскопична (структурные закономерности астрономических объектов разных масштабов качественно не отличаются от закономерностей, присущих окружающим нас на Земле телам); во-вторых, Вселенная однородна и изотропная в ней нет привилегированных точек или направлений (космологический постулат в «узком» смысле, впервые четко сформулированный Дж. Бруно); в-третьих , Вселенная стационарна . Это не значит, что во Вселенной не происходят определенные процессы, изменения состояний космических тел и их систем. Но со временем не изменяются такие ее статистические характеристики, как распределение и яркость астрономических объектов (звезд, галактик), их средняя плотность (не равная нулю) в пространстве и др. · Начиная с И. Канта, впервые показавшего действительную возможность научно обоснованного изучения истории становления Вселенной, одной из фундаментальных установок классической астрономии было представление о том, что Вселенная имеет свою историю, ее нынешнее состояние есть результат определенной эволюции. При этом считалось, что развитие космических тел есть постепенное очень медленное количественное эволюционирование, без скачков, перерывов постепенности, переходов количества в качество. Такое понимание дополнялось представлением о том, что эволюция Вселенной не нарушает ее структурную организацию и стационарность. Эта общая установка конкретизировалась в ряде положений: во-первых , факторы, которые вызывают изменение космических тел, сами остаются неизменными (в качестве таких факторов, как правило, рассматривались две силы — притяжения и отталкивания); во-вторых , эволюция космических объектов протекает на фоне неизменных (абсолютных) пространства (евклидов трехмерный континуум) и времени; в-третьих , основное направление эволюции космических тел — сгущение и конденсация межзвездного газа, диффузных образований, агрегация космического вещества (идея космогонии Канта—Лапласа— Гершеля); в-четвертых , важное гносеологическое следствие: поскольку эволюционирование Вселенной не оказывает существенного влияния на ее структурную организацию, то в ходе описания структуры Вселенной ее историческим развитием можно пренебречь или свести его к нулю, внеся соответствующую поправку (космологический постулат в «широком» смысле: Вселенная однородна и изотропна не только в пространстве, но и во времени). Иначе говоря, допускалось, что учет исторического аспекта не является необходимым для решения всех астрономических проблем, прежде всего, для познания наличной структуры Вселенной . Отсюда следовала недооценка роли космогонического аспекта в астрономических исследованиях, противопоставление космогонического аспекта и решения частных астрономических проблем, наличие разрыва между космогонией и наблюдательной астрономией в XVIII—XIX вв. · Мир астрономических объектов познаваем . Основой и критерием познания в астрономии является наблюдение (в оптическом диапазоне). Познаваем не только структурный, но и генетический (исторический) аспект астрономической реальности (хотя способы их познания существенно отличаются). Гносеологические установки материалистического эмпиризма (в соответствии с которыми единственным источником и критерием нашего знания является опыт) в применении к астрономическому познанию конкретизировались в представлениях, во-первых, о том, что эмпирической базой астрономии выступал не эксперимент (как в физике), а наблюдение; во-вторых, что недостаточность наблюдения компенсируется тем, что астрономическое наблюдение (в отличие от физического эксперимента) может осуществляться непрерывно. · Одной из характерных особенностей астрономического познания (как классического, так и современного) является то, что в астрономии нет свободы выбора условий наблюдения . Необходимость учета условий познания была осознана в классической астрономии в большей степени, чем в классической физике, но в конечном счете принципиально решалась так же, как в механике. Иначе говоря, методология классической астрономии исходила из того, что влиянием условий познания хотя и нельзя пренебречь, но его можно свести к нулю, введя соответствующие поправки в окончательный результат исследования. Такие поправки учитывали трансформацию картины объекта с учетом места и времени наблюдения, а также непрозрачность земной атмосферы для некоторых длин волн, поглощение света в направлении плоскости нашей Галактики и др. · Теоретическая основа астрономии одна — классическая механика. С помощью законов классической механики можно описать все астрономические явления и процессы, и не только в Солнечной системе, но и во всей Вселенной, ибо законы физики, которые обнаружены на Земле, действуют повсеместно во Вселенной. Будущей астрономии, писал П. Лаплас, «не только не должно опасаться, что какое-либо новое светило опровергнет это (механическое. — В.М.) начало, но можно сказать утвердительно заранее, что движение такого светила будет ему соответствовать» *. Классическая астрономия заимствовала из методологии классической физики следующие методологические установки: во-первых, постулат возможности обособления элементов астрономического мира; во-вторых, принцип лапласовского детерминизма, в-третьих, требование континуального описания астрономических процессов; в-четвертых, абстрактное представление о «свободном» характере астрономических объектов. * Лаплас П. Изложение системы мира. СПб., 1861. Т. 2. С. 335—336. · Результат астрономического познания — это некая теоретическая схема на базе классической механики . К такой схеме предъявляются те же требования, что и к любой теоретической схеме: во-первых, отсутствие ссылок на субъект познания, т.е. в идеале — сведение всех величин к абсолютным и устранение относительных за счет выделения некой абсолютной системы отсчета; во-вторых, однозначное применение понятий и их систем для описания явлений; в-третьих, признание в любом исследовании резкой границы между содержанием познания и исследователем (наблюдателем); в-четвертых, наглядное моделирование. Считалось, что все эти признаки свидетельствуют об объективном характере содержания астрономического знания. · Среди методологических установок классической астрономии (как и классической физики) одной из важнейших была уверенность в том, что структура познавательной деятельности в области астрономии вечна и неизменна . Иначе говоря, ее методологические установки не будут подвергаться радикальным изменениям. «Астрономии, — писал Дж. Гершель, — не угрожают такие перевороты, от которых нередко изменяются черты наук менее совершенных, которые разрушают все наши гипотезы и запутывают все наши выводы» *. * Гершелъ Дж. Очерки астрономии. М.,1861. Т. 1. С; 4. Такова в общих чертах система методологических установок классической астрономии, которые направляли, ориентировали процесс астрономического познания с XVIII в. до середины XX в. Конечно, они сложились не сразу, а развивались вместе с развитием классической астрономии. Лишь в XX в. достижения астрономии привели к необходимости радикального качественного изменения системы ее методологических установок. 7.3. Возникновение и развитие научной химии 7.3.1. От алхимии к научной химии Во второй половине XVII в. алхимическая традиция постепенно исчерпывает себя. В течение более чем тысячи лет алхимики исходили из уверенности в неограниченных возможностях превращений веществ, в том, что любое вещество можно превратить в любое другое вещество. И хотя на полуторатысячелетнем пути развития алхимии были получены отдельные положительные результаты (описание многих химических превращений, открытие некоторых веществ, конструирование приборов, химической посуды, аппаратов и др.), тем не менее главные цели, которые ставили перед собой алхимики (искусственное получение золота, серебра, «философского камня», гумункулуса и др.), оказались недостижимыми. Все более укреплялось представление о том, что существует некоторый предел, граница взаимопревращения веществ. Этот предел определяется составом химических веществ. В XVII—XVIII вв. химия постепенно становится наукой о качественных изменениях тел, происходящих в результате изменения их состава (состав → свойства → функции). Все это происходит на фоне развития технической химии (металлургия, стеклоделие, производство керамики, бумаги, спиртных напитков) (в трудах Г. Агриколы, И. Глаубера, Б. Палисси и др.) и открытия новых химических веществ. Начиная с XV в. представление о мире химических веществ, соединений быстро расширяется. Были открыты новые металлы (висмут, платина и др.), вещества с замечательными свойствами (например, фосфор). Развитие ремесла и промышленности обусловливают постоянную потребность в определенных химикалиях — селитре, железном купоросе, серной кислоте, соде, что дает импульс к созданию химических производств, а это в свою очередь стимулирует развитие научной химии. Новому пониманию предмета химического познания способствовало возрождение античного атомизма. Здесь важную роль сыграли труды французского мыслителя П. Гассенди. Он критически воспринимал картезианское понимание материи, теорию вихрей Декарта, считая, что будущее естествознания связано с программой атомизма. Гассенди возрождает представление о том, что вечная и бесконечная Вселенная состоит из постоянно движущихся атомов (различной формы, размеров, неизменных, неделимых и т.д.) и пустоты, которая является условием возможности движения атомов и тел. Причем, если Декарт считал, что материя сама по себе пассивна и движение вносится в нее извне, богом, то Гассенди считает материю активной. По его мнению, «атомы обладают и энергией, благодаря которой движутся или постоянно стремятся к движению» *. В этом Гассенди идет значительно дальше античных атомистов. Весьма важным в учении Гассенди было формулирование понятия молекулы, что имело конструктивное значение для становления научной химии. * Гассенди П. Сочинения. М., 1966. Т. 1. С. 165. Развитие и конкретное приложение идей атомизма к химии осуществил Р. Бойль, который считал, что химия должна быть не служанкой ремесла или медицины, а самостоятельной наукой. Бойль исходил из представления о том, что качественные характеристики и превращения химических веществ могут быть объяснены с помощью понятия о движении, размерах, форме и расположении атомов. Он был на пути к научно обоснованному определению химического элемента как предела разложения вещества с данными свойствами. Бойль разрабатывает не только теоретические, но и экспериментальные основы химии, обосновывает метод химического эксперимента. В химическом эксперименте, с точки зрения Бойля, главное то, что исследователь не может заранее предсказать, как поведут себя вещества в той или иной химической реакции. Химический эксперимент призван прежде всего заставить природу выдать ее тайны, а не подтверждать те или иные теоретические гипотезы. В трудах Бойля заложены основы аналической химии (качественный анализ, применение различных индикаторов (например, лакмус) для распознавания веществ и др.). 7. 3.2. Лавуазье: революция в химии Центральная проблема химии XVIII в. — проблема горения. Вопрос состоял в следующем: что случается с горючими веществами, когда они сгорают в воздухе? Для объяснения процессов горения И. Бехером и его учеником Г. Э. Шталем была предложена теория флогистона. Флогистон — это некоторая невесомая субстанция, которую содержат все горючие тела и которую они утрачивают при горении. Тела, содержащие большое количество флогистона, горят хорошо; тела, которые не загораются, являются дефлогистированными. Эта теория позволяла объяснять многие химические процессы и предсказывать новые химические явления. В течение почти всего XVIII в. она прочно удерживала свои позиции, пока Лавуазье в конце XVIII в. (опираясь на открытия К.В. Шееле сложного состава воздуха и Дж. Пристли кислорода, 1774) не разработал кислородную теорию горения. Лавуазье показал, что все прежде считавшиеся хаотическими явления в химии могут быть систематизированы и сведены в закон сочетания элементов, старых и новых. К уже установленному до него списку элементов (металлы, углерод, сера и фосфор) он добавил новые — кислород, который вместе с водородом входит в состав воды, а также и другой компонент воздуха — не поддерживающий жизни азот. В соответствии с новой системой химические соединения делились в основном на три категории: кислоты, основания, соли. Таким образом, Лавуазье рационализировал химию и объяснил причину большого разнообразия химических явлений: она заключается в материальном различии химических элементов и их соединений. Лавуазье раз и навсегда покончил со старой алхимической номенклатурой, основанной на случайных ассоциациях — «винное масло», «винный камень», «свинцовый сахар» и др. Он ввел (при активном участии К.Л. Бертолле) новую. Новая номенклатура исходила из того, что каждое химическое вещество должно иметь одно определенное название, характеризующее его функции и состав. Например, оксид калия состоит из калия и кислорода, хлорид натрия — из натрия и хлора, сульфид водорода — из водорода и серы, и т.д. Кроме того, Лавуазье поставил вопрос и о количествах, в которых сочетаются различные элементы между собой, и с помощью закона сохранения материи привел химию к представлению о необходимости количественного выражения пропорций, в которых сочетались элементы. С помощью ряда великолепно задуманных и проведенных экспериментов Лавуазье смог также показать, что живой организм действует точно таким же образом, как и огонь, сжигая содержащиеся в пище вещества и высвобождая энергию в виде теплоты. Таким образом, Лавуазье осуществил научную революцию в химии: он превратил химию из совокупности множества не связанных друг с другом рецептов, подлежавших изучению один за одним, в общую теорию, основываясь на которой можно было не только объяснять все известные явления, но и предсказывать новые. 7.3.3. Победа атомно-молекулярного учения Следующий важный шаг в развитии научной химии был сделан Дж. Дальтоном, ткачом и школьным учителем из Манчестера. Изучая химический состав газов, он исследовал весовые количества кислорода, приходящиеся на одно и то же весовое количество вещества (например, азота) в различных по количественному составу окислах, и установил кратность этих количеств. Например, в пяти окислах азота (N2 O, NO, N2 03 , NO2 и N2 05 ) количество кислорода на одно и то же весовое количество азота относится как 1:2:3:4:5. Так был открыт закон кратных отношений. Дальтон правильно объяснил этот закон атомным строением вещества и способностью атомов одного вещества соединяться с различным количеством атомов другого вещества. При этом он ввел в химию понятие атомного веса. И тем не менее в начале XIX в. атомно-молекулярное учение в химии с трудом пробивало себе дорогу. Понадобилось еще полстолетия для его окончательной победы. На этом пути был сформулирован ряд количественных законов (закон постоянных отношений Пруста, закон объемных отношений Гей-Люссака, закон Авогадро, согласно которому при одинаковых условиях одинаковые объемы всех газов содержат одно и то же число молекул), которые получали объяснение позиций атомно-молекулярных представлений. Для экспериментального обоснования атомистики и ее внедрения в химию много усилий приложил Й.Я. Берцелиус. Окончательную победу атомно-молекулярное учение (и опирающиеся на него способы определения атомных и молекулярных весов) одержало на 1-м Международном Конгрессе химиков (1860). В 50—70-е гг. XIX в. на основе учения о валентности и химической связи была разработана теория химического строения (A.M. Бутлеров, 1861), которая обусловила огромный успех органического синтеза и возникновение новых отраслей химической промышленности (производство красителей, медикаментов, нефтепереработка и др.), в теоретическом плане открыла путь построению теории пространственного строения органических соединений — стереохимии (Дж.Г. Вант-Гофф, 1874). Во второй половине XIX в. складываются физическая химия, химическая кинетика — учение о скоростях химических реакций, теория электролитической диссоциации, химическая термодинамика. Таким образом, в химии XIX в. сложился новый общий теоретический подход — определение свойств химических веществ в зависимости не только от состава, но и от структуры. Развитие атомно-молекулярного учения привело к идее о сложном строении не только молекулы, но и атома. В начале XIX в. эту мысль высказал английский ученый У. Праут, исходя из результатов измерений, показывавших, что атомные веса элементов кратны атомному весу водорода. На основе этого Праут предложил гипотезу, согласно которой атомы всех элементов состоят из атомов водорода. Новый толчок для развития идеи о сложном строении атома дало великое открытие Д. И. Менделеевым (1869) периодической системы элементов, которая наталкивала на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями. 7.4.1. Образы, идеи, принципы и понятия биологии XVIII в. Особое место занимает XVIII в. в истории биологии. Именно в XVIII в. в биологическом познании происходит коренной перелом в направлении систематической разработки научных методов познания и формирования предпосылки первой фундаментальной биологической теории — теории естественного отбора. В плеяде выдающихся биологов XVIII в. звезды первой величины — Ж. Бюффон и К. Линней. В своем творчестве они следовали разным исследовательским традициям, воплощавшим для них различные жизненные ориентиры. Каждый из них доводит исследовательскую программу в основном до конца, что оказало значительное влияние на развитие биологического познания. Бюффон в 36-томной «Естественной истории» одним из первых в развернутой форме изложил концепцию трансформизма (ограниченной изменчивости видов и происхождения видов в пределах относительно узких подразделений (от одного единого предка) под влиянием среды); он догадывался о роли искусственного отбора и как предшественник Ж. Сент-Илера сформулировал идею единства живой природы и единства плана строения живых существ (на основе представления о биологическом атомизме). К. Линней своей искусственной классификацией (в единственно возможной тогда форме) подытожил длительный исторический период эмпирического накопления биологических знаний (он описал свыше 10 тыс. видов растений и свыше 4 тыс. видов животных). Вместе с тем Линней осознавал ограниченность искусственной системы и ее возможности. «Искусственная система, — писал он, — служит только до тех пор, пока не найдена естественная. Первая учит только распознавать растения. Вторая научит нас познать природу самого растения» *. Естественная система есть идеал, к которому должны стремиться ботаника и зоология. «Естественный метод есть последняя цель ботаники»,— отмечал Линней **; его особенность в том, что он «включает все возможные признаки. Он приходит на помощь всякой системе, закладывает основание для новых систем. Неизменный сам по себе, он стоит непоколебимо, хотя открываются все новые и новые бесконечные роды. Благодаря открытию новых видов, он лишь совершенствуется путем устранения излишних примет» ***. То, что Линней называет «естественным методом», есть, в сущности, некоторая фундаментальная теория живого. Таким образом, историческая заслуга Линнея в том, что через создание искусственной системы он подвел биологию к необходимости рассмотрения колоссального эмпирического материала с позиций общих теоретических принципов, поставил задачу его теоретической рационализации. * Цит по: Амлинский И.Е. «Философия ботаники» Линнея: содержание и критический анализ // Идея развития в биологии. М., 1965. С. 7. ** Там же. С. 33. *** Цит. по: Амлинский И.Е. Указ. соч. С. 34. В XVIII в. идеи естественной классификации развивались Б. Жюсье, который в ботаническом саду Трианона рассадил растения в соответствии со своими представлениями об их родстве, И. Гертнером, М. Адансоном и др. Первые естественные системы не опирались на представление об историческом развитии организмов, предполагали лишь некоторое их «сродство». Но сама постановка вопроса о «естественном сродстве» инициировала выявление объективных закономерностей единого плана строения живого. В середине XVIII в. среди биологов еще не утвердилась мысль о том, что объяснение организации живого находится в прямой зависимости от понимания истории его развития. Вместе с тем постановка и обоснование задачи создания естественной системы означали, что начинается этап формирования предпосылок первой фундаментальной теории в биологии, вскрывающей «механизм» происхождения органических видов. Но такие предпосылки формировались не только в систематике, но и в эмбриологии. В первой половине XVIII в. борьба преформизма и эпигенеза особенно обостряется. Все более четко проявляется различие их философско-методологических оснований. Преформисты (Ш. Бонне, А. Галлер и др.), опиравшиеся на абстрактно-умозрительную традицию, считали, что проблема эмбрионального развития должна получить свое разрешение с позиций всеобщих принципов бытия, постигаемых исключительно разумом, и поэтому без особого энтузиазма относились к эмпирическим исследованиям в эмбриологии. Сторонники теории преформации, как правило, были рационалистами и считали, что разум определяет конечный результат познания независимо от результатов наблюдения. На иных философско-методологических «строительных лесах» возводилась концепция эпигенеза. Выражая стихийно-эмпирическую традицию, эта концепция нацеливала исследователей на наблюдательные и экспериментальные операции над процессом образования организма из бесструктурной, неоформленной изначальной субстанции. Для сторонников эпигенеза характерна постоянная нацеленность на опытное изучение эмбриогенеза. Вместе с тем философские основания эпигенеза в ходе его исторического развития не оставались неизменными. Так, ранний эпигенез XVII в., представленный, например, в работах У. Гарвея, опирался на аристотелизм и объяснял новообразования в эпигенезе с телеологических позиций как следствие «стремления к совершенству». В XVIII в. усиливается тенденция материалистического истолкования эмбриогенеза, что становится особенно заметным в трудах К. Вольфа, который пытался переосмыслить эпигенез в духе материализма и методологических установок физики. К. Вольф трактовал эпигенез как результат действия двух существенных начал - силы, регулирующей питательные соки, и способности их затвердевания. Позиция эпигенеза также была более перспективной, чем позиция преформизма, в проблеме зарождения жизни. Эпигенетики отказались от идеи божественного творения живого и сумели подойти к научной постановке проблемы происхождения жизни. Уже Вольф сделал недвусмысленный вывод о принципиальной возможности возникновения органических тел в природе... путем зарождения их из неорганических веществ. Таким образом, система биологического познания в конце XVIII в. подошла к рубежу, который требовал перехода на качественно новый уровень организации средств познания в связи с проблемами эмбриогенеза и создания естественной системы. Лейтмотивом нового этапа развития биологии стала идея эволюции. 7.4.2. От концепций трансформации видов к идее эволюции Начиная с середины XVIII в. концепции трансформизма получили широкое распространение. Их было множество, и различались они представлениями о том, какие таксоны и каким образом могут претерпевать качественные преобразования. Наиболее распространенной была точка зрения, в соответствии с которой виды остаются неизменными, а разновидности могут изменяться. Стоявший на этой точке зрения К. Линней писал: «Вид, род всегда являются делом природы, разновидность — чаще всего дело культуры; классический порядок — дело природы и искусства вместе» *. Наряду с такой точкой зрения существовала и другая, допускавшая трансформацию самих видов (Ж. Бюффон). Допущение изменчивости видов в ограниченных пределах под воздействием внешних условий, гибридизации и проч. характерно для целого ряда трансформистов XVIII в. В некоторых трансформистских концепциях даже допускалась возможность резких превращений одних организмов в другие, взаимных преобразований любых таксонов. Трансформизм — это полуэмпирическая позиция, построенная на основе обобщения большого числа фактов, свидетельствовавших о наличии глубинных взаимосвязей между видами, родами и другими таксонами. Но сущность этих глубинных взаимосвязей пока еще не была понята. «Выход» на познание такой сущности и означал переход от трансформизма к эволюционизму. * Цит по: Амлииский И.Е. Указ. соч. С. 33. Чтобы перейти от представления о трансформации видов к идее эволюции, исторического развития видов, было необходимо, во-первых, «обратить» процесс образования видов в историю, увидеть созидающе-конструктивную роль фактора времени в историческом развитии организмов; во-вторых, выработать представление о возможности порождения качественно нового в таком историческом развитии. Переход от трансформизма к эволюционизму в биологии произошел на рубеже XVIII—XIX вв. Социокультурные предпосылки идеи биологической эволюции складывались на основе отражения радикальных преобразований социально-экономического базиса общества, роста динамизма экономических и политических сторон жизни, бурных революционных потрясений XVII-XVIII вв., прежде всего Английской к Французской революций, культурного прогресса, под влиянием развития философии и естествознания (космологии, геологии и др.). Что касается собственно биологического материала, то здесь особую роль сыграла необходимость осмысления природы «лестницы существ», т.е. образа последовательно расположённых непрерывно усложняющихся органических форм (Ш. Бонне). Важным являлся и мировоззренческий аспект проблемы историзма живого: куда заведет исследование истории живого — в глубь материальных, природных процессов или в сферу духовно-божественного? Многие идеалистически настроенные естествоиспытатели связывали перспективы биологического познания именно с ориентацией на внематериальные факторы. Так, в 1836 г. К.М. Бэр писал, что «всякое бытие есть не что иное, как продолжение создания, и все естественные науки — только длинное пояснение единого слова: да будет!» * Материалистическая конструктивная линия в этом вопросе на рубеже XVIII—XIX вв. была выражена деизмом, который, как известно, для материалиста есть не более как удобный и простой способ отделаться от религии. Деизм позволял материалистически решать вопрос о природе факторов, обеспечивающих развитие органических форм, объяснить их прогрессивное историческое восхождение. * Бэр К. Взгляд на развитие наук // Избранные произведения русских естествоиспытателей первой половины XIX века. М., 1959. С. 219. Большой вклад в проведение материализма под оболочкой деизма в методологию биологического познания внес Ж.Б. Ламарк. Он считал совершенно различными два процесса: творение и производство. Творение нового — это божественный акт, производство — естественный закономерный процесс порождения природой новых форм. «Творить может только Бог,— утверждал Ламарк,— тогда как природа может только производить. Мы должны допустить, что для своих творений божеству не нужно время, между тем как природа может действовать только в пределах определенного времени» * и «создавать все доступные нашему наблюдению тела, и производить все происходящие в них перемены, видоизменения, даже разрушения и возобновления» **. Природные формы не содержат в себе ничего, что связывало бы их с божественной субстанцией, и поэтому их познание должно ориентироваться исключительно лишь на материальные причины. Не случайно, что именно Ламарк был одним из тех первых естествоиспытателей, которые перевели идею эволюции органического мира на уровень теории эволюции. В Германии в начале XIX в. убежденным сторонником представления об эволюции живой природы»из бесформенной материи выступал Г.Р. Тревиранус. * Ламарк Ж.Б. Аналитическая система положительных знаний человека, полученная прямо или косвенно из наблюдений // Избранные произведения: В 2 т. М., 1959. Т. 2. С. 354. ** Там же. С. 353. Идея развития выступила тем конструктивно-организующим началом, которое ориентировало накопление эмпирических и теоретико-методологических предпосылок теории эволюции. В ходе конкретизации этой идеи был построен ряд важных теоретических гипотез, развивавших различные принципы, подходы к теории эволюции. К самым значительным и относительно завершенным гипотезам следует отнести: ламаркизм, катастрофизм и униформизм. Ж.Б. Ламарк, ботаник при Королевском ботаническом саде, первый предложил развернутую концепцию эволюции органического мира. Он остро осознавал необходимость формулирования новых теоретических целей, методологических установок биологического познания; потребность в обобщающей теории развития органических форм; необходимость решительного разрыва со схоластикой и верой в авторитеты; ориентации на познание объективных закономерностей органических систем. Определенную роль сыграл и научный элитаризм, который позволял Ламарку, боровшемуся в одиночку за свои идеи, отгораживаться от устаревших точек зрения, стандартов, норм, критериев, креационистского невежества своего времени и т.п. Предпосылкой создания этой концепции явился тот колоссальный эмпирический материал, который был накоплен в биологии к началу XIX в., систематизирован в искусственных системах, зачатках естественной систематики. Ламарк существенно расширил этот материал за счет введения зоологии беспозвоночных, которая до него должным образом не оценивалась как источник для эволюционистских обобщений. Базой ламарковской концепции эволюции послужили следующие важные фактические обстоятельства: наличие в систематике разновидностей, которые занимают промежуточное положение между двумя видами; изменение видовых форм при переходе их в иные экологические и географические условия; трудности классификации близких видов и наличие в природе большого количества так называемых сомнительных видов, факты гибридизации, и особенно отдаленной, в том числе и межвидовой; обнаружение ископаемых форм; изменения, претерпеваемые животными при их одомашнивании, а растениями при их окультуривании и др. Эти данные Ламарк обобщает через призму ряда новых для того времени теоретических и методологических представлении. Во-первых, он настойчиво подчеркивает важность времени как фактора эволюции органических форм. Во-вторых, последовательно проводит представление о развитии органических форм как о естественном процессе восхождения их от высших к низшим. В-третьих, включает в свое учение качественно новые моменты в понимании роли среды в развитии органических форм. Если до Ламарка господствовало представление о том, что среда — это либо вредный для организма фактор, либо, в лучшем случае, нейтральный, то благодаря Ламарку среду стали понимать, как условие эволюции органических форм. Творчески синтезируя все эти эмпирические и теоретические компоненты, Ламарк сформулировал гипотезу эволюции, базирующуюся на следующих-принципах: принцип градации (стремление к совершенству, к повышению организации); принцип прямого приспособления к условиям внешней среды, который, в свою очередь, конкретизировался в двух законах: во-первых, изменения органов под влиянием, продолжительного упражнения (неупражнения) сообразно новым потребностям и привычкам; во-вторых, наследования таким приобретенных изменений новым поколением. Согласно этой теории, современные виды живых существ произошли от ранее живших путем приспособления, обусловленного их стремлением лучше гармонизировать с окружающей средой. Например, жираф, доставая растущие на высоком дереве листья, вытягивал свою шею, и это вытягивание было унаследовано его потомками. Хотя эволюционная концепция Ламарка казалась его современникам надуманной и мало кем разделялась, тем не менее она носила новаторский характер, была первой обстоятельной попыткой решения проблемы эволюции органических форм. Особенно важно то, что Ламарк искал объяснение эволюции во взаимодействии организма и среды и стремился материалистически трактовать факторы эволюции. Главная теоретико-методологическая трудность, стоявшая перед Ламарком, заключалась в воспроизведении диалектического взаимодействия внешнего и внутреннего, организма и среды. Эту проблему решить ему не удалось. В результате внешний (эктогенез) и внутренний (автогенез) факторы эволюции в его концепции трактовались независимо друг от друга *. Кроме того, Ламарк опирался на ряд исходных допущений, которые упрощали сам подход к проблеме: отождествление наследственной изменчивости и приспособления организма; историческая неизменяемость факторов эволюции и др. Поэтому не удивительно, что Ламарку не удалось решить фундаментальные проблемы, стоящие перед любой эволюционной концепцией (диалектика наследственности и изменчивости, проблема органической телеологии, взаимосвязь необходимости и случайности и др.). * Это создавало возможность идеалистической трактовки автогенеза, что и нашло свое выражение в концепциях психоламаркизма (Э. Геринг, О. Гертвиг и др.). В начале XIX в. наука еще не располагала достаточным материалом для того, чтобы ответить на вопрос о происхождении видов иначе, как предвосхищая будущее, пророчествуя о нем. Первым таким «пророком» и стал Ламарк. Иным образом конкретизировалась идея развития в учении катастрофизма (Ж. Кювье, Л. Агассис, А. Седжвик, У. Букланд, А. Мильн-Эдвардс, Р.И. Мурчисон, Р. Оуэн и др.). Здесь идея биологической эволюции выступала как производная от более общей идеи развития глобальных геологических процессов. Если Ламарк старался своей деистической позицией отодвинуть роль божественного «творчества», отгородить органический мир от вмешательства творца, то катастрофисты, наоборот, приближают бога к природе, непосредственно вводят в свою концепцию представление о прямом божественном вмешательстве в ход природных процессов. Катастрофизм есть такая разновидность гипотез органической эволюции, в которой прогресс органических форм объясняется через признание неизменяемости отдельных биологических видов. В этом, пожалуй, главное своеобразие данной концепции. В системе эмпирических предпосылок катастрофизма можно указать следующие: отсутствие палеонтологических связей между историческими сменяющими друг друга флорами и фаунами; существование резких перерывов между смежными геологическими слоями; отсутствие переходных форм между современными и ископаемыми видами; малая изменяемость видов на протяжении культурной истории человечества; устойчивость, стабильность современных видов; редкость случаев образования межвидовых гибридов; обнаружение обширных излияний лавы; обнаружение смены земных отложений морскими и наоборот; наличие целых серий перевернутых пластов, существование трещин в пластах и глубинных разломов коры. Длительность существования Земли в начале XIX в. оценивалась примерно в 100 тыс. лет — таким относительно небольшим сроком трудно объяснить эволюцию органических форм *. * Вопрос о возрасте Земли — особая проблема. В течение многих веков возраст Земли считался равным нескольким тысячам лет, что следовало из библейского мифа о сотворении мира. Однако к концу XVIII в. геология уже становилась настоящей наукой, и большинство геологов начали осознавать, что такие процессы, как образование осадочных пород или выветривание, имеют затяжной характер и совершаются за огромные промежутки времени. Во второй половине XVIII в. возраст Земли оценивался геологами лишь в 75 тыс. лет. Однако к середине XIX в. этот отрезок времени «растянулся» до сотен миллионов лет. В настоящее время методами радиоактивного датирования возраст Земли оценивается в 4,6 млрд лет. Теоретическим ядром катастрофизма являлся принцип разграничения действующих в настоящее время и действовавших в прошлом сил и законов природы. Силы, действовавшие в прошлом, качественно отличаются от тех, которые действуют сейчас. В отдаленные времена действовали мощные, взрывные, катастрофические силы, прерывавшие спокойное течение геологических и биологических процессов. Мощность этих сил настолько велика, что их природа не может быть установлена средствами научного анализа. Наука может судить не о причинах этих сил, а лишь об их последствиях. Таким образом, катастрофизм выступает как феноменологическая концепция. Главный принцип катастрофизма раскрывался в представлениях о внезапности катастроф, о крайне неравномерной скорости процессов преобразования поверхности Земли, о том, что история Земли есть процесс периодической смены одного типа геологических изменений другим, причем между сменяющими друг друга периодами нет никакой закономерной, преемственной связи, как нет ее между факторами, вызывающими эти процессы. По отношению к органической эволюции эти положения конкретизировались в двух принципах: во-первых, в принципе коренных качественных изменений органического мира в результате катастроф; во-вторых, в принципе прогрессивного восхождения органических форм после очередной катастрофы. С точки зрения Ж. Кювье, те незначительные изменения, которые имели место в периоды между катастрофами, не могли привести к качественному преобразованию видов. Только в периоды катастроф, мировых пертурбаций исчезают одни виды животных и растений и появляются другие, качественно новые. Кювье писал: «Жизнь не раз потрясала на нашей земле страшными событиями. Бесчисленные живые существа становились жертвой катастроф: одни, обитатели суши, были поглощаемы потопами, другие, населявшие недра вод, оказывались на суше вместе с внезапно приподнятым дном моря, сами их расы навеки исчезали, оставив на свете лишь немногие остатки, едва различимые для натуралистов»*. Творцы теории катастрофизма исходили из мировоззренческих представлений о единстве геологических и биологических аспектов эволюции; непротиворечивости научных и религиозных представлений, вплоть до подчинения задач научного исследования обоснованию религиозных догм. В основе катастрофизма — допущение существования скачков, перерывов постепенности в развитии. * Кювье Ж. Рассуждение о переворотах на поверхности земного шара. М.; Л., 1937. С.83. Можно ли выделить инвариантные черты у видов, сменяющих друг друга после очередной катастрофы? По мнению Кювье, можно допустить существование такого сходства. Он выделял четыре основных типа животных (позвоночные, мягкотелые, членистые и лучистые), с каждом из которых соотносил определенный исторически неизменный «план композиции» (основу многообразия систем скоррелированных признаков организма). «План композиции» у катастрофистов — нематериальная сила, идеальный организующий центр божественного творения. По их мнению, добавление «творящей силы» после каждой очередной катастрофы определяет прогрессивное восхождение органических форм. К концепции катастрофизма в отечественной литературе долгое время относились снисходительно, как к чему-то наивному, устаревшему и полностью ошибочному. Тем не менее значение этой концепции в истории геологии, палеонтологии, биологии велико. Катастрофизм способствовал развитию стратиграфии, связыванию истории развития геологического и биологического миров, введению представления о неравномерности темпов преобразования поверхности земли, выделению качественного своеобразия определенных периодов в истории Земли, исследованию закономерностей повышения уровня организации видов в рамках общих ароморфозов и др. В исторической геологии и палеонтологии не потеряло своего значения и само понятие «катастрофа»: современная наука также не отрицает идеологических катастроф. Они представляют собой «закономерный процесс, неизбежно наступающий на определенном этапе жизнедеятельности геологической системы, когда количественные изменения выходят за пределы ее меры» *. * Зубков И.Ф. Проблема геологической формы движения материи. М.,1979. С.170. 7.4.5. Униформизм. Актуалистический метод В XVIII — первой половине XIX в. была обстоятельно разработана концепция униформизма (Дж. Геттон, Ч. Лайель, М. В. Ломоносов, К. Гофф и др.). Если катастрофизм вводил в теорию развития Земли супранатуральные факторы и отказывался от научного исследования закономерностей и причин древних геологических процессов, то униформизм, наоборот, выдвигает принцип познаваемости истории Земли и органического мира. Униформисты выступали против катастрофизма, критикуя прежде всего неопределенность представления о причинах катастроф. Униформизм складывался под влиянием успехов классической механики, прежде всего небесной механики, и галактической астрономии, представлений о бесконечности и безграничности природы в пространстве и времени. Одним из его следствий была точка зрения о том, что в природе человек как субъект познания не находит признаков начала мира и в будущем тоже не видит предварительных указаний на его конец (Дж. Геттон). Другая важнейшая установка униформизма — познаваемость мира и его истории. Ядром униформизма являлся актуалистический метод, который, по замыслу, его основоположников (прежде всего Ч. Лайеля), должен был стать ключом для познания древних геологических процессов. Актуалистический метод предполагал преемственность прошлого и настоящего, тождественность современных и древних геологических процессов. По характеру современных геологических процессов можно с определенной степенью приближения описать закономерности древних процессов, в том числе и образование горных пород. Пропагандируя всемогущество актуалистического метода, Ч. Лайель писал, что с его помощью человек становится способным «не только исчислять миры, рассеянные за пределами нашего слабого зрения, но даже проследить события бесчисленных веков, предшествовавших созданию человека и проникнуть в сокровенные тайны океана или внутренностей земного шара» *. Вместе с тем сам Лайель систематически применял актуалистический метод лишь к неживой природе, а в области органических процессов он делал серьезные уступки катастрофизму, допуская возможность актов божественного творения органических форм. * Лайелъ Ч. Основные начала геологии. СПб., 1866. Ч. 1. С. 229. К эмпирическим предпосылкам концепции униформизма следует отнести: установление того, что возраст Земли намного больше, чем предполагали катастрофисты; данные изучения латеральной смены фаций в пределах одного стратиграфического горизонта; консолидацию и превращение известковых мергелей в сцементированную породу; способность рек прорезать глубокие ущелья в пластах лавы; установление причинной связи между вулканизмом и тектоническими нарушениями; установление того, что третичное время состоит в действительности из нескольких периодов (эоцен, миоцен, ранний и поздний плиоцен) (см. 13.3.1); которые были весьма продолжительными для того, чтобы накопились мощные осадки и произошли значительные изменения в органическом мире; факты медленных, без катастроф поднятий суши (в частности, островов) и др. Униформизм опирался на следующие теоретические принципы: во-первых, однообразие действующих факторов и законов природы, их неизменяемость на протяжении истории Земли , во-вторых, непрерывность действия факторов и законов, отсутствие всяческих переворотов, скачков в истории Земли, в-третьих, суммирование мелких отклонений в течение громадных периодов времени, в-четвертых, потенциальная обратимость явлений и отрицание прогресса в развитии. Тем не менее и униформизм являлся достаточно ограниченной теорией развития: сведя развитие к цикличности, он не видел в нем необратимости; с точки зрения сторонников униформизма, Земля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. И ламаркизм, и катастрофизм, и униформизм — гипотезы, которые были необходимыми звеньями в цепи развития предпосылок теории естественного отбора, промежуточными формами конкретизации идеи эволюции. Эти гипотезы значительно отличаются между собой и своими целевыми ориентациями, и степенью разработанности. Так, катастрофизм и униформизм ориентировались преимущественно на геологическую проблематику, и для них характерно отсутствие развернутых представлений о факторах эволюции органического мира. Трудности создания теории эволюции были связаны со многими факторами. Прежде всего с господством среди биологов представления о том, что сущность органических форм неизменна и внеприродна и как таковая может быть изменена только Богом. Кроме того, не сложились объективные критерии процесса и результата биологического исследования. Так, не было ясности, каким образом надо строить научную аргументацию и что является ее решающим основанием. Доказательством часто считали либо наглядные демонстрации (как говорил Ч. Лайель: «Покажите мне породу собак с совершенно новым органом, и я тогда поверю в эволюцию»), либо абстрактно-умозрительные соображения натурфилософского порядка. Не ясен был характер взаимосвязи теории и опыта. Долгое время, вплоть до начала XX в., многие биологи исходили из того, что одного факта, несовместимого с теорией, достаточно для ее опровержения. Был неразвит и понятийный аппарат биологии. Это проявлялось, во-первых, в недифференцированности содержания многих понятий. Например, отождествлялись реальность и неизменность видов; изменяемость видов считалась равнозначной тому, что вид реально не существует, а есть результат классифицирующей деятельности мышления ученого. Во-вторых, плохо постигались диалектические взаимосвязи, например взаимосвязь видообразования и вымирания. Так, Ламарк исходил из того, что видообразование не нуждается в вымирании, а определяется только приспособляемостью и передачей приобретенных признаков по наследству. А те, кто обращал внимание на вымирание (например, униформисты), считали, что вымирание несовместимо с естественным образованием видов и предполагали участие в этом процессе творца. Следовательно, было необходимо вырабатывать новые понятия и представления, новые закономерности, отражающие диалектический характер отношения организма и среды. Эмпирические предпосылки эволюционной теории обусловливались всем ходом развития палеонтологии, эмбриологии, сравнительной анатомии, систематики, физиологии, биогеографии других наук во второй половине XVIII — первой половине XIX в. Свое концентрированное выражение они находят прежде всего в систематике растительного и животного миров, поскольку только «благодаря классификации разнообразие органического мира становится доступным для изучения другими биологическими дисциплинами. Без нее смысл большей части результатов, полученных в других отраслях биологии, оставался бы неясным» *. * Майр Э. Принципы зоологической систематики. М., 1971. С. 17. Большое аначение для утверждения теории развития имела идея единства растительного и животного миров. Содержанием этой идеи являлось представление о том, что единство органического мира должно иметь свое морфологическое выражение, проявляться в определенном структурном подобии организмов. В 30-е гг. XIX в. М. Шлейден и Т. Шванн разработали клеточную теорию, в соответствии с которой образование клеток является универсальным принципом развития любого (и растительного, и животного) организма; клетка — неотъемлемая элементарная основа любого организма (см. 8.3.2). Чарльз Дарвин в создании своей эволюционной теории опирался на колоссальный эмпирический материал, собранный как его предшественниками, так и им самим в ходе путешествий, прежде всего кругосветного путешествия на корабле «Бигль». Основные эмпирические обобщения, наталкивающие на идею эволюции органических форм, Дарвин привел в работе «Происхождение видов» (1859). Дарвин был с юных лет знаком с эволюционными представлениями, неоднократно сталкивался с высокими оценками эволюционных идей. В своем творчестве он опирался на представление (сформировавшееся в недрах униформизма) о полной познаваемости закономерностей развития природы, возможности их объяснения на основе доступных для наблюдения сил, факторов, процессов. Дарвину всегда были присущи антикреационистские и антителеологические воззрения; он отрицательно относился к антропоцентризму и был нацелен на рассмотрение происхождения человека как части, звена единого эволюционного процесса. Определенную конструктивную ролъ в выработке принципов селекционной теории эволюции сыграло утверждение (сформулированное Т.Р. Мальтусом) о том, что имеется потенциальная возможность размножения особей каждого вида в геометрической прогрессии. Свою теорию Дарвин строит на придании принципиального значения таким давно известным до него фактам, как наследственность и изменчивость. От них отталкивался и Ламарк, непосредственно связывая эти два понятия представлением о приспособлении. Приспособительная изменчивость передается по наследству и приводит к образованию новых видов — такова основная идея Ламарка. Дарвин понимал, что непосредственно связывать наследственность, изменчивость и приспособляемость нельзя. В цепь наследственность — изменчивость Дарвин вводил два посредствующих звена. Первое звено связано с понятием «борьба за существование», отражающим тот факт, что каждый вид производит больше особей, чем их выживает до взрослого состояния; среднее количество взрослых особей находится примерно на одном уровне; каждая особь в течение своей жизнедеятельности вступает в множество отношений с биотическими и абиотическими факторами среды (отношения между организмами в популяции, между популяциями в биогеоценозах, с абиотическими факторами среды и др.). Дарвин разграничивает два вида изменчивости — определенная и неопределенная. Определенная изменчивость (в современной терминологии — адаптивная модификация) — способность всех особей одного и того же вида в определенных условиях внешней среды одинаковым образом реагировать на эти условия (климат, пищу и др.). По современным представлениям адаптивные модификации не наследуются и потому не могут поставлять материал для органической эволюции. (Дарвин допускал, что определенная изменчивость в некоторых исключительных случаях может такой материал поставлять.) Неопределенная изменчивость (в современной терминологии — мутация) предполагает существование изменений в организме, которые происходят в самых различных направлениях. Неопределенная изменчивость в отличии от определенной носит наследственный характер, и незначительные отличия в первом поколении усиливаются в последующих. Неопределенная изменчивость тоже связана с изменениями окружающей среды, но уже не непосредственно, что характерно для адаптивных модификаций, а опосредованно. Дарвин подчеркивал, что решающую роль в эволюции играют именно неопределенные изменения. Неопределенная изменчивость связана обычно с вредными и нейтральными мутациями, но возможны и такие мутации, которые в определенных условиях оказываются перспективными, способствуют органическому прогрессу. Дарвин не ставил вопроса о конкретной природе неопределенной изменчивости. В этом проявилась его интуиция гениального исследователя, осознающего, что еще не пришло время для понимания этого феномена *. * Высказанные им соображения о «пангенезисе» носили откровенно натурфилософский характер, что было ясно и самому Дарвину. Второе посредствующее звено, отличающее теорию эволюции Дарвина от ламаркизма, состоит в представлении о естественном отборе как механизме, который позволяет выбраковывать ненужные формы и образовывать новые виды. Успехи селекционной практики (главной стороной которой является сохранение особей с полезными, с точки зрения человека, свойствами, усиление этих свойств из поколения в поколение, осуществлявшееся в процессе ведущегося человеком искусственного отбора) послужили той главной эмпирической базой, которая привела к появлению теории Дарвина. Прямых доказательств естественного отбора у Дарвина не было; вывод о существовании естественного отбора он делал по аналогии с отбором искусственным. Тезис о естественном отборе является ведущим принципом дарвиновской теории, который позволяет разграничить дарвинистские и недарвинистские трактовки эволюционного процесса. В нем отражается одна из фундаментальных черт живого — диалектика взаимодействия органической системы и среды. Таким образом, дарвиновская теории эволюции опирается на следующие принципы: • борьбы за существование; • наследственности и изменчивости; • естественного отбора. Эти принципы являются краеугольным основанием научной биологии. Э. Геккель называл Дарвина «Ньютоном органического мира». Символично, что в Вестминстерском аббатстве Дарвин похоронен рядом с И. Ньютоном. В этом сближении имен двух великих ученых есть большой смысл. Как Ньютон завершил труды своих предшественников созданием первой фундаментальной физической теории — классической механики, так Ч. Дарвин довел до завершения процесс поиска способов конкретизации идеи эволюции, создал первую фундаментальную теорию в биологии — теорию естественного отбора и заложил основания научного познания исторического аспекта органических систем. 7.4.7. Методологические установки классической биологии Методологические установки классической биологии развивались медленно, начиная с середины XVIII в. вплоть до начала XX в. В общих чертах содержание методологических установок классической биологии состоит в следующем. • Признание объективного, не зависящего от сознания и воли человека, существования органических форм - главная мировоззренческая посылка биологического познания . При всем различии мировоззренческих позиций, биологи исходили из того, что органический мир существует независимо от сознания его исследователей; субъективно-идеалистические представления не играли существенной роли в биологическом познании. Вместе с тем единство в вопросе об объективном существовании органических форм не исключало различий взглядов на роль материальных и идеальных факторов в происхождении и функционировании органических форм. В биологии гораздо дольше, чем в других отраслях естествознания, сосуществовали объективно-идеалистическая и. материалистическая трактовки природы объекта. По мере развития биологии стихийная материалистическая ориентация ученых становилась все более весомой; радикальный перелом произошел в середине XVIII в., хотя еще вплоть до XX в. появлялись рецидивы витализма. В XIX в. укреплялось представление о том, что мир органических форм, мир живого образовался естественным образом, порожден материальной природой без прямого либо косвенного вмешательства потусторонних сил. Формирование такой установки было важнейшей предпосылкой преобразования биологического дознания в науку. · Классическая биология исходила из того, что мир живого, органических форм имеет определенные объективные закономерности, порядок, структуру; эти закономерности познаваемы средствами науки. Классическое биологическое познание концентрировалось лишь на одном качественно определенном уровне организации живого (организменном либо клеточном, реже — тканевом), который одновременно считался и первичным. Все надорганизменные уровни (колонии, популяции, вид, биоценоз, биосфера) рассматривались как производные, вторичные, для которых характерны лишь аддитивные, а не интегративные свойства. Это — ориентация на моносистемность. · Важную методологическую роль играло представление о том, что органический мир есть, с одной стороны, некое многообразие форм, явлений, процессов, а с другой стороны, одновременно должен представлять собой и некоторое единство. С середины XVIII в. пробивала себе дорогу мысль, что материалистическое понимание такого единства может лежать только в истории органического мира. Поэтому методологической установкой классической биологии, рубежом, разделявшим донаучный и научный этапы ее развития, выступало представление о том, что органический мир имеет свою историю, его нынешнее состояние есть результат предшествующей исторической естественной эволюции. Вместе с тем понимание историзма в методологии классической биологии было ограниченным. Это проявлялось, в частности, в том, что историзм, развитие, эволюция рассматривались как полностью обращенные в прошлое, исключительно ретроспективно, не доводились до настоящего, до современности. Такая установка сыграла негативную роль в истории дарвинизма, задержав экспериментальное исследование естественного отбора. Тем не менее важнейшим достижением классической биологии явилось представление о том, что природа живого может быть понята и объяснена только через знание его истории. История органического мира может и должна получить научно-рационалистическое и материалистическое объяснение. · На основе синтеза представлений о единстве (взаимосвязи) и историзме органического мира формируется принцип системности . Системное воспроизведение объекта предполагает выявление единства в предметном многообразии живого. Можно сказать, что научная биология начинается там, где на смену предметоцентризму приходит системоцентризм. Теория Дарвина, по сути, есть результат системного исследования. · В вопросе о характере познания методологические установки классической биологии формулируют в основном те же представления, что и методологические установки других естественных наук этого периода. Познание — это обобщение фактов в несколько этапов, уровней (наблюдение, суждение, умозаключение, принципы, теория). Основой познания является наблюдение. Начинаясь с наблюдения, оно продолжается на уровне мыслительных процедур, к ним относятся: описание (как с помощью терминов языка (естественного), так и наглядным образом — с помощью рисунков, схем и др.); систематизация на основе определенных выделенных признаков объектов (высшей формой систематизации является классификация, когда выбор признаков связан с выделением существенных сторон объекта); сравнение, позволяющее выявлять законы объекта путем сопоставления существенных характеристик объекта (высокая эффективность метода сравнения вызвала к жизни такие науки, как сравнительная анатомия, сравнительная морфология, сравнительная физиология, сравнительная систематика и др.). Содержательным является только первый уровень — уровень наблюдения как формы непосредственного чувственного контакта объекта с объектом. Мыслительные процедуры, акты деятельности разума не вносят в содержание биологического знания новых моментов, лишь перерабатывают то, что получено в процессе наблюдения. Наблюдение как бы «переливает» содержание объекта в сознание субъекта. Таким образом, классическая биология (как и классические физика и астрономия) в своих методологических установках исходили преимущественно из эмпирического обоснования знания (единственной содержательной основой знания признавался чувственный опыт в виде наблюдения). В классической биологии эксперимент еще не рассматривался как важный метод эмпирического познания органических объектов. Классическая биология - это биология по преимуществу наблюдательная. Внедрение метода эксперимента в основные отрасли биологии в том числе и в теопиот эволюции — заслуга XX в. • Факт нарушения реальной картины объекта в процессе микроскопического исследования осознавался, но при этом биологи исходили из того, что внесенными в ходе подготовки к наблюдению и самого наблюдения изменениями картины, объекта можно либо пренебречь, либо внести на них поправку и тем самым свести их к нулю . Методологические установки классической биологии допускали следующие отношения между знанием и объектом познания: однозначное соответствие каждого элемента теории определенному элементу объекта (органического мира); наглядность биологических образов и представлений, понятий; отсутствие ссылки на условия познания в результате исследования. • Одним из важнейших методологических затруднений являлось непонимание диалектического пути развития теории, ее взаимосвязи с опытом , того обстоятельства, что на ранних этапах своего развития теория может не объяснить все факты ее предметной области. Потому господствовало представление, что один-единственный факт, противоречащий теории, может ее полностью опровергнуть. На основании такого методологического «стандарта» строились почти все попытки «закрыть» теорию эволюции Дарвина и попытаться заменить ее другой концепцией. • Методологические установки классической биологии в своей основе были метафизическими и поэтому неспособными выразить тождество противоположных сторон целостного системного объекта. Это отражалось в том, что всеобщие характеристики системной организации воспроизводились в двух противоположных методологических регулятивах. Во-первых , по вопросу о природе целостности и способах ее отражения в познании существовали две противоположные методологические установки — редукционизм и целостный подход, которые в мировоззренческом плане воплощались в двух противостоящих друг другу позициях — механицизма и витализма. Редукционизм исходил из того, что органическая целостность может быть сведена к простой аддитивной сумме свойств составляющих ее (механических, физических и химических) частей, а целостный подход (в разных своих вариантах — холизм, органицизм и др.), подчеркивая качественное своеобразие целого по сравнению с его частями, считал таким основанием целостности некую супранатуральную субстанцию. Во-вторых , в качестве противоположных методологических установок выступали механистический детерминизм и телеология . Первый игнорировал функциональное единство органических систем, а второй усматривал в целесообразности таких систем проявление идеалистической основы. Материалистическое преодоление телеологизма в биологии началось с учения Ч. Дарвина, который нанес смертельный удар телеологии в естествознании и объяснил ее рациональный смысл. В-третьих , для методологических позиций классической биологии характерно противопоставление структурно-инвариантного и генетическо-исторического подходов, ориентация на неизменность факторов эволюции, господство организмоцентрического мышления (исходной «клеточкой» рассмотрения органической эволюции выступал отдельный организм; организмоцентризм — конкретная биологическая форма предмстоцентризма). · И наконец, классическая биология исходила из того, что структура познавательной деятельности в биологии неизменна, методологические принципы биологического познания исторически не развиваются. 8. ЕСТЕСТВОЗНАНИЕ ВТОРОЙ ПОЛОВИНЫ XIX в.: НА ПУТИ К НОВОЙ НАУЧНОЙ РЕВОЛЮЦИИ Вторая половина XIX в. в развитии естествознания занимает особое место. Этот период знаменует одновременно и завершение старого, классического естествознания, и зарождение нового, неклассического. С одной стороны, великое научное достижение, заложенное гением Ньютона, — классическая механика — получает в это время возможность в полной мере развернуть свои потенциальные возможности, а с другой стороны, в недрах классического естествознания уже зреют предпосылки новой научной революции; механистической (метафизической) методологии недостаточно для объяснения сложных объектов, которые попали в поле зрения науки. Лидером естествознания по-прежнему являлась физика. Вторая половина XIX в. характеризуется высокими темпами развития всех сложившихся ранее и возникновением новых разделов физики. Особенно быстро развиваются теория теплоты и электродинамика. Теория теплоты развивается в двух направлениях: развитие термодинамики, непосредственно связанной с теплотехникой, и развитие кинетической теории газов, которое привело к возникновению статистической физики. В области электродинамики важнейшим событием явилось создание теории электромагнитного поля. Характерная особенность развития физики этого периода — усиливающиеся противоречия между старыми механистическими, метафизическими методологическими установками и новым содержанием физической науки. Открытие закона сохранения и превращения энергии, развитие теории электромагнитного поля, кинетической теории теплоты требовали нового методологического подхода для их интерпретации. Но физики в основном продолжают оставаться в плену старой (метафизической, механистической) методологии. И теория электромагнитного поля, и кинетическая теория теплоты развиваются на основе механистических представлений. Господствует мнение, что до окончательного создания абсолютной механистической картины мира осталось совсем немного; и в связи с этим у многих физиков крепнет надежда на построение механической теории теплоты, механической теории электрических и магнитных явлений и т.п. Развитие физики во второй половине XIX в. связано с материальным производством, промышленностью, индустрией еще более тесно, чем в первой половине XIX в. Результаты физических исследований все чаще становятся условием дальнейшего технического прогресса. Причем не только развитие уже существующих, но и возникновение новых отраслей техники было невозможно без предварительных научных исследований, научных открытий. Так, без исследований по термодинамике не могло быть и речи о совершенствовании паровой машины или создании новых типов тепловых двигателей — двигателя внутреннего сгорания, паровой турбины. Только на основе результатов научных исследований в области электричества и магнетизма, которые долгое время не имели практического применения в промышленном производстве, возникла электротехника. 8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем Для нас совершенно очевидно представление об однонаправленности из прошлого в будущее, необратимости и невозвратности времени. Это представление формируется на основе отражения большинства процессов, систем живой и неживой природы, с которыми человек повсеместно сталкивается в своей жизненной практике. И только очень небольшое количество механических систем (и то со значительной долей идеализации) относится к обратимым системам. Соотношение обратимых и необратимых процессов можно проиллюстрировать на примере фильма о движении паровоза. Если мы будем смотреть такой фильм в обратном порядке и увидим, что поезд «пошел назад», то нам это не покажется неправдоподобным. Паровоз просто дал задний ход, и в этом нет ничего необычного: механические системы обратимы. Но вот в кадре дым паровоза: он образовывается в пространстве и втягивается в паровозную трубу. Такое событие (и совершенно справедливо) кажется абсолютно невозможным — оно равносильно признанию возможности движения времени вспять. В данном случае речь идет о тепловом необратимом процессе, который принципиально отличается от механических обратимых процессов. Классическая механика долгое время занималась исключительно моделированием обратимых систем. Механические процессы обратимы: уравнения механики, в которые входит время t, симметричны по отношению к этому параметру, т.е. возможна замена t на -t. Только с возникновением термодинамики, с появлением необходимости изучения теплоты и молекулярных процессов физика перешла к познанию закономерностей необратимых систем. В XIX в. термодинамика развивается как теоретическая база теплотехники и как важная отрасль теоретической физики, объясняющая сущность тепловой энергии. Основы термодинамики закладывались еще в начале XIX в., когда конструкторов паровых машин интересовал важный в теории тепловых двигателей вопрос: существует ли предел последовательного улучшения двигателей? Многочисленные конструкции нужно было сопоставить с идеальным двигателем, экономичность которого рассматривалась как максимальная. От чего же зависит экономичность такого идеального двигателя? Ограничена ли она? Эти и ряд других вопросов поставил перед собой французский инженер Сади Карно. Карно показал, что теплота создает механическую работу только при тепловом «перепаде», т.е. наличии разности температур. Справедлива и обратная теорема: затрачивая механическую энергию, можно создать разность температур, которая определяет коэффициент полезного действия тепловых машин. Свои теоретические соображения Карно в конечном счете обосновывает невозможностью вечного двигателя, рассматривая это положение в качестве исходной аксиомы физики. В свете закона сохранения и превращения энергии в середине ХIХ в. стало ясно, что теория Карно требует серьезной перестройки и дополнительного экспериментального исследования. На это обратили внимание Р. Клаузиус и В. Томсон (лорд Кельвин). Карно объяснял работу не потреблением теплоты, а ее падением; он считал, что теплота неуничтожаема. Карно сопоставляет работу с теплотой, перешедшей от тела с температурой Т1 к телу с температурой Т2 . Клаузиус же сопоставляет работу с пропорциональной ей теплотой, исчезнувшей при таком переходе, т.е. перешедшей в работу. Клаузиус уставит задачу связать переход теплоты от одного тела к другому с превращением теплоты в работу и установить количественные соотношения между этими процессами. Решая эту задачу, Клаузиус вводит понятие энтропии — функции состояния системы. Понятие энтропии является центральным в термодинамике. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой Т . Изменение энтропии определяется формулойdE≥ dQ/T, где dQ - количество теплоты, обратимо подведенное к системе или отведенное от нее. Энтропия — это мера способности теплоты к превращению. В обратимых системах энтропия неизменна dE = dQ/T , а в необратимых — постоянно изменяется (dE > dQ/T ).Второе начало термодинамики * гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума . Иначе говоря, запас энергии во Вселенной иссякает, происходит выравнивание температуры Вселенной, рассеяние энергии, а вся Вселенная неизбежно приближается к «тепловой смерти». * В соответствии с первым началом термодинамики в замкнутой системе энергия сохраняется, хотя и может приобретать различные формы. Термодинамические процессы необратимы, и ход событий во Вселенной невозможно повернуть вспять, чтобы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает; и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. С точки зрения классической термодинамики «тепловая смерть» Вселенной неизбежна. Вокруг этой проблемы среди естествоиспытателей и философов развернулась горячая дискуссия, которая с перерывами длится уже более сотни лет и не потеряла своего значения вплоть до настоящего времени. Распространение второго начала термодинамики на необратимые процессы было завершающим шагом в установлении основ термодинамики, которая стала одной из важнейших отраслей физики. Но раз теплота есть движение, то закономерно возникает задача исследовать природу и закономерности этого движения. Решение этой задачи привело к возникновению и развитию кинетической теории газов, которая в дальнейшем преобразовалась в новую отрасль физики — статистическую физику. В рамках кинетической теории газов были получены важные результаты: разработана кинетическая модель идеального газа (Р. Клаузиус), закон распределения скоростей молекул газа (Дж.К. Максвелл), теория реальных газов (Я.Д. Ван-дер-Ваальс), определены реальные размеры молекул, найдено число молекул в единице объема газа при нормальных условиях (число Лошмидта), число молекул в одной грамм-молекуле (число Авогадро) и др. В кинетической теории газов была еще одна важная проблема — проблема молекулярного обоснования второго начала термодинамики. Постепенно сложился подход к решению этой задачи — вывести начала термодинамики из некоторого общего положения механики, ряда ее принципов. Здесь наиболее интересные и значительные результаты были получены Л. Больцманом, который считал, что в качестве такого общего положения можно использовать принцип наименьшего действия в обобщенном виде. В процессе исследований Больцман доказал знаменитую Н-теорему, согласно которой идеальный газ, находящийся первоначально в нестационарном состоянии, с течением времени сам собой должен переходить в состояние статистического равновесия. Эту теорему Больцман истолковал как доказательство статистического характера второго начала термодинамики. Из идеи статистической закономерности Больцман непосредственно выводит необратимость молекулярных процессов. Энергия переходит из менее вероятной формы в более вероятную. В случае если первоначальное распределение энергии в телах было менее вероятным, то в дальнейшем вероятность распределения увеличится. Больцман формулирует и ровую интерпретацию энтропии. В соответствии с ней энтропия (есть логарифм вероятности состояния системы Е =k lnW . Эта формула высечена на памятнике Больцману над его могилой на кладбище в Вене. В 90-х гг. XIX в. развернулась полемика вокруг статистического толкования второго начала термодинамики. Больцман энергично защищал свои взгляды, но был одинок. И только в начале XX в. в контексте экспериментальных успехов в изучении броуновского движения теория Больцмана получила признание. Развивая идеи Больцмана, М. Смолуховский разрабатывает теорию флуктуаций и применяет ее к анализу явлений, в которых может непосредственно наблюдаться антиэнтропийное поведение. Смолуховский приходит к идее относительности обратимости и необратимости, их зависимости от времени, в течение которого наблюдается процесс. Статистическая термодинамика находит свое развитие и завершение в работах Дж. Гиббса, в его статистической механике. Гиббс рассматривает статистическую механику как теорию ансамблей (мысленная совокупность невзаимодействующих систем), которые не зависимы от конкретного состава и строения тех систем, из которых они составлены. Статистическая механика Гиббса оказалась способна решать любую задачу относительно равновесной системы, состоящей из произвольного числа независимых компонентов и сосуществующих фаз. Но вопрос о противоречии обратимости и необратимости Гиббсом был по сути обойден. Новый этап в развитии исследований необратимых систем наступил только в конце XX в., с созданием теории самоорганизации (синергетики) (см. 15.1). 8.1.3. Развитие представлений о пространстве и времени Во второй половине XIX в. физики все чаще анализируют фундаментальные основания классической механики. Прежде всего это касается понятий пространства и времени, их ньютоновской трактовки. Предпринимаются попытки придать понятию абсолютного пространства и абсолютной системы отсчета новое содержание взамен старого, которое им придал еще Ньютон. Так, в 70-е гг. XIX в. было введено понятие α -тела как такого тела во Вселенной, которое можно считать неподвижным и принять за начало абсолютной системы отсчета. Некоторые физики предлагали принять за α-тело центр тяжести всех тел во Вселенной, полагая, что этот центр тяжести можно считать находящимся в абсолютном покое. Вместе с тем рядом физиков высказывалось и противоположное мнение, что само понятие абсолютного прямолинейного и равномерного движения как движения относительно некоего абсолютного пространства лишено всякого научного содержания, как и понятие абсолютной системы отсчета. Вместо понятия абсолютной системы отсчета они предлагали более общее понятие инерциальной системы отсчета (координат), не связанное с понятием абсолютного пространства. Из этого следовало, что понятие абсолютной системы координат также становится бессодержательным. Иначе говоря, все системы, связанные со свободными телами, не находящимися под влиянием каких-либо других тел, равноправны. Инерциальные системы - это системы, которые движутся прямолинейно и равномерно относительно друг друга. Переход от одной инерциальной системы к другой осуществляется в соответствии с преобразованиями Галилея. Именно преобразования Галилея характеризуют в классической механике закономерности перехода от одной системы отсчета к другой. Если система отсчетаX'0'Y' (рис. 1) движется прямолинейно и равномерно со скоростью v относительно системы отсчета ХОУ в течение времени t , то 00' = vt , а координаты точки Р в этих системах отсчета связаны между собой следующими соотношениями: X1 = Х- vt, Y1 =Y, t1 = t. Преобразования Галилея в течение столетий считались само собой разумеющимися и не нуждающимися в обосновании. Но время показало, что это не так. В конце XIX в. с резкой критикой ньютоновского представления об абсолютном пространстве выступил немецкий физик и философ Э. Мах. В основе представлений Маха лежало убеждение в том, что «движение может быть равномерным относительно другого движения. Вопрос, равномерно ли движение само по себе, не имеет никакого смысла» *. Это представление Мах переносит не только на скорость, но и на ускорение. В ньютоновской механике ускорение (в отличие от скорости) рассматривалось как абсолютная величина: для того чтобы судить об ускорении, достаточно самого тела, испытывающего ускорение. Иначе говоря, ускорение — величина абсолютная и может рассматриваться относительно абсолютного пространства, а не относительно других тел **. Этот вывод и оспаривал Мах. *Мах Э. Механика. Историко-критический очерк ее развития. СПб.,1909. С. 187. В связи с этим Мах рассматривал системы Птолемея и Коперника как равноправные, считая последнюю более предпочтительной из-за простоты. ** Ньютон аргументировал это положение примером с вращающимся ведром, в которое налита вода. Этот опыт показывал, что движение воды относительно ведра не вызывает центробежных сил и можно говорить о его вращении самом по себе, безотносительно к другим телам, т.е. остается лишь отношениек абсолютному пространству. С точки зрения Маха, всякое движение относительно пространства не имеет никакого смысла, о движении можно говорить только по отношению к телам, а значит, все величины, определяющие состояние движения, являются относительными. Следовательно, и ускорение тоже относительная величина. К тому же опыт не может дать сведений об абсолютном пространстве. Он обвинил Ньютона в отступлении от принципа, согласно которому в теорию должны вводиться только величины, непосредственно выводимые из опыта. Правда, Мах слишком широко трактовал отношение естествознания и философии. И от критики недостатков классической механики, от непризнания абсолютного пространства Ньютона он вообще перешел к непризнанию объективного существования пространства, рассматривая его как «хорошо упорядоченные системы рядов ощущений». Однако, несмотря на субъективно-идеалистический подход к проблеме относительности движения, в соображениях Маха были интересные идеи, которые способствовали появлению общей теории относительности. Речь идет о так называемом принципе Маха, согласно которому инерциальные силы следует рассматривать как действие общей массы Вселенной. Этот принцип впоследствии оказал значительное влияние на А. Эйнштейна. Рациональное зерно принципа Маха состояло в том, что свойства пространства-времени обусловлены гравитирующей материей. Но Мах не знал, в какой конкретной форме выражается эта обусловленность. К новым идеям о природе пространства и времени подталкивали физиков и результаты математических исследований, открытие неевклидовых геометрий. Так, согласно идее английского математика В. Клиффорда, высказанной в 70-х гг., многие физические законы могут быть объяснены тем, что отдельные области пространства подчиняются неевклидовой геометрии. Более того, он считал, что кривизна пространства может изменяться со временем, а физику можно представить как некоторую геометрию. Клиффорд предложил нечто вроде полевой теории материи, в которой материальные частицы представляют собой сильно искривленные области пространства, а «изменение кривизны пространства и есть то, что реально происходит в явлении, которое мы называем движением материи, будь она весомая или эфирная» *. Вследствие искривления пространства действительная геометрия мира подобна «холмам» на ровной местности, а перемещение частиц материи есть не что иное, как перемещение «холма» от одной точки к другой. Клиффорд принадлежит к ряду немногочисленных в XIX в. провозвестников эйнштейновской теории гравитации. *Клиффорд В . О пространственной теории материи // Альберт Эйнштейн и теория гравитации. М., 1979. С. 36. 8.1.4. Теория электромагнитного поля К середине XIX в. в тех отраслях физики, где изучались электрические и магнитные явления, был накоплен богатый эмпирический материал, сформулирован целый ряд важных закономерностей: закон Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и др. Сложнее обстояло дело с теоретическими представлениями. Строившиеся физиками теоретические схемы основывались на представлениях о дальнодействии и корпускулярной природе электричества. Наиболее популярной стала теория В. Вебера, которая объединила электростатику и электромагнетизм того времени. Однако полного теоретического единства во взглядах физиков на электрические и магнитные явления не было. Так, резко отличалась от других воззрений полевая концепция Фарадея. Но на полевую концепцию смотрели как на заблуждение, ее замалчивали и остро не критиковали только потому, что слишком велики в развитии физики были заслуги Фарадея. В это время физики предпринимают попытки создания единой теории электрических и магнитных явлений. Одна из них оказалась успешной. Это была революционная по своему значению теория Максвелла. Дж. К. Максвелл, в 1854 г. окончив Кембриджский университет, начал свои исследования электричества и магнетизма при подготовке к профессорскому званию. Взгляды Максвелла на электрические и магнитные явления формировались под влиянием работ М. Фарадея и В. Томсона. Максвелл тонко почувствовал и понял характер основного противоречия, которое сложилось в середине XIX в. в физики электрических и магнитных процессов. С одной стороны, были установлены многочисленные законы различных электрических и магнитных явлений (которые не вызывали возражений и к тому же выражались через количественные величины), но они не имели целостного теоретического обоснования. С другой стороны, построенная Фарадеем полевая концепция электрических и магнитных явлений не была математически оформлена. Максвелл и поставил перед собой задачу, основываясь на представлениях Фарадея, построить строгую математическую теорию, получить уравнения, из которых бы можно было вывести, например, законы Кулона, Ампера и др., т.е. перевести идеи и взгляды Фарадея на строгий математический язык. Будучи блестящим теоретиком и виртуозно владея математическим аппаратом, Дж. К. Максвелл справился с этой сложнейшей задачей — создал теорию электромагнитного поля, которая была изложена в работе «Динамическая теория электромагнитного поля», опубликованной в 1864 г. Эта теория существенно изменила представления о картине электрических и магнитных явлений, объединив их в единое целое. Основные положения и выводы этой теории следующие. • Электромагнитное поле реально и существует независимо от того, имеются или нет проводники и магнитные полюса, обнаруживающие его. Максвелл определял это поле следующим образом: «...электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии» *. * Максвелл Дж.К. Избранные сочинения по теории электромагнитного поля. М.. 1952. С.253. • Изменение электрического поля ведет к появлению магнитного поля и наоборот. • Векторы напряженности электрического и магнитного полей перпендикулярны. Это положение объясняло, почему электромагнитная волна исключительно поперечна. • Передача энергии происходит с конечной скоростью. Таким образом обосновывался принцип близкодействия. • Скорость передачи электромагнитных колебаний равна скорости света (с ). Из этого следовала принципиальная тождественность электромагнитных и оптических явлений. Оказалось, что различия между ними только в частоте колебаний электромагнитного поля. Экспериментальное подтверждение теории Максвелла в 1887 г. в опытах Г. Герца произвело большое впечатление на физиков. И с этого времени теория Максвелла получает признание подавляющего большинства ученых, но тем не менее долгое время она представлялась физикам лишь совокупностью математических уравнений, конкретный физический смысл которых был совершенно непонятным. Физики того времени говорили: «Теория Максвелла — это уравнения Максвелла», После создания теории Максвелла стало понятно, что существует только один эфир — носитель электрических, магнитных и оптических явлений, значит, судить о природе эфира можно на основе электромагнитных опытов. Но этим проблема эфира не была разрешена, а наоборот, еще больше усложнилась — надо было объяснять распространение электромагнитных волн и все электромагнитные явления. Сначала эту задачу пытались решить, в том числе и сам Дж.К. Максвелл, на пути поисков механистических моделей эфира. Однако модель электромагнитного эфира, используемая Максвеллом, была несовершенна и противоречива (он и сам ее рассматривал как временную). Поэтому многие ученые пытались ее усовершенствовать. Предлагались различные модели эфира. Среди них были такие, которые основывались на представлениях об электромагнитном поле как о совокупности вихревых трубок, образуемых в эфире, и т.д. Появились работы, в которых эфир рассматривался даже не как среда, а как машина; строились модели с колесами и проч. В конце XIX в. существование эфира начали вообще подвергать сомнению. Теории, основанные на гипотезе эфира, были противоречивыми и бесплодными, и все больше ученых теряли уверенность в возможности конструктивного использования этого представления. В конце концов, после множества безуспешных попыток построить механическую модель эфира, стало ясно, что эта задача не выполнима, а электромагнитное поле представляет собой особую форму материи, распространяющуюся в пространстве, свойства которой не сводимы к свойствам механических процессов. Поэтому к концу XIX в. главное внимание с проблемы построения механистических моделей эфира было перенесено на вопрос о том, как распространить систему уравнений Максвелла, созданную для описания покоящихся систем, на случай движущихся тел (источников или приемников света). Иначе говоря, связаны ли между собой уравнения Максвелла для движущихся систем преобразованиями Галилея? Или, другими словами, инвариантны ли уравнения Максвелла относительно преобразований Галилея? Конец XIX в. в истории физики отмечен рядом принципиальных открытий, которые привели к научной революции на рубеже XIX—XX вв.: открытие рентгеновских лучей, открытие электрона и установление зависимости его массы от скорости, открытие радиоактивности, фотоэффекта и его законов и др. В 1895 г. В. Рентген обнаружил лучи, получившие впоследствии название рентгеновских. Это открытие заинтересовало физиков и вызвало широкую дискуссию о природе этих лучей. В течение короткого времени были выяснены необычные свойства этих лучей (способность проходить через светонепроницаемые тела, ионизировать газы и т.д.), но их природа оставалась неясной. Открытие рентгеновских лучей способствовало исследованиям электропроводности газов и изучению катодных лучей. Заинтересовавшись открытием Рентгена, английский физик Дж.Дж. Томсон (совместно с Э. Резерфордом) установил, что под действием облучения рентгеновскими лучами резко возрастает электрическая проводимость газа и это свойство сохраняется некоторое время после прекращения облучения. Анализ подвел к выводу, что проводниками электричества в газах являются заряженные частицы, образующиеся в результате действия рентгеновских лучей. Перед Томсоном встали вопросы: что это за частицы, каковы их заряд и масса. Поиски ответов на эти вопросы привели Томсона к открытию первой элементарной частицы — электрона и определению его заряда и массы. Важнейшим достижением физики конца XIX в. было открытие радиоактивности. В 1896 г. Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола рядом с кристаллами сульфата урана, случайно открыл радиоактивность. Систематическое исследование радиоактивного излучения было предпринято Э. Резерфордом, он установил, что радиоактивные атомы испускают частицы двух типов, которые назвал альфа- и бета-частицами. Тяжелые положительно заряженные альфа-частицы, как выяснилось, представляли собой быстро движущиеся ядра гелия, а бета-частицы оказались летящими с большой скоростью электронами. Мария Склодовская-Кюри, исследуя новое явление, пришла к выводу, что в урановых рудах присутствуют вещества, также обладающие свойством излучения, названного ею радиоактивным. В результате упорного труда Марии и Пьеру Кюри удалось выделить из урановых руд новый элемент — радий, который обладает радиоактивностью гораздо большей, чем уран. Изучение радиоактивных явлений поставило перед физиками, во-первых, вопрос о природе радиоактивного излучения и, во-вторых, задачу определения источника энергии, которую несут эти лучи. Уже вскоре после открытия Беккереля стало ясно, что радиоактивное излучение неоднородно и содержит три компонента, которые получили название α-, β- и γ-лучей. При этом оказалось, что α- и β-лучи являются потоками соответственно положительно и отрицательно заряженных частиц, а γ-лучи представляют собой электромагнитное излучение. Но что это за энергия, находящаяся внутри атома, которая освобождается при его распаде и выделяется вместе с излучением, было неясно, как и вообще «механизм» самого радиоактивного распада. Первые теории, разрабатывавшиеся для решения этого вопроса, были сугубо предварительными и неубедительными. К великим открытиям второй половины XIX в. следует также отнести создание Периодической системы химических элементов Д.И. Менделеевым, экспериментальное обнаружение электромагнитных волн Г. Герцем *, открытие явления фотоэффекта, тщательно проанализированное А.Г. Столетовым. В этом же ряду обнаружение того, что отношение заряда электрона к его массе не является постоянной величиной, а зависит от скорости электрона. * Это открыло дорогу изобретению русским ученым А.С. Поповым радио и созданию радиотехники. Открытие зависимости массы электрона от скорости и объяснение этого факта наличием электромагнитной массы вызвали вопрос, обладает ли вообще электрон массой в смысле классической механики. Как соотносятся между собой «обычная» масса и электромагнитная? Сама возможность ответа на этот вопрос была проблематичной, поскольку не был известен эксперимент, с помощью которого можно отделить обычную массу от электромагнитной. Возникла гипотеза, что электрон вообще имеет только электромагнитную массу, а обычной массой не обладает. Развитие этой гипотезы подводило к выводу, что вообще всякая масса (а значит материя) носит электромагнитную природу. Такой вывод о чисто электромагнитной природе массы революционным образом изменял взгляды физиков. 8.1.6. Кризис в физике на рубеже веков С XVII в. в физике и механистической философии массу понимали , как количество материи в теле и рассматривали как основной признак материальности. Открытие зависимости массы электрона от его скорости, гипотеза о чисто электромагнитной природе массы как будто лишали тела материальности. Возник вопрос об исчезновении массы и материи вообще, поскольку масса понималась как основной признак материальности тела. Некоторые физики и философы высказывали мнение о том, что «материя исчезла», что само развитие науки заставляет отказаться от признания существования материи и справедливости общих важнейших физических законов (закона сохранения массы, закона сохранения количества движения и др.). Ситуация усугублялась с открытием радиоактивности. Ведь не было ответа на вопрос об источнике энергии, которую несет с собой радиоактивное излучение. В связи с этим наряду с отрицанием всеобщности закона сохранения количества движения высказывалось сомнение и во всеобщности закона сохранения энергии. В таких условиях в физике складывается атмосфера разочарования в возможностях научного познания истины, начинается «брожение умов», распространяются идеи релятивизма и агностицизма. Ситуацию, сложившуюся в физической науке на рубеже XIX—XX вв., А. Пуанкаре назвал кризисом физики *. «Признаки серьезного кризиса» физики он в первую очередь связывал с возможностью отказа от фундаментальных принципов физического познания. «Перед нами «руины» старых принципов, всеобщий «разгром» таких принципов», — утверждал он. Закон сохранения массы, закон сохранения количества движения, закон сохранения энергии — все эти фундаментальные принципы, которые долгое время считались незыблемыми, теперь подвергают сомнению. * См.: Пуанкаре А. О науке. М., 1990. Многие ученые, пытаясь осмыслить состояние физики, приходили к выводу о том, что само развитие науки показывает ее неспособность дать объективное представление о природе, что истины науки носят относительный характер, не содержат ничего абсолютного, что не может быть и речи ни о какой объективной реальности, существующей независимо от сознания людей. Так, Пуанкаре, например, считал, что необходимо изменить взгляд на ценность науки, на характер истин, добываемых наукой. Если прежде их рассматривали как отражение действительных свойств мира, как объективное отражение природы, то новейшее развитие физики, по мнению Пуанкаре, заставляет отказаться от такого взгляда. Наука не способна открывать сущность вещей. Ничто не в силах открыть эту сущность. Научные истины носят конвенциональный характер, они лишь результат соглашений ученых между собой о том, как удобнее выразить то или другое относительное знание. Некоторые физики (Э. Мах, Р.Авенарриус и др.) шли еще дальше и полностью переходили на позиции субъективного идеализма. Они исходили из того, что «материя исчезла» потому, что не природа дает нам законы, а мы устанавливаем их, и, вообще, всякий закон есть не что иное, как упорядочение наших субъективных ощущений, и т.д. Так, многие физики скатились на позиции «физического идеализма», т.е. отказа от основной посылки физического знания — признания материальности объекта физического познания. На самом же деле проблема состояла в том, что к концу XIX в. методологические установки классической физики уже исчерпали себя и необходимо было изменять теоретико-методологический каркас естественно-научного познания. Возникла необходимость расширить и углубить понимание и самой природы, и процесса ее познания. Не существует такой абсолютной субстанции бытия, с познанием которой завершается прогресс науки. Как бесконечна, многообразна и неисчерпаема сама природа, так бесконечен, многообразен и неисчерпаем процесс ее познания естественными науками. Электрон так же неисчерпаем, как и атом. Каждая естественно-научная картина мира относительна и преходяща. Процесс научного познания необходимо связан с периодической крутой ломкой старых понятий, теорий, картин мира, методологических установок, способов познания. А «физический идеализм» является просто следствием непонимания необходимости периодической смены философско-методологических оснований естествознания *. * В России анализ революции в естествознании на рубеже XIX—XX вв. был осуществлен В.И. Лениным в работе «Материализм и эмпириокритицизм», вышедшей в свет в 1909 г. К концу XIX в. механистическая, метафизическая, предметоцентрическая методология себя исчерпала. Естествознание стремилось к новой диалектической, системоцентрической методологии. Поиски новой методологии были не простыми, были сопряжены с борьбой мнений, школ, взглядов, философской и мировоззренческой полемикой. В конце концов в первой четверти XX в. естествознание нашло свои новые методологические ориентиры, разрешив кризис рубежа веков. 8.2.1. Триумф ньютоновской астрономии и... первая брешь в ней Открытие в 1846 г. восьмой большой планеты Солнечной системы можно назвать триумфом ньютоновской теории и картины мира. Открытие было осуществлено буквально «на кончике пера». И наличие этой планеты, и ее положение на небе в определенное время было математически вычислено по возмущениям, которые она вызывала в движении планеты Уран. Загадочные отклонения заметили еще в конце XVIII в. Их пытались объяснить по-разному: катастрофическим столкновением Урана с кометой; попытками изменить сам закон тяготения; и наконец, высказывалась гипотеза о влиянии более далекой планеты. Эту труднейшую задачу решили независимо и почти одновременно два математика-астронома Дж. Адаме и У. Леверье. Летом 1846 г. Леверье сообщил свои расчеты берлинскому астроному Г. Галле, который и обнаружил 23 сентября 1846 г. всего в 52" от расчетного места новую планету. Название этой планеты традиционно было взято из древнегреческой мифологии — Нептун. Орбита Нептуна, удаленная от Солнца в среднем на 4,5 млрд км, значительно расширяла и границы Солнечной системы, и пределы познания ее человеком. Блестящее, исключительно точное предсказание было величайшим достижением классической механики и, казалось, навеки укрепило ньютоновскую астрономическую картину мира, тем более что оно дополнялось точными расчетами орбит других объектов Солнечной системы — комет, метеорных потоков, а также уточнением теории «векового» ускорения Луны и т.п. Вместе с тем повышение точности расчетов в теории движения Солнца и планет привело к открытию нового эффекта, которое имело далеко идущие последствия. Исследуя в течение многих лет движение Меркурия У. Леверье в 1859 г. установил, что скорость, с которой перигелий (точка орбиты планеты; ближайшая к Солнцу) его орбиты обращается вокруг Солнца, несколько больше теоретически предсказываемой, а именно на 38" (по современным данным, на 43") в столетие. Такая высокая скорость перигелия Меркурия не могла быть объяснена классической теорией. Для ее объяснения выдвигались разные гипотезы: наличие между Солнцем и Меркурием гипотетической планеты Вулкан, зодиакального света, который излучают разреженные массы вблизи Солнца, и др. Все они не подтвердились. И только в XX в. объяснение было найдено, но на основе не ньютоновской механики, а общей теории относительности (см. 9.2.2). Поэтому можно сказать, что открытие аномалий в движении перигелия Меркурия было первой брешью в ньютоновской астрономической картине мира, первым в астрономии предвестником грядущей революции в естествознании. 8.2.2. Формирование астрофизики: проблема внутреннего строения звезд Важнейшее событие в астрономии второй половины XIX в. — возникновение астрофизики. К открытиям XIX в., которые повлекли за собой возникновение и бурное развитие астрофизики, следует в первую очередь отнести: открытие фотографии и спектрального анализа, эффекта Допплера, создание статистической термодинамики. Астрофизика формировалась в русле решения ключевой астрономической проблемы — проблемы строения звезд и источников их энергии. Открытие закона сохранения энергии поставило вопрос о физическом источнике энергии Солнца и звезд. Первым попытался его решить Р. Майер, предложивший гипотезу о разогреве Солнца за счет падения на него метеоритов (1848). Качественно новые возможности научного исследования сложились после открытия Г. Кирхгофом и Р. Бунзеном (1859) спектрального анализа. Появилась возможность определять химический состав звезд, т.е. то, что многие мыслители считали вообще непознаваемым (например, Э. Конт, 1852). В 1861 г. Кирхгоф определил химический состав солнечной (и, следовательно, звездных) атомосферы. Так была создана почва для формирования научной астрофизики и создания теории строения звезд. Во второй половине XIX в. окончательно утвердилось представление о звездах как о колоссальных газовых шарах, плотных и горячих в центральных частях и разреженных на периферии. Для объяснения энергии звезд Кельвин и Гельмгольц выдвинули идею иx гравитационного сжатия. Во время гравитационного сжатия должна выделяться значительная энергия. Однако вскоре выяснилось, что если придерживаться такой гипотезы, то нужно признать, что Солнце... моложе Земли! Длительность «жизни» звезд по этой гипотезе исчислялась всего лишь десятками миллионов лет, в то время как геологи убедительно определяли возраст Земли в несколько миллиардов лет. Едва возникнув, астрофизика зашла в тупик. Стало ясно, что нужны принципиально новые физические представления для решения ключевой астрономической проблемы — источника энергии звезд. Такие представления появились уже с созданием новых фундаментальных физических теорий — релятивистской и квантовой физики. 8. 3.1. Утверждение теории эволюции Ч. Дарвина Нужно определенное время, чтобы новая теория окончательно утвердилась в науке. Процесс утверждения теории есть процесс превращения предпосылок теории в ее неотъемлемые компоненты, логически выводимые из оснований теории. При этом изменяется множество различных понятий, представлений, допущений, гипотез и других средств познавательной деятельности, ценностных и методологических компонентов познания. Эволюционная теория Ч. Дарвина — сложнейший синтез самых различных биологических знаний, в том числе опыта практической селекции. Поэтому процесс утверждения теории затрагивал самые разнообразные отрасли биологической науки и носил сложный, подчас драматический характер, протекал в напряженнейшей борьбе различных мнений, взглядов, школ, мировоззрений, тенденций и т.д. Против теории естественного отбора ополчились не только сторонники креационистских воззрений и антиэволюционисты (А. Седжвик, Р. Оуэн, Л..Агассис, А. Мильн-Эдвардс, А. Катрфаж, Г. Меррей, С. Карпентер и др.), но и естествоиспытатели, выдвигавшие и обосновывавшие другие эволюционные концепции, построенные на иных, чем дарвиновская теория, принципах, — неоламаркизм (К.В. Негели и др.), мутационизм (С. И. Коржинский с его идеей гетерогенезиса, т.е. скачкообразного возникновения новых видов, и др.), неокатастрофизм (Э. Зюсс и др.), телеологические концепции разного рода (Р.А. Келликер с идеей автогенетического «стремления к прогрессу»; А. Виганд, признававший существование идеальной «образовательной силы» эволюционного процесса, которая, по его мнению, уже иссякла и потому эволюция прекратилась; и др.). Более того, в самом дарвиновском учении выделились относительно самостоятельные направления, каждое из которых по-своему понимало, дополняло и совершенствовало воззрения Ч. Дарвина. Будучи необходимым логическим звеном в развитии дарвинизма, такая дифференциация объективно влекла за собой ослабление лагеря дарвинистов, снижение полемической остроты их выступлений. Все это привело к тому, что картина развития биологии во второй половине XIX в. была очень пестрой, мозаичной, заполненной противоречиями, драматическими событиями, страстной борьбой мнений, школ, направлений, взаимным непониманием позиций, а часто и нежеланием понять точку зрения другой стороны, обилием поспешных, непродуманных и необоснованных выводов, опрометчивых прогнозов и замалчивания выдающихся достижений. В этом насыщенном самыми разнообразными красками полотне отразились борьба материализма и идеализма, метафизики и диалектики, противоречия социально-культурного контекста развития естествознания. Вокруг роли, содержания, интерпретации принципов дарвиновской теории велась острая и длительная борьба, особенно вокруг принципа естественного отбора. Можно указать на четыре основных явления в системе биологического познания второй половины XIX— начала XX в., которые были вехами в процессе утверждения принципов теории естественного отбора: · возникновение и бурное развитие так называемого филогенетического направления, вождем и вдохновителем которого был Э. Геккель; · формирование эволюционной биологии — проникновение эволюционных представлений во все отрасли биологической науки; · создание экспериментально-эволюционной биологии; · синтез принципов генетики и дарвинизма и создание основ синтетической теории эволюции. Объяснение эмпирических аномалий и вплетение их в систему дарвиновского учения наиболее ярко воплотилось в бурном развитии в 60—70-х гг. XIX в. филогенетического направления, ориентированного на установление родственных связей между видами, на поиски переходных форм и предковых видов, на анализ генезиса крупных таксонов, изучение происхождения органов и др. Общая задача филогенетического направления, как сформулировал ее вождь этого направления Э. Геккель, состояла в создании «филогенетического древа» растений и животных на основе прежде всего данных анатомии, палеонтологии и эмбриологии. В рамках филогенетического направления были вскрыты и исследованы закономерности, имеющие общебиологическую значимость: биогенетический закон (Э. Геккель, Ф. Мюллер, А.О. Ковалевский, И.И. Мечников), закон необратимости эволюции (Л. Долло), закон более ранней закладки в онтогенезе прогрессивных органов (Э. Менepт), закон анадаптивных и инадаптивных путей эволюции (В.О. Ковалевский), принцип неспециализированности предковых форм (Э. Коп), принцип субституции органов (Н. Клейненберг), закон эволюции органов путем смены функций (Л. Дорн) и др. Не все из этих закономерностей рассматривались биологами как формы обоснования и подтверждения дарвиновской теории. Более того, на базе некоторых из них выдвигались новые концепции эволюции, которые, по замыслу их авторов, должны были опровергнуть дарвиновскую теорию и заменить ее новой эволюционной теорией. Это характерно для периода утверждения любой фундаментальной теории: пока теория окончательно не сложилась, не подчинила себе свои предпосылки, не продемонстрировала свои предсказательные возможности, способность объяснять факты предметной области, часты попытки заменить ее другими теориями, построенными на иных принципах. Обобщение принципов эволюционной теории, выявление пределов, при которых они не теряют своего значения, проявилось в интенсивном формировании комплекса эволюционной биологии (т.е. эволюционных направлений в системе биологического знания — систематики, палеонтологии, морфологии, эмбриологии, биогеографии и др.), имевшем место в 60—70-е гг. XIX в. Возникновение экспериментально-эволюционной биологии во многом было вызвано необходимостью эмпирического обоснования и теоретического утверждения принципов дарвиновской теории, экспериментальной проверки и углубления понимания факторов и законов эволюции. Особенно это касалось принципа естественного отбора, где яркие экспериментальные результаты получили в конце XIX в. В. Уэлдон (1898), Е. Паультон (1899) и др. Завершение утверждения принципов дарвиновской теории происходит уже в начале XX в., когда сформировалась синтетическая теория эволюции, внутренне интегрировавшая дарвинизм, генетику и экологию. Таким образом, к рубежу XIX—XX вв. биология, как и физика, подошла в состоянии глубокого кризиса своих методологических оснований, вызванного в первую очередь устаревшим содержанием методологических установок классической биологии. Кризис проявился прежде всего в многообразии и противоречии оценок и интерпретаций сущности эволюционной теории и интенсивно накапливавшихся данных в области генетики. 8.3.2. Становление учения о наследственности (генетики) Истоки знаний о наследственности весьма древние. Наследственность как одна из существенных характеристик живого известна очень давно, представления о ней складывались еще в эпоху античности. Долгое время вопрос о природе наследственности находился в ведении эмбриологии, в которой вплоть до XVII в. господствовали фантастические и полуфантастические представления. Во второй половине XVIII в. учение о наследственности обогащается новыми данными — установлением пола у растений, искусственной гибридизацией и опылением растений, а также отработкой методики гибридизации. Одним из основоположников этого направления является И.Г. Кельрейтер, тщательно изучавший процессы оплодотворения и гибридизации. Он открыл явление гетерозиса — более мощного развития гибридов первого поколения, которое он не мог правильно объяснить. Опыты по искусственной гибридизации растений позволили опровергнуть концепцию преформизма. В этом отношении ботаника оказалась впереди зоологии. Во второй половине XVIII — начале XIX в. наследственность рассматривалась как свойство, зависящее от количественного соотношения отцовских и материнских компонентов. Считалось, что наследственные признаки гибрида являются результатом взаимодействия отцовских и материнских компонентов, их борьбы между собой, а исход этой борьбы определяется количественным участием, долей того и другого. Так, например, Т.Э. Найт наблюдал доминирование признаков гибридов в опытах по искусственному скрещиванию рас гороха. В первой половине XIX в. стали складываться непосредственные предпосылки учения о наследственности и изменчивости — генетики. Качественным рубежом здесь, по-видимому, оказались два события. Первое — создание клеточной теории. Старая (философская, идущая от XVIII в.) идея единства растительного и животного миров должна была получить конкретно-научное выражение в форме теории, которая базируется на том, что инвариантные характеристики органического мира должны иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Второе событие — выделение объекта генетики, т.е. явлений наследственности как специфической черты живого, которую не следует растворять в множестве свойств индивидуального развития организма. Такой подход сформулирован у О. Сажрэ и в полной мере получил свое развитие в творчестве Г. Менделя. Создание клеточной теории было важнейшим шагом на пути разработки научных воззрений на наследственность и изменчивость. Познание природы наследственности предполагало выяснение вопроса, что является универсальной единицей структурной организации растительного и животного миров. Ведь инвариантные характеристики органического мира должны иметь и свое структурное выражение. Фундаментальной философской идеей, которая привела к открытию клетки, была идея единства растительного и животного (миров; она пробивала себе дорогу в общественном сознании еще в XVII в., начиная с трудов Р. Декарта, Г.В. Лейбница, а позже — французских материалистов XVIII в., особенно Д. Дидро, Ж. Ламетри и др. Как четкий ориентир для биологических исследований она была сформулирована К.Ф. Вольфом, Л. Океном, Ж. Бюффоном, И.В. Гете, Э. Жоффруа Сент-Илером и др. Следующий шаг на этом пути состоял в том, чтобы от общей идеи единства органического мира прийти к выводу, что такое единство должно иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Именно в этом направлении работали многие ученые (П.Ж. Тюрпен, Я. Пуркине, Г. Валентина, А. Дютроше и др.), но только Т. Шванну удалось окончательно прояснить данный вопрос. Трудность состояла в том, что растительные и животные клетки, с одной стороны, а также клетки разных тканей животных — с другой, выглядят мало похожими друг на друга, если использовать те приборы, которые были в распоряжении биологов начала XIX в. Сходным и легко различимым элементом всех клеток является ядро. Мысль об этом сформулировал М. Шлейден. Опираясь на нее, Т. Шванн разработал основные положения своей клеточной теории. В основе ее лежало утверждение, что клеткообразование — универсальный принцип развития организма или, как писал Шванн, «всем отдельным элементарным частицам всех организмов свойствен один и тот же принцип развития» *. Таким образом, клетка была выделена как универсальная инвариантная единица строения организма. * Шванн Т. Микроскопические исследования о соответствии в структуре и росте животных и растений. М.; Л., 1939. С. 79. Ближайшим следствием из основ клеточной теории стало представление, в соответствии с которым процесс клеткообразования регулируется каким-то единым, универсальным механизмом, за которым скрывается загадка наследственности и изменчивости. Указание на существование такого механизма, по сути, являлось первым шагом на пути выделения качественно своеобразной предметной области учения о природе наследственности. Другими словами, создание клеточной теории позволяло «выйти» на объект генетики. Особое место в истории учения о наследственности занимает творчество О. Сажрэ. Заслуга его в том, что он первый в истории учения о наследственности начал исследовать не все, а лишь отдельные признаки скрещивающихся при гибридизации растений. На этой основе (изучая гибридизацию тыквенных) он приходит к выводу, что неверна старая точка зрения, будто признаки гибрида всегда есть нечто среднее между признаками родителей. Признаки в гибриде не сливаются, а перераспределяются. Сажрэ писал: «Итак, мне представляется в конце концов, что обычно сходство гибрида с обоими родителями заключается не в тесном слиянии различных свойственных им в отдельности признаков, а, скорее, в распределении, равном или неравном, этих признаков» *. Иначе говоря, он первым понял корпускулярный, дискретный характер наследственности и выделил наследственность как специфический объект познания, отличный от процесса индивидуального развития организма, разграничил предмет генетики (как учения о наследственности) от предмета эмбриологии и онтогенетики (как учений об индивидуальном развитии организма). С работ Сажрэ начинается собственно научная генетика. * Мендель Г.. Нодэн Ш„ Сажрэ О. Избранные работы. М., 1968. С. 63. Вторая половина XIX в. — период не только создания теории естественного отбора, но и особенно бурного развития других важнейших отраслей биологической науки — эмбриологии (К. Бэр), цитологии (М. Шлейден, Т. Шванн, Р. Вирхов, Г. Моль и др.), физиологии (Г. Гельмгольц, Э. Дюбуа-Реймон, К. Бернар); тогда же были заложены основы органической химии (Ф. Велер, Ю. Либих, М. Бертло), получены существенные результаты в области гибридизации и явлений наследственности (Ш, Нодэн, Г. Мендель) и др. Среди важнейших открытий данного периода можно указать следующие: описание митотического деления клеток и особенностей поведения хромосом (И.Д. Чистяков, Э. Страсбургер и др., 1873— 1875); установление того, что первичное ядро зародышевой клетки возникает путем слияния ядер сперматозоидов и яйцеклетки (О. Гертвиг, Г. Фоль, 1875—1884); открытие продольного разделения хромосом и его закономерностей — образование веретена, расхождение хромосом к полюсам и проч. (В. Флемминг, 1888); установление закона постоянства числа хромосом для каждого вида (Т. Бовери, Э. Страсбургер, 1878); установление того, что в половых клетках содержится половинный набор хромосом по сравнению с соматическими клетками (Э. ван Бенеден, 1883); описание процесса майоза и объяснение механизма редукции числа хромосом (В. И. Беляев, О. Гертвиг, 1884) и др. Важнейшим событием в генетике XIX в. было формулирование Г. Менделем его знаменитых законов. Развивая идеи, содержавшиеся в работах Сажрэ, Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя эти признаки от остальных, удачно применяя при этом вариационно-статистический метод, демонстрируя эвристическую мощь математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии. Это устранило одно из самых серьезных возражений против дарвиновской теории эволюции, которое было высказано английским инженером Ф. Дженкином, утверждавшим, что величина полезного наследственного изменения, которое может возникать у любой особи, в последующих поколениях будет уменьшаться и постепенно приближаться к нулю. Открытие Менделя опередило свое время. Новаторское значение открытых им законов наследственности не было оценено современниками: в сознании биологов еще не созрели необходимые предпосылки научного учения о наследственности; они сложились лишь в начале XX в. ПРИРОДА В СОВРЕМЕННОЙ ЕСТЕСТВЕННО-НАУЧНОЙ КАРТИНЕ МИРА Современная физическая картина мира 9. НАУЧНАЯ РЕВОЛЮЦИЯ В ФИЗИКЕ НАЧАЛА XX в.: ВОЗНИКНОВЕНИЕ РЕЛЯТИВИСТСКОЙ И КВАНТОВОЙ ФИЗИКИ 9.1. Создание специальной теории относительности 9.1.1. Фундаментальные противоречия в основаниях классической механики В начале XX в. на смену классической механике пришла новая фундаментальная теория — специальная теория относительности (СТО). Созданная усилиями ряда ученых, прежде всего А. Эйнштейном, она позволила непротиворечиво объяснить многие физические явления, которые не укладывались в рамки классических представлений. В первую очередь это касалось закономерностей электромагнитных явлений в движущихся телах. Создание теории электромагнитного поля и экспериментальное доказательство его реальности поставили перед физиками задачу выяснить, распространяется ли принцип относительности движения (сформулированный еще Галилеем), справедливый для механических явлений, на явления, присущие электромагнитному полю. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению к другу) применимы одни и те же законы механики. Но справедлив ли принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнитных явлений? Ответ на этот вопрос требовал изучения закономерностей взаимосвязи движущихся тел с эфиром, но не как с механической средой, а как со средой — носителем электромагнитных колебаний. Отдаленные истоки такого рода исследований складывались еще в XVIII в. в оптике движущихся тел. Впервые вопрос о влиянии движения источников света и приемников, регистрирующих световые сигналы, на оптические явления возник в связи с открытием аберрации света английским астрономом Брадлеем в 1728 г. (см. 7.1). Данный вопрос применительно к волновой теории света был значительно более сложным, чем для теории, основанной на представлении о корпускулярной природе света. Его решение требовало введения ряда гипотетических допущений относительно явлений, которые очень сложно выявить в опыте: как взаимодействуют весомые тела и эфир (полагали, что эфир проникает в тела); отличается ли эфир внутри тел от эфира, находящегося вне их, а если отличается, то чем; как ведет себя эфир внутри тел при их движении, и т.д. В физике сложилось три различных интерпретации характера взаимодействия вещества и эфира. Возрождавший волновую теорию света в начале XIX в. Т. Юнг, касаясь вопросов оптики движущихся тел, отметил, что явление аберрации света может быть объяснено волновой теорией света, если предположить, что эфир повсюду, в том числе и внутри движущихся тел, остается неподвижным. В этом случае явление аберрации объясняется, как и в корпускулярной теории света. В 1846 г. английский физик Дж. Г. Стокс разработал новую теорию аберрации, основанную на аналогиях с гидродинамикой. Он исходил из предположения, что Земля при своем движении полностью увлекает окружающий ее эфир и скорость эфира на поверхности Земли в точности равна ее скорости. Но последующие слои эфира движутся все медленнее и медленнее, и это обстоятельство и вызывает искривление волнового фронта, что и воспринимается как аберрация. Из этой теории следует, что в любых оптических опытах, проведенных на Земле, не может быть обнаружена скорость ее движения. Существовала и третья точка зрения, принадлежавшая Френелю. Он предположил, что эфир частично увлекается движущимися телами. Френель показал также, что коэффициент увлечения имеет порядок(v/c) 2 , а значит, опытная проверка этой идеи требует очень точного эксперимента. Сравнивая свою теорию с теорией Френеля, Стокс указывал, что эти теории хотя и основываются на противоположных гипотезах, но практически приводят к одинаковым результатам. Опыты, имевшие целью обнаружить скорость движения Земли относительно эфира, не дали положительных результатов. Они объяснялись и теорией Стокса, и теорией Френеля, поскольку их точность была недостаточной для обнаружения эффекта порядка ( v /с) 2 . Принципиальная сторона вопроса сводилась в сущности к двум возможным гипотетическим допущениям. Первое допущение состояло в том, что эфир полностью увлекается движущейся системой . Допустим системаX'Y'O' (рис. 2) с источником света (скорость света с ) движется со скоростью V по отношению к неподвижной системеXYO (в условиях, когда эфир полностью увлекается движущейся системой). Тогда в соответствии с принципом относительности: для наблюдателя в системе X'Y'O' скорость света будет одинакова и равна с ; для наблюдателя в системе XYO скорость света будет различной и равна V = с± V. Вместе с тем ряд опытов, которые были поставлены еще в XIX в., показал, что скорость света всегда одинакова во всех системах координат независимо от того, движется ли излучающий его источник или нет, и независимо от того, как он движется . Таким образом, гипотеза о том, что эфир полностью увлекается движущейся системой позволяла придерживаться принципа относительности, но тем не менее противоречила опыту. Второе допущение прямо противоположно первому: движущаяся система проходит через эфир, не захватывая его. Это предположение, по сути, отождествляет эфир с абсолютной системой отсчета и приводит к отказу от принципа относительности Галилея — ведь в системе координат, связанной с эфирным морем, законы природы отличаются от законов во всех других системах. Пусть система XYO (см. рис. 2) жестко связана с эфиром, а система X'Y'O' движется по отношению к ней, а значит, и по отношению к неподвижному эфиру, со скоростью V . В таком случае: для наблюдателя в системе XYO скорость света всегда постоянна и равна с . для наблюдателя в системе X'Y'O' скорость света должна зависеть от скорости движения самой системы и быть равной V = с± V , где V — скорость света для наблюдателя в системе X' Y'O '. Таким образом, только в одной системе координат, связанной с неподвижным эфирным морем, скорость света была бы одинакова во всех направлениях. В любой другой системе, движущейся относительно эфирного моря, она зависела бы от направления, в котором производилось измерение. Следовательно, для того чтобы проверить вторую гипотезу, необходимо измерить скорость света в двух противоположных направлениях. С этой целью можно воспользоваться движением Земли вокруг Солнца: тогда скорость света в направлении движения Земли будет отличаться от скорости света в противоположном направлении. Очевидно, что если Земля не увлекает при своем движении окружающий эфир, то в одном случае эта скорость равна: а в другом случае: где v —скорость Земли. Таким образом, разница в скорости света в первом и втором случаях имеет первый порядок малости относительноv/c . Однако для проведения такого опыта нужно уметь измерять время, необходимое для прохождения светом известного расстояния в направлении движения Земли. Но не ясно, как эта задача может быть экспериментально разрешима. Реальный эксперимент по определению скорости света на Земле возможен тогда, когда скорость света определяется по времени, котopoe требуется для прохождения светом расстояния в прямом и обратном направлениях. В частности, существует экспериментальная возможность сравнения времени прохождения светом определенного расстояния S туда и обратно — первый раз вдоль движения Земли, а второй раз, в направлении, перпендикулярном этому движению. Но при этом разница во времени в первом и втором случаях является величиной второго порядка относительно v/c , т.е. ~ v2 /с2 . Но v2 /с2 чрезвычайно мало ≈ 10-8 , и потому эксперимент должен быть исключительно точным. Такой эксперимент в 1887 г. был проведен А. Майкельсоном. Результаты этого эксперимента достоверно свидетельствовали, что на скорость света не влияет движение Земли , а следовательно, о несостоятельности второго допущения. Для того чтобы «спасти» его, Дж. Фитцджеральд и независимо от него Г.А. Лоренц высказали в 1892 г. оригинальную гипотезу, согласно которой отрицательный результат опыта Майкельсона может быть объяснен тем, что размеры каждого движущегося в эфире тела при движении в эфире уменьшаются в направлении движения относительно эфира в 1/(1 – v2 /c2 )1 /2 раз. Эта гипотеза чисто формально объясняла отрицательный результат опыта Майкельсона, не давая никаких разумных теоретических объяснений причин изменения размеров тел. Более того, из этой гипотезы следовало, что вообще отсутствуют какие-либо средства, позволяющие решить вопрос о том, движется ли тело относительно эфира или покоится. Впоследствии было показано, что для последовательного проведения «гипотезы сокращения» необходимо также допустить, что в системе, движущейся равномерно в неподвижном эфирном море, необходима и новая мера времени, а допущение о неувлекаемом эфире будет соответствовать опыту и принципу относительности, если вместо преобразований Галилея ввести новую формальную систему преобразований, которая получила название «преобразования Лоренца»: Заметим, что при скоростях системы, существенно меньших скорости света (т.е.v « с ), отношение v 2 /с2 → 0 и тогда преобразования Лоренца превращаются в классические преобразования Галилея. Таким образом, к рубежу XIX—XX вв. развитие физики привело к осознанию противоречий и несовместимости трех принципиальных положении классической механики: 1) скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света; 2) в двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение (принцип относительности); 3) координаты и скорости преобразовываются из одной инерциальной системы в другую согласно классическим преобразованиям Галилея. Было ясно, что эти три положения не могут быть объединены, поскольку они несовместимы. Долгое время усилия физиков были направлены на то, чтобы попытаться каким-либо образом изменить первые два положения, оставив неизменным третье как само собой разумеющееся. С другой стороны, каждый раз результаты опытов доказывали истинность первых двух положений. В конце концов появилась даже идея замены преобразований Галилея, но она выступила лишь в виде гипотезы ad hoc. Внутренней логикой своего развития физика подводилась к необходимости найти нестандартный путь в разрешении этого фундаментального противоречия в ее основаниях. 9. 1.2. Создание А. Эйнштейном специальной теории относительности В сентябре 1905 г. в немецком журнале «Annalen der Physik» появилась работа А. Эйнштейна «К электродинамике движущихся тел». Эйнштейн сформулировал основные положения СТО, которая объясняла и отрицательный результат опыта Майкельсона, и смысл преобразований Лоренца и, кроме того, содержала новый взгляд на пространство и время. Эйнштейн нашел еще один путь преодоления противоречий в принципиальных основах классической механики. Он пришел к убеждению, что необходимо сохранить два первых утверждения ( принцип постоянства скорости света и принцип относительности), но отказаться от преобразований Галилея. И дело не просто в том, чтобы чисто формально заменить их другим преобразованием. Эйнштейн увидел, что за преобразованиями Галилея кроется определенное представление о пространственно-временных соотношениях, которое не соответствует физическому опыту, реальным свойствам пространства и времени. Слабым звеном принципиальных оснований классической механики оказалось представление об абсолютной одновременности событий. Классическая механика пользовалась им, не сознавая его сложной природы. До выхода в свет статьи «К электродинамике движущихся тел», в которой впервые были изложены основы теории относительности, Эйнштейн около 10 лет размышлял над проблемой влияния движения тел на электромагнитные явления. Он пришел к твердому убеждению о всеобщности принципа относительности, т.е. к выводу, что и в отношении электромагнитных явлений, а не только механических, все инерциальные системы координат совершенно равноправны. Кроме того, Эйнштейн был убежден в инвариантности скорости (света во всех инерциальных системах отсчета. В своих воспоминаниях он пишет, что еще в 1896 г. у него « возник вопрос: если бы можно было погнаться за световой волной со скоростью света, то имели бы мы перед собой не зависящее от времени волновое поле? Такое все-таки кажется невозможным!» * Таким образом, Эйнштейн, по-видимому, еще в молодости пришел к принципу, согласно которому скорость распространения световой волны одинакова во всех инерциальных системах. * Эйнштейн А. Собрание научных трудов. М., 1967. Т. IV. С. 350—351. Одновременное действие этих двух принципов кажется невозможным. Налицо теоретический парадокс. Из данного парадокса Эйнштейн находит выход, анализируя понятие одновременности. Анализ подводит его к выводу об относительном характере этого понятия. В осознании относительности одновременности заключается суть всей теории относительности, выводы которой, в свою очередь, приводят к необходимости пересмотра понятий пространства и времени — основополагающих понятий всего естествознания. В классической физике полагали, что можно запросто говорить об абсолютной одновременности событий сразу во всех точках пространства. Эйнштейн убедительно показал неверность такого представления. Он начинает с анализа вопроса, каким образом можно установить одновременность двух событий, происходящих в разных точках пространства. Для этого, делает он вывод, нужно иметь в этих точках часы, причем эти часы должны быть одинаково устроены и идти синхронно. Но как узнать, что двое часов, помещенных в различных местах пространства, идут синхронно; или, что то же самое, как узнать, что два события в различных точках пространства, скажем на Земле и на Луне, происходят одновременно? Для достижения синхронности, можно воспользоваться световыми сигналами. Допустим, что в удаленных друг от друга точках пространства А и В имеются одинаковые часы, и часы в точке А показывают времяt А , когда из этой точки выходит световой луч в направлении точки В . Допустим, что этот луч достигает точки В , когда часы в ней показывают время t в , и затем движется обратно к точке А , куда приходит в момент времениt'A по часам, помещенным в этой точке. Будем считать, что часы в точках А и В идут синхронно, если всегда выполняется соотношение: tB – tA = t`A – t` События в точках А и В будут одновременными, если часы в этих точках показывают для них одно и то же время. Такое определение одновременности кажется вполне логичным, если принять условие, что свет распространяется с одинаковой скоростью во всех направлениях. Но оказывается, что если ввести такое определение одновременности, то вследствие конечности скорости распространения света это понятие становится относительным, поскольку события в одной «покоящейся» системе не будут одновременными в любой другой системе, движущейся относительно первой. К этому выводу приводит простой логический анализ. Допустим, что в точках А и В , расположенных друг от друга на расстоянииS , находятся неподвижные синхронизированные часы (по правилу, приведенному выше). Пусть наблюдатель, двигающийся относительно часов с постоянной скоростью v в направлении АВ захочет проверить синхронность хода часов. Он должен считать время движения сигнала от А до В равным: а промежуток времени движения сигнала в обратном направлении Но принцип постоянства скорости света предполагает, что скорость света относительно движущегося наблюдателя неизменна и равна с . Значит, не существует способов установления синхронности часов; часы, синхронные для покоящегося наблюдателя, перестают быть синхронными, когда он движется по отношению к системе, в которой покоятся часы. Следовательно, понятие одновременности относительное. События, которые являются одновременными для одного наблюдателя, не одновременны для другого наблюдателя, движущегося относительно первого. Из нового понимания одновременности, осознания его относительности следуют совершенно революционные выводы о закономерностях пространственно-временных отношений вещей. Прежде всего необходимость признания относительности размеров тел. Чтобы измерить длину тела, нужно отметить его границы на масштабе одновременно. Однако то, что одновременно для неподвижного наблюдателя, уже не одновременно для движущегося, поэтому и длина тела, измеренная разными наблюдателями, которые движутся относительно друг друга с различными скоростями, должна быть различна. На следующем этапе становления специальной теории относительности этим общим идейным рассуждениям Эйнштейн придает математическую форму и, в частности, выводит формулы преобразования координат и времени — преобразования Лоренца. Но у Эйнштейна эти преобразования имеют иной смысл: одно и то же тело имеет различную длину, если оно движется с различной скоростью относительно системы, в которой эта длина измерялась. То же самое относится и ко времени. Промежуток времени, в течение которого длится какой-либо процесс, различен, если измерять его движущимися с различной скоростью часами. В специальной теории относительности размеры тел и промежутки времени теряют абсолютный характер, какой им приписывался классической физикой, и приобретаютстатус относительных величин, зависящих от выбора системы отсчета, с помощью которой проводилось их измерение. Они приобретают такой же смысл, какой имеют уже известные относительные величины, например, скорость, траектория и т.п. Таким образом, Эйнштейн делает вывод о необходимости изменения пространственно-временных представлений, выработанных классической физикой. Кроме формул преобразований координат и времени, Эйнштейн получает также релятивистскую формулу сложения скоростей, показывает, что масса тела также является относительной величиной, зависящей от скорости, а между массой тела и его полной энергией существует определенное соотношение. Он формулирует следующий закон: «масса тела есть мера содержащейся в нем энергии» в соотношении Е = mс 2 . Создание СТО было качественно новым шагом в развитии физического познания. От классической механики СТО отличается тем, что в физическое описание релятивистских явлений органически входит наблюдатель со средствами наблюдения. Описание физических процессов в СТО существенно связано с выбором системы координат. Физическая теория описывает не физический процесс сам по себе, а результат взаимодействия физического процесса со средствами исследования. Обращая на это внимание, Эйнштейн в уже упомянутой статье «К электродинамике движущихся тел» пишет: «Суждения всякой теории касаются соотношений между твердыми телами (координатными системами), часами и электромагнитными процессами» *. В СТО через осознание того, что нельзя дать описание физического процесса самого по себе, можно только дать его описание по отношению к определенной системе отсчета, впервые в истории физики непосредственно проявился диалектический характер процесса познания, активность субъекта познания, неотрывное взаимодействие субъекта и объекта познания. *Эйнштейн А. Собрание научных трудов. М., 1965. Т. 1. С. 8. 9.2. Создание и развитие общей теории относительности 9.2.1. Принципы и понятия эйнштейновской теории гравитации Классическая механика и СТО формулируют закономерности физических явлений только для некоторого достаточно узкого класса инерциальных систем отсчета, не предлагая средств для реального выделения таких систем. Вполне закономерно возникла проблема, как распространить законы физики и на неинерциальные системы. После создания СТО Эйнштейн стал задумываться над этой проблемой применительно к принципу относительности: «Можем ли мы сформулировать физические законы таким образом, чтобы они были справедливыми для всех систем координат, не только для систем, движущихся совершенно произвольно по отношению друг к другу? Если это можно сделать, то... тогда мы будем в состоянии применять законы природы в любой системе координат» *. *Эйнштейн А., Инфельд Л. Эволюция физики. М.,1965. С. 176. Возможность реализации этой идеи Эйнштейн увидел на пути обобщения принципа относительности движения — распространение принципа относительности не только на скорость, но и на ускорение движущихся систем. Если не приписывать абсолютный характер не только скорости, но и ускорению, то в таком случае выделенность класса инерциальных систем потеряет свой смысл и можно так формулировать физические законы, чтобы их формулировка имела смысл в отношении любой системы координат. Это и есть содержание общего принципа относительности. Это означает, что точно так же, как нельзя говорить о скорости тела вообще безотносительно к какому-нибудь телу, так, очевидно, и ускорение имеет конкретный смысл по отношению к некоторому фактору, вызывающему и определяющему его. До Эйнштейна существовали две точки зрения на причины, порождающие инерциальные силы в ускоренных системах. Ньютон считал, что таким фактором является абсолютное пространство, а Э. Мах — действие общей массы Вселенной (см. 8.1.3). Эйнштейн пошел по иному пути — распространил принцип эквивалентности сил инерции и сил тяготения (инертной и гравитационной масс) на оптические явления. Существует два различных и независимых способа определения массы тела: 1) через ускорение, которое вызывает любая действующая на тело сила (инертная масса); 2) через притяжение в поле тяготения (гравитационная масса — вес тела). Независимость инертной и гравитационной масс и их эквивалентность была известна в классической механике и выражалась через закон пропорциональности веса и массы Р/т = g . Еще Галилей в своих опытах на «падающей башне» в Пизе установил, что все тела на Земле, если не учитывать сопротивления воздуха, падаютс одним и тем же ускорением. А Ньютон обратил внимание на то, что периоды колебаний маятника зависят не от массы шара, а от длины нити, на которой он подвешен. В 1890 г. венгерский физик Л. Этвеш подтвердил факт эквивалентности инертной и гравитационной масс с высокой точностью (до 10-9 , сейчас эта точность повышена до 10-12 ). После открытия зависимости инертной массы от скорости (релятивистские эффекты) вопрос о независимости гравитационной массы от любых свойств тел и состояний, в которых они находятся, предстал в новом свете. Нужно было разобраться в вопросе, изменяются ли гравитационные свойства тел, если их инерционные свойства зависят от состояния движения. В этих условиях одни физики высказывали мнение, что отношение массы тела к его весу нельзя считать постоянным, а другие считали, что гравитационная и инертная массы всегда равны и имеют одну и ту же природу. Но так как согласно теории относительности энергия обладает инерцией, то она должна обладать и тяжестью. Эйнштейн также обращается к этой проблематике и задумывается над тем, не обладает ли энергия также тяжелой (гравитирующей) массой, и уже в 1911 г. приходит к новым идеям, которые затем легли в основу общей теории относительности (ОТО). В центре его размышлений оказался вопрос: можно ли оценивать движение равноускоренной системыS по отношению к инерциальной системе S как пребывание в относительном покое? Теоретический анализ подводит его к выводу, что две системы отсчета, одна из которой движется ускоренно, а другая хотя и покоится, но в ней действует однородное поле тяготения, в отношении механических явлений эквивалентны и неразличимы. Иначе говоря, физика не знает средств, которые могли бы отличить эффект гравитации от эффекта ускорения. Это утверждение Эйнштейн иллюстрирует примером: наблюдатель, находящийся в закрытом лифте, не может определить, движется ли лифт ускоренно или внутри лифта действуют силы тяготения. Эквивалентность, существующую между ускорением и однородным полем тяготения, которая справедлива для механики, Эйнштейн считает возможным распространить на оптические и вообще любые физические явления. Этот расширенный принцип эквивалентности и был положен им в основу общей теории относительности. Построение ОТО он завершил в 1916 г. При этом он использовал понятия и математический аппарат неевклидовых геометрий. Мысленные эксперименты убедительно показывали, что релятивистская физика не может основываться на евклидовой геометрии и А. Эйнштейн вводит представление о том, что метрика пространства-времени обусловлена гравитационным полем, которое в свою очередь создано вещественными образованиями: «Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения ОТО стремятся раскрыть геометрические свойства нашего мира» *. Эйнштейн исходил из того, что пространственно-временной континуум носит риманов характер. А римановым (в узком смысле) называется пространство постоянной положительной кривизны. Его наглядный образ — поверхность обычной сферы. Это значит, что движение частицы в гравитационном поле определяется кратчайшей мировой линией, которая не является прямой, но тем не менее является кратчайшей. * Эйнштейн Л., Инфельд Л. Указ. соч. С. 196. Итак, с точки зрения ОТО пространство не обладает постоянной (нулевой) кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения. Можно сказать больше: поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального евклидова пространства. Величина поля тяготения в каждой точке определяется значением кривизны пространства в этой точке. Таким образом, движение материальной точки в поле тяготения можно рассматривать как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходимо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача заключается в том, чтобы, зная распределение тяготеющих масс в пространстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светого луча и т.д. Эйнштейн нашел общее уравнение гравитационного поля (которое в классическом приближении переходило в закон тяготения Ньютона) и таким образом решил проблему тяготения в общем виде. Уравнения гравитационного поля в общей теории относительности представляют собой систему 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единственной величины – плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса. Кардинальное отличие ОТО от предшествующих ей фундаментальных физических теорий в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система», «евклидов характер пространства-времени» и др. В ОТО используют нежесткие (деформирующиеся) тела отсчета, поскольку в гравитационных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «моллюском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн (хотя до сих пор их экспериментально обнаружить не удалось). В последние десятилетия своей жизни Эйнштейн усиленно занимался поисками «единой теории поля», которая бы объединила теорию тяготения и теорию электромагнитного поля. С точки зрения Эйнштейна, реализация этой задачи позволила бы свойства вещества вывести из представлений о свойствах поля, «рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно» *, и объяснить существование элементарных частиц. Однако несмотря на все остроумие его методов и колоссальное упорство, ему не удалось этого достигнуть. К середине XX в. стало ясно, что работа в этом направлении должна осуществляться с учетом существования не двух (гравитационное и электромагнитное), а четырех типов фундаментальных взаимодействий. *Эйнштейн А., Инфельд Л. Указ. соч. С. 201. 9.2.2. Экспериментальная проверка общей теории относительности Первый успех ОТО, которая стала фундаментом для выявления новых и объяснения известных общих свойств и закономерностей Вселенной, заключался в объяснении открытой еще в 1859 г. (и непонятной с точки зрения классической теории) дополнительной скорости движения перигелия Меркурия (около 43" в столетие) под влиянием гравитационного поля Солнца (см. 8.2.1). Прецессия орбиты Меркурия обусловлена искривлением пространства, вызванного гравитационным воздействием Солнца. В соответствии с ОТО в результате действия поля тяготения движение материальной точки, так же как и распространение светового луча, уже не является равномерным и прямолинейным. Распространение выводов ОТО на оптические явления приводит к ряду необычных следствий — явлению красного смещения спектров звезд и отклонению светового луча под действием этого поля. Так, в ОТО был получен новый фундаментальный результат: скорость света уже не является постоянной величиной, она изменяется, когда свет проходит поле тяготения, увеличиваясь или уменьшаясь в зависимости от взаимного направления распространения света инаправления сил тяготения. Отсюда, в частности, следует, что луч света, проходя мимо тела, обладающего сильным полем тяготения, должен искривляться, если его направление не совпадает с направлением силы тяготения. Этот эффект может быть обнаружен при наблюдении солнечного затмения. Если сравнить положение группы звезд, находящихся на небесной сфере вблизи Солнца во время его затмения, с положением этой же группы звезд ночью, то, согласно ОТО, в первом случае световые лучи от этих звезд, проходя около поверхности Солнца, должны искривляться в его гравитационном поле, следовательно, будут наблюдаться смещенными относительно их обычного положения на небесной сфере. Большое значение для широкого признания ОТО имели опыты по измерению отклонения лучей света, проходящих около Солнца. Первая немецкая экспедиция по проверке данного эффекта была направлена уже в 1914 г. на территорию России, но в связи с началом Первой мировой войны была интернирована. Затмение 29 мая 1919 г. представляло собой особенно благоприятный случай, когда в поле наблюдений оказывалось большое число ярких звезд, и потому в Великобритании под руководством А. Эддингтона были сформированы две экспедиции: одна направилась в Бразилию (Собрал), а другая — на один из островов, расположенных возле африканского материка (Принсипи). Как отмечалось в отчете, «результаты экспедиций в Собрал и на Принсипи оставляют мало сомнения в том, что луч света отклоняется вблизи Солнца и что отклонение, если приписать его действию гравитационного поля Солнца, по величине соответствует требованиям общей теории относительности Эйнштейна» *. Проведенные в 1922 г. новые измерения также подтвердили существование эффекта, предсказанного теорией Эйнштейна. * Альберт Эйнштейн и теория гравитации. М., 1979. С. 570. Другой результат, полученный в теории Эйнштейна, — наличие красного смещения в спектрах небесных тел — был подтвержден рядом опытов 1923—1926 гг. при наблюдении спектров Солнца и обладающего чрезвычайно большим полем тяготения спутника Сириуса. Долгое время экспериментальных подтверждений ОТО было мало: изменения орбиты Меркурия, красное смещение в спектрах звезд, искривление лучей света вблизи Солнца, обусловленное кривизной пространства. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружитьзамедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX в. были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны); с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они так или иначе подтвердили предсказания, полученные на основе ОТО. 9.2 3. Современное состояние теории гравитациии ее роль в физике В физике XX в. ОТО сыграла особую и своеобразную роль. Во-первых, она представляет собой новую теорию тяготения, хотя, возможно, и не вполне завершена и не лишена некоторых недостатков. Трудность состоит в том, что гравитация — это вид энергии, и поэтому она сама является собственным источником энергии; гравитация как физическое поле сама обладает (как, например, и электромагнетизм) энергией и импульсом, а значит, и массой. Следовательно, уравнения теории нелинейны, т.е. нельзя просто сложить известные решения для простых систем, чтобы получилось полное решение для сложной системы. С этим связаны, например, трудности в интерпретации содержания тензора энергии — импульса. Математический аппарат теории настолько сложен, что почти все задачи, кроме самых простейших, оказываются неразрешимыми. Из-за таких трудностей (возможно, они скорее технического характера, но может быть и принципиального) ученые до сих пор — спустя 80 лет после того, как ОТО была сформулирована, — все еще пытаются разобраться в ее смысле. Поэтому вполне закономерно, что и в XX в. физики продолжали попытки создания альтернативных теорий тяготения. Их создано уже более 20 (Т.Калуца, Г.Вейль,Э.Картан и др.).Некоторые из них, как и теория Эйнштейна, исходят из геометрического толкования гравитации, а другие — из понятия поля, заданного в плоском пространстве-времени, третьи рассматривают «гравитационную постоянную» как функцию, зависящую от времени. Почти все эти альтернативные теории не предсказывают новых экспериментов и потому их эвристическое значение практически равно нулю. Кроме того, ни одна из них не обладает такой эстетической привлекательностью, красотой и изяществом, как теория Эйнштейна. Физики давно признали, что ОТО дает наилучшее из известных описание пространства-времени и гравитации. В о - в т о р ы х, на основе ОТО были развиты два фундаментальных направления современной физики: геометризированные единые теории поля; релятивистская космология (см. 11.6). Успешная геометризация гравитации заставила многих физиков задуматься над вопросом о сущности физики в ее отношении с геометрией. Здесь сложились две противоположные точки зрения: 1) поля и частицы непосредственно не определяют характер пространственно-временного континуума. Он сам служит лишь ареной их проявления. Поля и частицы чужды геометрии мира и их надо добавить к геометрии, чтобы вообще можно было говорить о какой-либо физике; 2) в мире нет ничего, кроме пустого искривленного пространства. Материя, заряд, электромагнетизм и другие поля являются лишь проявлением искривленного пространства. Физика есть геометрия. ОТО оказалась переходной теорией между первым и вторым подходами. В ОТО представлен смешанный тип описания реальности: гравитация в ней геометризирована, а частицы и поля, отличные от гравитации, добавляются к геометрии. Многие ученые (в том числе и сам Эйнштейн) предпринимали попытки объединить электромагнитное и гравитационное поля в рамках достаточно общего геометрического формализма на базе ОТО. С открытием разнообразных элементарных частиц и соответствующих им полей естественно встала проблема включения и их в рамки подобной единой теории. Это положило начало длительному процессу поисков геометризированной единой теории поля, которая, по замыслу, должна реализовать второй подход — сведение физики к геометрии, создание геометродинамики. Важным результатом на этом пути явилось включение в физику структур современной алгебраической топологии. В геометродинамике доказано, что флуктуации гравитационного поля могут измерять топологический характер пространства. Особенно перспективны протяженности с переменной топологией — так называемые топосы. Основные трудности на этом пути связаны с решением проблемы эмпирической интерпретации топологии на очень больших и очень малых расстояниях. Анализ показывает, что там, где проявляются изменения тополоческой структуры мира, топологии пространственно-временного континуума, там фиксируется кажущееся изменение фундаментальных законов природы. Так, происходит кажущееся нарушение причинности, когда при падении в «черную дыру» исчезают элементарные частицы. В связи с изменениями топологии теряет свой однозначный смысл понятие расстояния (загадочная неоднозначность расстояний до квазаров — их движение относительно друг друга происходит со скоростями, которые чуть ли не в 25 раз (!) превышают скорость света). С вариациями топологических структур, возможно, связаны и квантовые процессы. 9.3. Возникновение и развитие квантовой физики Истоки квантовой физики можно найти в исследованиях процессов излучения тел. Еще в 1809 г. П. Прево сделал вывод, что каждое тело излучает независимо от окружающей среды. Развитие спектроскопии в XIX в. привело к тому, что при изучении спектров излучения начинают обращать внимание и на спектры поглощения. При этом выясняется, что между излучением и поглощением тела существует простая связь: в спектрах поглощения отсутствуют или ослабляются те участки спектра, которые испускаются данным телом. Этот закон получил объяснение только в квантовой теории. Г. Кирхгоф в 1860 г. сформулировал новый закон, который гласит, что для излучения одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способностей для всех тел одинаково. Другими словами, если ЕλТ и АλТ — соответственно испускательная и поглощательная способности тела, зависящие от длины волны λ и температуры Т - то где φ(λ,Т ) — некоторая универсальная функция λ и Т , одинаковая для всех тел. Кирхгоф ввел понятие абсолютно черного тела как тела, поглощающего все падающие на него лучи. Для такого тела, очевидно, АλТ = 1; тогда универсальная функция φ(λ,Т ) равна испускательной способности абсолютно черного тела. Сам Кирхгоф не определил вид функции φ(λ,Т ), а лишь отметил некоторые ее свойства. При определении вида универсальной функции φ(λ,Т ) естественно было предположить, что можно воспользоваться теоретическими соображениями, прежде всего основными законами термодинамики. Л. Больцман показал, что полная энергия излучения абсолютно черного тела пропорциональна четвертой степени его температуры. Однако задача конкретного определения вида функции Кирхгофа оказалась весьма трудной, и исследования в этом направлении, основанные на термодинамике и оптике, не привели к успеху. Опыт давал картину, не объяснимую с точки зрения классических представлений: при термодинамическом равновесии между колеблющимися атомами вещества и электромагнитным излучением почти вся энергия сосредоточена в колеблющихся атомах и лишь ничтожная часть ее приходится на долю излучения, тогда как согласно классической теории практически вся энергия должна была бы перейти к электромагнитному полю. В 80-е гг. XIX в. эмпирические исследования закономерностей распределения спектральных линий и изучение функции φ(λ,Т ) стали более интенсивными и систематическими. Была усовершенствована экспериментальная аппаратура. Для энергии излучения абсолютно черного тела В. Вином в 1896 г., Дж. Рэлеем и Дж. Джинсом в 1900 г. были предложены две различные формулы. Как показали экспериментальные результаты, формула Вина асимптотически верна в области коротких волн и дает резкие расхождения с опытом в области длинных волн, а формула Рэлея — Джинса асимптотически верна для длинных волн, но не применима для коротких. В 1900 г. на заседании Берлинского физического общества М. Планк предложил новую формулу для распределения энергии в спектре серного тела. Эта формула давала полное соответствие с опытом, но ее физический смысл был не вполне понятен. Дополнительный анализ показал, что она имеет смысл только в том случае, если опустить, что излучение энергии происходит не непрерывно, а пределенными порциями — квантами (ε). Более того, ε не является любой величиной, а именно, ε =hν , гдеh — определенная константа, a v — частота света. Это вело к признанию наравне с атомизмом вещества атомизма энергии или действия, дискретного, квантового характера излучения, что не укладывалось в рамки представлений классической физики. Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики . С большим успехом эту гипотезу начали применять для объяснения других явлений, которые не поддаваясь описанию на основе представлений классической физики. Существенно новым шагом в развитии квантовой гипотезы было ведение понятия квантов света. Эта идея была разработана в 1905 г. Эйнштейном и использована им для объяснения фотоэффекта. В целом ряде исследований были получены подтверждения истинности этой идеи. В 1909 г. Эйнштейн, продолжая исследования законов излучения, показывает, что свет обладает одновременно и волновыми, и корпускулярными свойствами. Становилось все более очевидно, что корпускулярно-волновой дуализм светового излучения нельзя объяснить с позиций классической физики. В 1912 г. А. Пуанкаре окончательно доказал несовместимость формулы Планка и классической механики. Требовались новые понятия, новые представления и новый научный язык, для того чтобы физики могли осмыслить эти необычные явления. Все это появилось позже — вместе с созданием и развитием квантовой механики. 9.3.2. Теория атома И. Бора. Принцип соответствия В свете тех выдающихся открытий конца XIX в., которые революционизировали физику, одной из ключевых стала проблема строения атомов. Еще в 1889 г. в своей Фарадеевской лекции Д.И. Менделеев отмечал, что в результате выявления специфической периодичности химических свойств элементов, расположенных по возрастающим атомным весам, центральной проблемой физики становится проблема строения атома *. *Менделеев Д.И . Полн. собр. соч. М., 1937. Т. 2. С. 347. В 1909—1910 гг. Э. Резерфордом были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Как показали эти исследования, большинство α-частиц, пронизывающих тонкий слой вещества, рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Некоторые сравнительно немногие частицы отклонялись на угол 90° и более; по-видимому, они встретились с очень сильными электрическими полями. Результаты этого исследования позволили Резерфорду в 1911 г. сформулировать планетарную модель атома. По модели Резерфорда, атом состоит из положительного ядра гораздо меньших размеров, нежели атом, — порядка 10-13 см. Вокруг ядра вращаются электроны. Общий заряд атома равен нулю, поэтому заряд ядра по абсолютной величине равен nе , где n — число электронов в атоме, е — заряд электрона. Резерфорд полагал также, что число электронов в атоме должно быть равно порядковому номеру элемента в периодической системе Менделеева. Но модель Резерфорда не объясняла многих выявленных к тому времени закономерностей излучения атомов, вид атомных спектров и др. Более совершенную квантовую модель атома предложил в 1913 г. молодой датский физик Н. Бор, работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α -частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от ряда принципов классической физики. Бор взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следующему. 1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенной орбите, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е1 , Е2 , ..., Е n . Состояния эти характеризуется своей устойчивостью. Всякое изменение энергии в результате поглощения или испускания электромагнитного излучения может происходить только скачком из одного состояния в другое. 2. Электрон способен переходить с одной стационарной орбиты на другую. Только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты. Эта частота зависит от уровня изменения энергии атома при таком переходе. Если при переходе электрона с орбиты на орбиту энергия атома изменяется от Е m до Е n , то испускаемая или поглощаемая частота определяется условием Эти постулаты Бор использовал для расчета простейшего атома (водорода), рассматриваяпервоначально наиболее простую его модель: неподвижное ядро, вокруг которого по круговой орбите вращается электрон. Объяснение спектра водорода было большим успехом теории Бора. Квантовые постулаты Бора были лишь первым шагом в создании теории атома, поэтому пришлось воспользоваться следующим приемом: сначала задача решалась при помощи классической механики (заведомо неприменимой полностью к внутриатомным движениям), а затем из всего непрерывного множества состояний движения, к которым приводит классическая механика, на основе квантовых постулатов отбирались квантовые состояния. Несмотря на все несовершенство этого метода, он привел к большим успехам — позволил объяснить сложные закономерности в атомных и молекулярных спектрах, осмыслить природу химических взаимодействий и др. Такой подход, по сути, является частным случаем общего принципа, играющего важную роль в современной теоретической физике — принципа соответствия, который гласит, что всякая неклассическая теория в соответствующем предельном случае переходит в классическую. Важным достижением Бора и других исследователей было развитие представления о строении многоэлектронных атомов. Предпринятые шаги в развитии теории строения более сложных (чем водород) атомов и объяснении структуры их спектров принесли некоторые успехи, однако здесь исследователи столкнулись с большими трудностями. Введение четырех квантовых чисел, характеризующих состояния электрона в атоме, установление принципа Паули (согласно которому две тождественный частицы с полуцелым спином не могут одновременно находиться в одном состоянии) и объяснение периодической системы Менделеева — большие успехи теории атома Бора. Однако они не означали, что эту теорию можно считать завершенной. Во-первых, постулаты Бора и многие принципы его теории имели характер непонятных, ни откуда не следуемых утверждений, которые еще должны получить свое обоснование. Во-вторых, в некоторых даже довольно простых случаях применение данной теории встречало непреодолимые трудности; так, например, попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху. Физики ясно понимали неудовлетворительность боровской теории атома. Таким образом, в первой четверти XX в. перед физикой все еще стояла задача поиска новых путей развития теории атомных явлений. Ее решение потребовало отказа от ряда давно установленных понятий и выработки совершенно новых теоретических представлений и принципов. 9.3.3. Создание нерелятивистской квантовой механики Такие новые представления и принципы были созданы плеядой выдающихся физиков XX в. в 1925—1927 гг.: В. Гейзенберг установил основы так называемой матричной механики; Л. де Бройль, а за ним Э. Шредингер разработали волновую механику. Вскоре выяснилось, что и матричная механика, и волновая механика — различные формы единой теории, получившей название квантовой механики. К созданию матричной механики В. Гейзенберг пришел в результате исследований спектральных закономерностей, а также теории дисперсии, где атом представлялся некоторой символической математической моделью — как совокупность виртуальных гармонических осцилляторов. Представления об атоме как о системе, состоящей из ядра и вращающихся вокруг него электронов, которые обладают определенной массой, движутся с определенной скоростью по определенной орбите, нужно понимать лишь как аналогию для установления математической модели. Указанный метод исследования и развил Гейзенберг, распространив его вообще на теорию атомных явлений. В 1926 г. Гейзенберг впервые высказал основные положения квантовой механики в матричной форме. Теория атомных явлений, по Гейзенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экспериментальных исследованиях («наблюдаемыми» величинами, в терминологии Гейзенберга) — частотой излучения спектральных линий, их интенсивностью, поляризацией и т.п. «Ненаблюдаемые» величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т.д., не следует использовать в теории атома. Однако в согласии с принципом соответствия новая теория должнa определенным образом соответствовать классическим теориям, т.е. соотношения величин новой теории должны быть аналогичными соотношениям классических величин. При этом каждой классической величине нужно найти соответствующую ей квантовую величину и, пользуясь классическими соотношениями, составить соответствующие им соотношения между найденными квантовыми величинами. Такие соответствия могут быть получены только из операций измерения. Анализируя закономерности измерения величин в квантовой механике, Гейзенберг приходит к важному принципиальному результату о невозможности одновременного точного измерения двух канонически сопряженных величин и устанавливает так называемое соотношение неопределенностей где Δqi — точность измерения какой-либо из координат частицы; Δpi — точность одновременного измерения соответствующего импульса;h — постоянная Планка. Этот принцип является основой физической интерпретации квантовой механики. Второе направление в создании квантовой механики сначала развивалось в работах Л. де Бройля. Он высказал идею о волновой природе материальных частиц. На основании уже установленного факта одновременно и корпускулярной, и волновой природы света, а также оптико-механической аналогии де Бройль пришел к идее о существовании волновых свойств любых частиц материи. На первые работы де Бройля, в которых высказывалась идея волн, связанных с материальными частицами, не обратили серьезного внимания. Де Бройль впоследствии писал, что высказанные им идеи были приняты с «удивлением, к которому несомненно примешивалась какая-то доля скептицизма». Но не все скептически отнеслись к идеям де Бройля. Особенно сильное влияние идеи де Бройля оказали на Э. Шрёдингера, который увидел в них основу для создания новой теории квантовых процессов. В 1926 г. Шрёдингер, развивая идеи де Бройля, построил так называемую волновую механику. Шрёдингер приходит к мысли, что квантовые процессы следует понимать как некие волновые процессы, характеризуемые волновой функцией Ψ. Тогда образ материальной точки, занимающей определенное место в пространстве, строго говоря, является приближенным и может быть сохранен только при рассмотрении макропроцессов, подобно тому как мы пользуемся представлением о световом луче, которое теряет смысл, если рассматривать явления дифракции и интерференции. Функция Ψ должна удовлетворять волновому уравнению («уравнение Шрёдингера»). Шрёдингер поставил вопрос о связи его теории с теорией Гейзенберга и показал, что при всем различии исходных физических положений они математически эквивалентны. Иначе говоря, в квантовой механике разница между полем и системой частиц исчезает. Так, например, электрон, вращающийся вокруг ядра, можно представить как волну, длина которой зависит от ее скорости. Там, где укладывается целое число длин волн электрона, волны складываются и образуют боровские разрешенные орбиты. А там, где целое число длин волн не укладывается, гребни волн компенсируют впадины, там орбиты не будут разрешены. Волновая механика получила прямое экспериментальное подтверждение в 1927г., когда К-Дж. Дэвиссон и П. Джермер обнаружили явление дифракции электронов. Кроме того, выяснилось, что правильно и количественное соотношение для длин «волн де Бройля». Квантовая механика — теоретическая основа современной химии. Ядро атома с порядковым номеромN и массовым числом М содержит N протонов и (М- N ) нейтронов (всего М нуклонов). Число электронов оболочек равно числу протонов в ядре, поэтому в нормальном состоянии атом нейтрален. Электроны распределяются на оболочках в строгом порядке: на первой к ядру не более 2 электронов; на второй — не более 8; на третей — не более 18 и т.д. Когда два атома сталкиваются, они или объединяются вместе, обобществляя свои оболочки, или вновь расходятся после перераспределения электронов. Число электронов на внешней оболочке и определяет химическую активность элемента. С помощью квантовой теории удалось построить также более совершенные теории твердого тела, электрической проводимости, термоэлектрических явлений и т.д. Она дала основания для построения теории радиоактивного распада, а в дальнейшем стала базой для ядерной физики. Вслед за основополагающими работами Шрёдингера по волновой механике были предприняты первые попытки релятивистского обобщения квантово-механических закономерностей, и уже в 1928 г. П. Дирак заложил основы релятивистской квантовой механики. 9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности Созданный группой физиков в 1925—1927 гг. формальный математический аппарат квантовой механики убедительно продемонстрировал свои широкие возможности по количественному охвату значительного эмпирического материала; не оставалось сомнений, что квантовая механика пригодна для описания определенного круга явлений. Вместе с тем исключительная абстрактность квантово-механических формализмов, значительные отличия от классической механики (замена кинематических и динамических переменных абстрактными символами некоммутативной алгебры, отсутствие понятия электронной орбиты, необходимость интерпретации формализмов и др.) рождали ощущение незавершенности, неполноты новой теории. В результате возникло мнение о необходимости ее завершения. Возникла дискуссия о том, каким путем это нужно делать. А. Эйнштейн и ряд физиков считали, что квантово-механическое описание физической реальности существенно неполно. Иначе говоря, созданная теория не является фундаментальной теорией, а лишь промежуточной ступенью по отношению к ней, поэтому ее необходимо дополнить принципиально новыми постулатами и понятиями, т.е. дорабатывать ту часть оснований новой теории, которая связана с ее принципами. Другие физики (Н. Бор, В. Гейзенберг, М. Борн и др.) считали, что новая теория является фундаментальной и дает полное описание физической реальности, а «прояснить положение вещей можно было здесь только путем более глубокого исследования проблемы наблюдений в атомной физике» *. Иначе говоря, Бор и его единомышленники полагали, что «доработку» квантовой механики следует вести по линии уточнения той части ее оснований, которые связаны не с принципами теории, а с ее методологическими установками, по линии интерпретации созданного математического формализма. Разработка методологических установок квантовой механики, являвшаяся важнейшим звеном в интерпретации этой теории, продолжалась вплоть до конца 40-х гг. Завершение выработки этой интерпретации означало и завершение научной революции в физике, начавшейся в конце XIX в. * Бор Н . Избранные научные труды М., 1971. Т. 2. С. 405. Основной отличительной особенностью экспериментальных исследований в области квантовой механики является фундаментальная роль взаимодействия между физическим объектом и измерительным устройством. Это связано с корпускулярно-волновым дуализмом. И свет, и частицы проявляют в различных условиях противоречивые свойства, в связи с чем о них возникают противоречивые представления. В одном типе измерительных приборов (дифракционная решетка) они представляются в виде непрерывного поля, распределенного в пространстве, будь то световое поле или поле, которое описывается волновой функцией. В другом типе приборов (пузырьковая камера) эти же микроявления выступают как частицы, как материальные точки. Причина корпускулярно-волнового дуализма, по Бору, в том, что сам микрообъект не является ни волной, ни частицей в обычном понимании. Невозможность провести резкую границу между объектом и прибором в квантовой физике выдвигает две задачи: 1)каким образом можно отличить знания об объекте от знаний о приборе; 2) каким образом, различив их, связать в единую картину, теорию объекта. Вследствие того что сведения о микрообъекте, о его характеристиках получают в результате его взаимодействия с классическим прибором (макрообъёктом), микрообъект можно интерпретировать только в классических понятиях, т. е. использовать классические представления о волне и частице. Мы как бы вынуждены говорить на классическом языке, хотя с его помощью нельзя выразить все особенности микрообъекта, который не является классическим. Поэтому первая задача разрешается введением требования описывать поведение прибора на языке классической физики, а принципиально статистическое поведение микрочастиц — на языке квантово-механических формализмов. Вторая задача разрешается с помощью принципа дополнительности: волновое и корпускулярное описания микропроцессов не исключают и не заменяют друг друга, а взаимно дополняют друг друга. При одном представлении микрообъекта используется причинное описание соответствующих процессов, в другом случае — пространственно-временное. Единая картина объекта синтезирует эти два описания. 9.4. Методологические установки неклассической физики Создание релятивистской, а затем и квантовой физики привело к необходимости пересмотра методологических установок классической физики. Представим в систематическом виде методологические остановки неклассической физики: · Признание объективного существования физического мира , т.е. его существования до и независимо от человека и его сознания. · В отличие от классической физики, которая рассматривала мир физических элементов как качественно однородное образование, современная физика приходит к выводу о наличии трех качественно различающихся структурных уровней мира физических элементов: микро-, макро- и мегауровней. · Явления микромира, микропроцессы обладают чертами целостности, необратимости и неделимости, которые приводят к качественному изменению представлений о характере взаимосвязи объекта и экспериментальных средств исследования. · Причинность как один из элементов всеобщей связи и взаимообусловленности вещей, явлений, событий материального мира присуща и микропроцессам. Но характер причинной связи в микромире отличен от механистического детерминизма. В области микроявлений причинность реализуется через многообразие случайностей, поэтому микропроцессам свойственны не динамические, а статистические закономерности. · Микроявления принципиально познаваемы. Получение полного и непротиворечивого описания поведения микрочастиц требует выработки нового способа познания и новых методологических установок познания. · Основа познания — эксперимент, непосредственное материальное взаимодействие между средствами исследования субъекта и объектом. Так же, как и в классической физике, исследователь свободен в выборе условий эксперимента. · Кардинальные изменения в методологии неклассической физики по сравнению с классической связаны с зависимостью описания поведения физических объектов от условий познания . В релятивистской физике — это учет состояния движения систем отсчета при признании постоянства скорости света в вакууме. В квантовой физике — фундаментальная роль взаимодействия между микрообъектом и измерительным устройством, прибором. Неклассическая физика характеризуется, по сути, изменением познавательного отношения субъекта и объекта . В квантовой физике оно фиксируется принципом дополнительности. · Если в классической физике все свойства объекта могут определяться одновременно, то уже в квантовой физике существуют принципиальные ограничения, выражаемые принципом неопределенности. · Неклассические способы описания позволяют получать объективное описание природы. Но объективность знания не должна отождествляться с наглядностью . Создание механической наглядной модели вовсе не синоним адекватного физического объяснения исследуемого явления. · Физическая теория должна содержать в себе не только средства для описания поведения познаваемых объектов, но и средства для описания условий познания, включая процедуры исследования. · В неклассической физике, как и в классической, игнорируется атомная структура экспериментальных устройств. · Структура процесса познания не является неизменной . Качественному многообразию природы должно соответствовать и многообразие способов ее познания. На основе неклассических способов познания (релятивистского и квантового) со временем должны сформироваться другие новые способы познания. Кардинальные изменения в системе методологических установок релятивистской физики (по сравнению с классической) связаны с выявлением зависимости описания поведения физических объектов от условий познания (учет состояния движения систем отсчета при признании постоянства скорости света в вакууме). Произошло изменение гносеологической позиции субъекта и объекта — появилась необходимость указания на ту систему отсчета, с позиций которой описывается исследуемая физическая область. Создание квантовой механики привело к еще более значительному пересмотру методологических принципов классической физики: введение нового класса принципиально статистических закономерностей; невозможность провести резкую границу между объектом и прибором и введение принципа дополнительности; невозможность одновременного определения всех свойств микрообъекта (принцип неопределенности); ненаглядность теоретических моделей; неоднозначность употребления понятий; необходимость указывать на условия познания и др. Во второй половине XX в. основное внимание физиков обращено на создание теорий, раскрывающих с позиций квантово-релятивистских представлений сущность и основания единства четырех фундаментальных взаимодействий — электромагнитного, «сильного», «слабого» и гравитационного. Эта задача одновременно является и задачей создания единой теории элементарных частиц теории структуры материи). В последние десятилетия созданы и получили эмпирическое обоснование квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика (теория сильного взаимодействия), есть перспективы на создание единой теории электромагнитного, «слабого» и «сильного» взаимодействий. Физики ожидают, что в отдаленной перспективе к ним должно быть присоединено и гравитационное взаимодействие. Таким образом, естествознание в настоящее время находится на пути к реализации великой цели — созданию единой теории структуры материи. Во второй половине XX в. физики, занятые изучением фундаментальной структуры материи, получили поистине удивительные результаты. Было открыто множество новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частиц. Новые частицы обычно открывают в реакциях рассеяния уже известных частиц. Для этого сталкивают частицы с как можно большими энергиями, а затем исследуют продукты их взаимодействия и фрагменты, на которые распались образовавшиеся частицы. До 50-х гг. основным источником первичных частиц были космические лучи, а в наше время ускорители, создающие интенсивные пучки частиц с высокими энергиями. Мир субатомных частиц поистине многообразен. Среди них и «кирпичики», из которых построено вещество: составляющие атомные ядра протоны и нейтроны, а также электроны, обращающиеся вокруг ядер. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются — резонансы. Время их жизни — мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже свыше трех сотен. В 50—70-е гг. физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Если в конце 40-х гг. было известно 15 элементарных частиц, то в конце 70-х гг. уже около четырехсот. Совершенно непонятно, для чего столько частиц. Являются ли элементарные частицы хаотическими и случайными осколками материи или, возможно, за взаимодействиями этих частиц скрывается некоторый порядок, указывающий на существование фундаментальной структуры субъядерного мира? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. Миру субатомных частиц присущи объективные закономерности и глубокий структурный порядок. В основе этого порядка — фундаментальные физические взаимодействия. 10.1. Фундаментальные физические взаимодействия В свой повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций; и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырем фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех материальных преобразований тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики. Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в XVII в. ньютоновская теория гравитации (закон всемирного тяготения) позволила впервые осознать истинную роль гравитации как силы природы (см. 6.3.1). Гравитация обладает рядом особенностей, отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенсивность . Гравитационное взаимодействие в 1039 раз меньше силы взаимодействия электрических зарядов *. Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной? * Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступной наблюдению части Вселенной. Все дело во второй удивительной черте гравитации — ее универсальности . Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притягивают нас. Зато в микромире роль гравитации ничтожна. Никакие квантовые эффекты в гравитации пока не доступны наблюдению. Кроме того, гравитация — дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике. Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения : она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось *. * Хотя в традициях квазинаучной мифологии есть целая область, которая называется левитация — поиск «фактов» антигравитации. Пока еще нет однозначного ответа на вопрос, чем является гравитация — неким полем, искривлением пространства-времени или тем и другим вместе. На этот счет существуют разные мнения и концепции (см. 10.2.4). Поэтому нет и завершенной теории квантово-гравитационного взаимодействия (см. 10.3.5). По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.). В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Как мы уже знаем, решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж. К. Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма — первой единой теории поля. Существование электрона (единицы электрического заряда) было твердо установлено в 90-е гг. XIX в. Но не все материальные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы. Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные — притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами — северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой — как южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс — монополь. Но все они заканчивались неудачей: на месте разреза возникали два новых магнита, каждый из которых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые современные теории допускают возможность существования монополя. Электрическая и магнитная силы (как и гравитация) являются дальнодействующими, их действие ощутимо на больших расстояниях от источника. Электромагнитное взаимодействие проявляется на всех уровнях материи — в мегамире, макромире и микромире. Как и гравитация, оно подчиняется закону обратных квадратов. Электромагнитное поле Земли простирается далеко в космическое пространство, мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. Электромагнитное взаимодействие определяет также структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных). К нему сводятся все обычные силы: силы упругости, трения, поверхностного натяжения, им определяются агрегатные состояния вещества, оптические явления и др. К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада (см. 8.1.5). У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики — закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она — нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино». Но предсказание нейтрино — это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Как же они возникали? Было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие. Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии. Теория слабого взаимодействия была создана в конце 60-х гг. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики. 10.1.4. Сильное взаимодействие Последнее в ряду фундаментальных взаимодействий — сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, — Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции. К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц. Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков (см. 10.3.2). Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой — малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого — близкодействия в микромире и дальнодействия во всей Вселенной. 10.1.5. Проблема единства физики Познание есть обобщение действительности, и поэтому цель науки — поиск единства в природе, связывание разрозненных фрагментов знания в единую картину. Для того чтобы создать единую систему, нужно открыть глубинное связующее звено между различными отраслями знания, некоторое фундаментальное отношение. Поиск таких связей и отношений — одна из главных задач научного исследования. Всякий раз, когда удается установить такие новые связи, значительно углубляется понимание окружающего мира, формируются новые способы познания, которые указывают путь к не известным ранее явлениям. Установление глубинных связей между различными областями природы — это одновременно и синтез знания, и новый метод, направляющий научные исследования по непроторенным дорогам. Выявление Ньютоном связи между притяжением тел в земных условиях и движением планет ознаменовало собой рождение классической механики, на основе которой построена технологическая база современной цивилизации. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомно-молекулярную теорию вещества. В середине прошлого столетия Максвелл создал единую электромагнитную теорию, охватившую как электрические, так и магнитные явления. Затем в 20-х гг. нашего века Эйнштейн предпринимал попытки объединить в единой теории электромагнетизм и гравитацию. Но к середине XX в. положение в физике радикально изменилось: были открыты два новых фундаментальных взаимодействия — сильное и слабое. При создании единой физики приходится считаться уже не с двумя, а с четырьмя фундаментальными взаимодействиями. Это несколько охладило пыл тех, кто надеялся на быстрое решение данной проблемы. Однако сам замысел под сомнение всерьез не ставился, и увлеченность идеей единого описания не прошла. Существует точка зрения, что все четыре (или хотя бы три) взаимодействия представляют собой явления одной природы и может быть найдено их единое теоретическое описание. Перспектива создания единой теории мира физических элементов (на основе одного-единственного фундаментального взаимодействия) остается весьма привлекательной. Это главная мечта физиков. Но долгое время она оставалась лишь мечтой, и очень неопределенной. Однако во второй половине XX в. появились предпосылки осуществления этой мечты.и уверенность, что это дело отнюдь не отдаленного будущего. Похоже, что вскоре она вполне может стать реальностью. Решающий шаг на пути к единой теории был сделан в 60—70-х гг. с созданием сначала теории кварков, а затем и теории электрослабого взаимодействия. Есть основания для мнения, что мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков усиливается убеждение, что начинают вырисовываться контуры единой теории всех фундаментальных взаимодействий — Великого объединения. 10.2. Классификация элементарных частиц 10.2.1. Характеристики субатомных частиц Исторически первыми экспериментально обнаруженными элементарными частицами были электрон, протон, а затем нейтрон. Казалось, что этих частиц и фотона (кванта электромагнитного поля) достаточно для построения известных форм вещества — атомов и молекул. При таком подходе вещество строилось из протонов, нейтронов и электронов, а фотоны осуществляли взаимодействие между ними. Однако вскоре выяснилось, что мир устроен значительно сложнее. Было установлено, что каждой частице соответствует своя античастица, отличающаяся от нее лишь знаком заряда. Для частиц с нулевыми значениями всех зарядов античастица совпадает с частицей (например, фотон). По мере развития экспериментальной ядерной физики к этим частицам добавились еще свыше 300 частиц. Характеристиками субатомных частиц являются масса, электрический заряд, спин, время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др. Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку она не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света (фотон). Нет двух частиц с одинаковыми массами. Электрон — самая легкая частица с не нулевой массой покоя. Протон и нейтрон тяжелее электрона почти в 2000 раз. А самая тяжелая из полученных в ускорителях элементарных частиц (Z-частица) обладает массой в 200 000 раз большей массы электрона. Электрический заряд меняется в довольно узком диапазоне и всегда кратен фундаментальной единице заряда - заряду электрона (-1). Некоторые частицы (фотон, нейтрино) вовсе не имеют заряда. Важная характеристика частицы — спин — собственный момент импульса частицы. Так, протон, нейтрон и электрон имеют спин 1/2, a спин фотона равен 1. Известны частицы со спином 0,3/2,2. Частица со спином 0 при любом угле поворота выглядит одинаково. Частицы со спином 1 принимает тот же вид после полного оборота на 360°. Частица со спином 1 /2 приобретает прежний вид после оборота на 720° и т.д. Частица со спином 2 принимает прежнее положение через пол-оборота (180°). Частиц со спином более 2 возможно вообще не существует. В зависимости от спина все частицы делятся на две группы: бозоны — частицы с целыми спинами 0, 1 и 2; фермионы — частицы с полуцелыми спинами (1 /2 , 3 /2 ). Частицы характеризуются и временем жизни. По этому признаку частицы делятся на стабильные и нестабильные. Стабильные частицы — это электрон, протон, фотон и нейтрино. Нейтрон стабилен, когда находится в ядре атома, но свободный нейтрон распадается примерно за 15 минут. Все остальные известные частицы нестабильны; время их жизни колеблется от нескольких микросекунд до 10-24 с. Большую роль в физике элементарных частиц играют законы сохранения, устанавливающие равенство между определенными комбинациями величин, характеризующих начальное и конечное состояния системы. Арсенал законов сохраняется в квантовой физике больше, чем в классической физике. Он пополнился законами сохранения различных четностей (пространственной, зарядовой), зарядов (лептонного, барионного и др.), внутренних симметрии, свойственных тому или иному типу взаимодействий. При этом оказалось, чем интенсивнее взаимодействие, тем больше ему отвечает законов сохранения, т.е. тем более оно симметрично. В квантовой физике законы сохранения всегда являются законами запрета. Но если какой-то процесс разрешен законами сохранения, то он обязательно происходит реально. Вершиной развития представлений о законах сохранения в квантовой физике является концепция спонтанного нарушения симметрии , т.е. существования устойчивых асимметричных решений для некоторых типов задач. В 60-х гг. экспериментально было подтверждено так называемое нарушение комбинированной четкости. Иначе говоря, обнаружилось, что в микромире имеются абсолютные различия между частицами и античастицами, между «правым» и «левым», между прошлым и будущим (стрела времени, или необратимость микропроцессов, а не только макропроцессов). Выделение и познание характеристик отдельных субатомных частиц — важный, но только начальный этап познания их мира. На следующем этапе нужно еще понять, какова роль каждой отдельной частицы, каковы ее функции в структуре материи. Физики выяснили, что прежде всего свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами . Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами . Кроме того, существуют частицы - переносчики взаимодействий . Рассмотрим свойства этих основных типов частиц. Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен 1/2. Среди лептонов наиболее известен электрон. Электрон — это первая из открытых элементарных частиц. Как и все остальные лептоны, электрон, по-видимому, является элементарным (в собственном смысле этого слова) объектом, т.е. он не состоит из каких-то других частиц. Другой хорошо известный лептон — нейтрино . Нейтрино являются наиболее распространенными частицами во Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино — это некие «призраки» физического мира. Достаточно широко распространены в природе мюоны, на долю которых приходится значительная часть космического излучения. Мюон— одна из первых известных нестабильных субатомных частиц, Открытая в 1936 г. Во всех отношениях мюон напоминает электрон: имеет тот же заряд и спин, участвует в тех те взаимодействиях, но имеет большую массу и нестабилен. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. В конце 70-х гг. был обнаружен третий заряженный лептон, получивший название «тау-лептон» . Это очень тяжелая частица. Ее масса около 3500 масс электрона, но во всем остальном он ведет себя подобно мектрону и мюону. Значительно расширился список лептонов в 60-х гг. Было установлено, что существует несколько, типов нейтрино: электронное нейтрино , мюонное нейтрино и тау-нейтрино . Таким образом, общее число разновидностей нейтрино равно трем, а общее число лептонов — шести. Разумеется, у каждого лептона есть своя античастица; таким образом, общее число различных лептонов равно двенадцати. Нейтральные лептоны участвуют только в слабом взаимодействии; заряженные — в слабом и электромагнитном (см. таблицу на с. 155). Если лептонов двенадцать, то адронов сотни; и подавляющее большинство из них резонансы, т.е. крайне нестабильные частицы. Тот факт, что адронов существует сотни, наводит на мысль, что адроны не элементарные частицы, а построены из более мелких частиц. Все адроны встречаются в двух разновидностях — электрически заряженные и нейтральные. Наиболее известны и широко распространены такие адроны, как нейтрон и протон. Остальные адроны короткоживущие и быстро распадаются. Это класс барионов (тяжелые частицы гипероны и барионные резонансы) и большое семейство мезонов (мезонные резонансы). Адроны участвуют в сильном, слабом и электромагнитном взаимодействиях.
* Имеются экспериментальные данные, свидетельствующие о том, что нейтрино все-таки обладают небольшой массой (одна десятимиллионная массы электрона), что имеет большое значение для космологии и теории элементарных частиц. Существование и свойства большинства известных адронов были установлены в опытах на ускорителях. Открытие множества разнообразных адронов в 50—60-х гг. крайне озадачило физиков. Но со временем частицы удалось классифицировать по массе, заряду и спину. Постепенно стала выстраиваться более или менее четкая картина. Появились конкретные идеи о том, как систематизировать хаос эмпирических данных, раскрыть тайну адронов в целостной научной теории. Решающий шаг был сделан в 1963 г., когда была предложена кварковая модель адронов. 10.2.4. Частицы - переносчики взаимодействий Перечень известных частиц не исчерпывается лептонами и адронами, образующими строительный материал вещества. В этот перечень не включен, например, фотон. Есть еще один тип частиц, которые не являются строительным материалом материи, а непосредственно обеспечивают четыре фундаментальных взаимодействия, т.е. образуют своего рода «клей», не позволяющий миру распадаться на части. Переносчиком электромагнитного взаимодействия выступает фотон . Теория электромагнитного взаимодействия представлена квантовой электродинамикой. Переносчики сильного взаимодействия — глюоны . Глюоны — переносчики взаимодействия между кварками, связывающие их попарно или тройками. Переносчики слабого взаимодействия три частицы — W± и Z°- бозоны. Они были открыты лишь в 1983 г. Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. В соответствии с принципом неопределенности время жизни частиц с такой большой массой покоя должно быть чрезвычайно коротким — всего лишь около 10-26 с. Высказывается мнение, что возможно существование и переносчика гравитационного поля — гравитона. Подобно фотонам, гравитоны движутся со скоростью света; следовательно, это частицы с нулевой массой покоя. Но этим сходство между гравитонами и фотонами исчерпывается. В то время как фотон имеет спин 1, спин гравитона равен 2. Это важное различие определяет направление силы: при электромагнитном взаимодействии одноименно заряженные частицы (электроны) отталкиваются, а при гравитационном — все частицы притягиваются друг к другу. В принципе гравитоны можно зафиксировать в эксперименте. Но поскольку гравитационное взаимодействие очень слабое и в квантовых процессах практически не проявляется, то непосредственно зафиксировать гравитоны очень сложно и пока не удалось. Классификация частиц на лептоны, адроны и переносчики взаимодействий исчерпывает мир известных нам субатомных частиц. Каждый вид частиц играет свою роль в формировании структуры материи, Вселенной. 10.3. Теории элементарных частиц 10.3.1. Квантовая электродинамика Квантовая механика позволяет описывать движение элементарных частиц, но не их порождение или уничтожение, т.е. применяется лишь для описания систем с неизменным числом частиц. Обобщением квантовой механики является квантовая теория поля — это квантовая теория систем с бесконечным числом степеней свободы (физических полей), учитывающая требования и квантовой механики, и теории относительности. Потребность в такой теории порождается квантово-волновым дуализмом, существованием волновых свойств у всех частиц. В квантовой теории поля взаимодействие представляют как результат обмена квантами поля, а полевые величины объявляются операторами, которые связывают с актами рождения и уничтожения квантов поля, т.е. частиц. В середине XX в. была создана теория электромагнитного взаимодействия — квантовая электродинамика (КЭД). Это продуманная до мельчайших деталей и оснащенная совершенным математическим аппаратом теория взаимодействия между собой заряженных элементарных частиц (прежде всего, электронов или позитронов) посредством обмена фотонами. В КЭД для описания электромагнитного взаимодействия использовано понятие виртуального фотона. Эта теория удовлетворяет основным принципам как квантовой теории, так и теории относительности. В центре теории анализ актов испускания или поглощения одного фотона одной заряженной частицей, а также аннигиляции электрон-позитронной пары в фотон или порождение фотонами такой пары. Если в классическом описании электроны представляются в виде твердого точечного шарика, то в КЭД окружающее электрона электромагнитное поле рассматривается как облако виртуальных фотонов, которое неотступно следует за электроном, окружая его квантами энергии. Фотоны возникают и исчезают очень быстро, а электроны движутся в пространстве не по вполне определенным траекториям. Еще можно тем или иным способом определить начальную и конечную точки пути — до и после рассеяния, но сам путь в промежутке между началом и концом движения остается неопределенным. Рассмотрим, например, акт испускания (виртуального) фотона электроном. После того как электрон испускает фотон, тот порождает (виртуальную) электрон-позитронную пару, которая может аннигилировать с образованием нового фотона. Последний может поглотиться исходным электроном, но может породить новую пару и т.д. Таким образом, электрон покрывается облаком виртуальных фотонов, электронов и позитронов, находящихся в состоянии динамического равновесия. Все эти процессы допускают графическое представление (диаграммы Р. Фейнмана, рис. 3). При этом известны только начальное и конечное положения электронов, а определить момент, когда происходит обмен фотоном и какая из частиц испускает фотон, а какая поглощает, невозможно. Эти характеристики скрыты пеленой квантовой неопределенности. Описание взаимодействия с помощью частицы-переносчика в КЭД привело к расширению понятия фотона. Вводятся понятия реального (кванта видимого нами света) и виртуального (скоротечного, призрачного) фотона, который «видят» только заряженные частицы, претерпевающие рассеяние. Чтобы проверить, согласуется ли теория с реальностью, физики сосредоточили внимание на двух эффектах, представлявших особый интерес. Первый касался энергетических уровней атома водорода — простейшего атома. Согласно КЭД, уровни должны быть слегка сменены относительно положения, которое они занимали бы в отсутствие виртуальных фотонов. Вторая решающая проверка КЭД касалась чрезвычайно малой поправки к собственному магнитному моменту электрона. Теоретические и экспериментальные результаты проверки КЭД совпадают с высочайшей точностью — более девяти знаков после запятой. Столь поразительное соответствие дает право считать КЭД наиболее совершенной из существующих естественно-научных теорий. За создание КЭД С. Томанага, Р. Фейнман и Дж. Швингер были удостоены Нобелевской премии за 1965 г. Большой вклад в становление КЭД был внесен и нашим выдающимся физиком-теоретиком Л.Д. Ландау. После подобного триумфа КЭД была принята как модель для квантового описания трех других фундаментальных взаимодействий. Разумеется, полям, связанным с другими взаимодействиями, должны соответствовать иные частицы-переносчики. Теория кварков — это теория строения адронов *. Основная идея этой теории очень проста: все адроны построены из более мелких частиц — кварков. Кварки несут дробный электрический заряд, который составляет либо -1/3, либо +2/3 заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин 1/2, следовательно, относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е гг. адроны ввели три сорта (аромата) кварков: u (отup - верхний),d (отdown - нижний) и s (от strange - странный). * Термин «кварк» выбран совершенно произвольно. В романе Дж. Джойса «Поминки по Финнегану» герою снится сон, в котором мечущиеся над бурным морем чайки кричат резкими голосами: «Три кварка для мистера Марка!» Такая произвольность вполне созвучна абстрактно-ненаглядному характеру понятий современных физических теорий. Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк — антикварк. Из трех кварков состоят сравнительно тяжелые частицы — барионы; наиболее известные барионы — нейтрон и протон. Более легкие пары кварк — антикварк образуют частицы, получившие название мезоны. Например, протон состоит из двух u - и одного d -кварка (uud ), а нейтрон — из двух d -кварков и одного u -кварка (udd ). Чтобы это «трио» кварков не распадалось, необходима удерживающая их сила, некий «клей». Оказалось, что результирующее взаимодействие между нейтронами и протонами в ядре представляет собой просто остаточный эффект более мощного взаимодействия между самими кварками. Это объяснило, почему сильное взаимодействие кажется столь сложным. Когда протон «прилипает» к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть энергии тратится на прочное «склеивание» трио кварков, а небольшая — на скрепление двух трио кварков друг с другом *. * Но выяснилось, что кварки участвуют и в слабом взаимодействии, которое может изменять аромат кварка. Именно так происходит распад нейтрона. Один из d-кварков в нейтроне превращается в u -кварк, а избыток заряда уносит рождающийся одновременно электрон. Аналогичным образом, изменяя аромат, слабое взаимодействие приводит к распаду и других адроиов. То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков *. Но в 70-е гг. были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен чувствительный удар первому варианту теории кварков, поскольку в том варианте теории уже не было места ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны. Проблему удалось решить за счет введения трех новых ароматов. Они получил название —charm (очарование) или с; b-кварк (отbeauty — красота или прелесть); впоследствии был введен еще один аромат — t (отtop - верхний). * В 1969 г., удалось получить прямые физические доказательства существования кварков в серии экспериментов по рассеянию (разогнанных до высоких энергий) электронов на протонах. Эксперимент показал, что рассеяние электронов происходило так, как если бы электроны налетали на крохотные твердые вкрапления и отскакивали от них под самыми невероятными углами. Такими твердыми вкраплениями внутри протонов являются кварки. Кварки скрепляются между собой сильным взаимодействием. Переносчики сильного взаимодействия — глюоны (цветовые заряды). Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики. Как квантовая электродинамика — теория электромагнитного взаимодействия, так квантовая хромодинамика — теории сильного взаимодействия. В настоящее время большинство физиков считает кварки подлинно элементарными частицами — точечными, неделимыми и не облагающими внутренней структурой *. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь. Таким образом, наиболее вероятное число истинно элементарных частиц (не считая переносчиков (фундаментальных взаимодействий) на конец XX в. равно 48. Из них: лептонов (6 х 2)=12 плюс кварков (6 х 3) х 2 = 36. * Правда, у некоторых физиков (коль скоро число кварков оказывается чрезмерно большим), возникает искушение предположить, что и они состоят из более мелких частиц. 10.3.3. Теория электрослабого взаимодействия В 70-е гг. XX в. в естествознании произошло выдающееся событие: два фундаментальных взаимодействия из четырех физики объединили в одно. Картина фундаментальных взаимодействий несколько упростилась. Электромагнитное и слабое взаимодействия, казалось бы, весьма разные по своей природе, предстали как разновидности единого электрослабого взаимодействия. Теория электрослабого взаимодействия в окончательнбй форме была создана двумя независимо работавшими физиками — С. Вайнбергом и А. Саламом. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики элементарных частиц в конце XX в. Главная идея в построении этой теории состояла в описании слабого взаимодействия на языке концепции калибровочного поля, в соответствии с которой ключом к пониманию природы взаимодействий служит симметрия. Одна из фундаментальных идей в физике второй половины XX в. — это убеждение, что все взаимодействия существуют лишь для того, чтобы поддерживать в природе некий набор абстрактных симметрий. Какое отношение имеет симметрия к фундаментальным взаимодействиям? Ведь, на первый взгляд, утверждение о существовании подобной взаимосвязи кажется весьма парадоксальным. Прежде всего о том, что понимается под симметрией. Принято считать, что предмет симметричен, если он остается неизменным после той или иной операции по его преобразованию. Так, сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Таким образом, под симметрией понимается инвариантность системы относительно некой операции. Существуют разные типы симметрии: геометрические, зеркальные, негеометрические. Среди негеометрических есть так называемые калибровочные симметрии. Калибровочные симметрии носят абстрактный характер и органами чувств непосредственно не фиксируются. Они связаны с изменением отсчета уровня, масштаба или значения некоторой физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Так, например, в физике работа зависит от разности высот, а не от абсолютной высоты; напряжение — от разности потенциалов, а не от их абсолютных величин и др. Симметрии, на которых основан пересмотр понимания фундаментальных взаимодействий, именно такого рода. Калибровочные преобразования симметрии могут быть глобальными и локальными. Глобальные преобразования изменяют систему в целом, во всем ее пространственно-временном объеме; в физике это выражается в том, что во всех точках пространства-времени значения волновой функции подвергаются одному и тому же изменению. Локальными калибровочными преобразованиями называются преобразования, которые изменяются от точки к точке; иначе говоря, волновая функция в каждой точке характеризуется своей особой фазой, которой соответствует определенная частица. Глобальное калибровочное преобразование теоретически можно превратить в локальное калибровочное преобразование. Для их связи и поддержания симметрии в каждой точке пространства необходимы новые силовые поля — калибровочные. В природе существует ряд локальных калибровочных симметрий, и необходимо соответствующее число калибровочных полей для их компенсации. Так, силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии . Значение концепции калибровочной симметрии заключается в том, что благодаря ей теоретически моделируются все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля. Простейшей калибровочной симметрией обладает электромагнетизм. Иначе говоря, электромагнитное поле не просто определенный тип силового поля, существующего в природе, а проявление простейшей (совместимой с принципами специальной теории относительности) калибровочной симметрии, в которой калибровочные преобразования соответствуют изменениям потенциала от точки к точке. Учение об электромагнетизме складывалось столетия на основе кропотливых эмпирических исследований, но оказывается, что результаты этих исследований можно вывести чисто теоретически, основываясь на знании лишь двух симметрий — простейшей локальной калибровочной симметрии и так называемой симметрии Лоренца — Пуанкаре специальной теории относительности. Основываясь только на существовании этих двух симметрий, не проведя ни единого эксперимента по электричеству и магнетизму, можно построить уравнения Максвелла, вывести все законы электромагнетизма, доказать существование радиоволн, возможность создания динамо-машины и т.д. А применение идей локальной калибровочной инвариантности к преобразованиям Лоренца автоматически приводит к построению теории гравитации, сходной с ОТО. Для представления поля слабого взаимодействия как калибровочного прежде всего необходимо установить точную форму соответствующей калибровочной симметрии. Дело в том, что симметрия слабого взаимодействия гораздо сложнее, чем электромагнитного. Ведь и сам механизм слабого взаимодействия оказывается более сложным. Во-первых, при распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино). Во-вторых, действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц. Выяснилось, что для поддержания симметрии в описании слабого взаимодействия необходимы три новых силовых поля, в отличие от единственного электромагнитного поля. Было получено и квантовое описание этих трех полей: должны существовать три новых типа частиц — переносчиков взаимодействия, по одному для каждого поля. Все вместе они называются тяжелыми векторными бозонами со спином 1 и являются переносчиками слабого взаимодействия. Частицы W+ и W- являются переносчиками двух из трех связанных со слабым взаимодействием полей. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Zº-частицы. Существование Zº-частицы означает, что слабое взаимодействие может не сопровождаться переносом электрического заряда. В создании теории электрослабого взаимодействия ключевую роль сыграло понятие спонтанного нарушения симметрии: не всякое решение задачи обязано обладать всеми свойствами его исходного уровня. Так, частицы, совершенно разные при низких энергиях, при высоких энергиях могут оказаться на самом деле одной и той же частицей, но находящейся в разных состояниях. Таким образом, идеей спонтанного нарушения симметрии Вайнберг и Салам соединили электромагнетизм и слабое взаимодействие в единой теории калибровочного поля. В теории Вайнберга — Салама представлено всего четыре поля:электромагнитное и три поля, соответствующие слабым взаимодействиям. Кроме того, было введено постоянное на всем пространстве скалярное поле (так называемое поле Хиггcа), с которым частицы взаимодействуют по-разному, что и определяет различие их масс *. Первоначально W- и Z-кванты не имеют массы, но из-за нарушения симметрии некоторые частицы Хиггеа сливаются cW-и Z-частицами, наделяя их массой. В этой теории фотоны и тяжелые векторныебозоны (W± и Z°) имеют общее происхождение и тесно связаны друг с другом. * Кванты скалярного поля представляют собой новые массивные элементарные частицы с нулевым спином. Их называют хиггсовскими (по имени физика П. Хиггcа, предположившего их существование). Число таких хиггсовских бозонов может достигать нескольких десятков. На опыте такие бозоны пока не обнаружены. Более того, ряд физиков считают их существование необязательным, но совершенной теоретической модели без хиггсовских бозонов пока не найдено. Почему же электромагнитное и слабое взаимодействия обладают столь непохожими свойствами? Теория Вайнберга — Салама объясняет эти различия нарушением симметрии. Если бы симметрия не нарушалась, то оба взаимодействия были бы сравнимы по величине. Нарушение симметрии влечет за собой резкое уменьшение слабого взаимодействия, поскольку оно непосредственно связано с массами W и Z-частиц. Можно сказать, что слабое взаимодействие столь мало потому, что W- и Z-частицы очень массивны. Лептоны редко сближаются на столь малые расстояния (r ~ 10- 18 м), на которых становится возможным обмен тяжелыми векторными бозонами. Но при больших энергиях (более 100 ГэВ), когда частицы W и Z могут свободно рождаться, обмен W- и Z-бозонами осуществляется столь же легко, как и обмен фотонами (безмассовыми частицами), разница между фонтанами и бозонами стирается. В этих условиях должна существовать полная симметрия между электромагнитным и слабым взаимодействием — электрослабое взаимодействие. Наиболее убедительная экспериментальная проверка новой теории заключалась в подтверждении существования гипотетических W и Z-частиц. Их открытие в 1983 г. стало возможным только с созданием очень мощных ускорителей новейшего типа и означало торжество теории Вайнберга — Салама. Было окончательно доказано, что электромагнитное и слабое взаимодействия в действительности были просто двумя компонентами единого электрослабого взаимодействия. В 1979 г. Вайнбергу С., Саламу А., Глэшоу С. была присуждена Нобелевская премия за создание теории электрослабого взаимодействия. 10.3.4. Квантовая хромодинамика Следующий шаг на пути познания фундаментальных взаимодействий — создание теории сильного взаимодействия. Для этого необходимо придать черты калибровочного поля сильному взаимодействию. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны (см. 10.3.2). Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом *. * Как и в случае с термином«кварк», термин «цвет» здесь выбран произвольно и никакого отношения к обычному цвету не имеет. Если электромагнитное поле порождается зарядом только одного сорта, то более сложное глюонное поле создается тремя различными цветовыми зарядами. Каждый кварк «окрашен» в один из трех возможных цветов, которые (совершенно произвольно) назвали красным, зеленым и синим. И соответственно, антикварки бывают антикрасные, антизеленые и антисиние. На следующем этапе теория сильного взаимодействия развивалась по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами — переносчиками этих полей являются глюоны, и, таким образом, из теории следует, что должно быть целых восемь различных типов глюонов. Как и фотон, глюоны имеют нулевую массу покоя и спин 1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизеленый), т.е. глюоны состоят из «цвета» и «антицвета». Поэтому испускание или поглощение глюона сопровождается изменением цвета кварка, («игра цветов»). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк, а зеленый кварк, поглощая сине-антизеленый глюон, превращается в синий кварк. В протоне, например, три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения носят не произвольный характер, а подчиняются жесткому правилу: в любой момент времени «суммарный» цвет трех кварков должен представлять собой белый свет, т.е. сумму «красный + зеленый + синий». Это распространяется и на мезоны, состоящие из пары кварк — антикварк. Поскольку антикварк характеризуется антицветом, такая комбинация заведомо бесцветна («белая»), например красный кварк в комбинации с антикрасным кварком образует бесцветный мезон. С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определенную абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей *. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на два глюона или два глюона слиться в один — поэтому и появляются нелинейные члены в уравнении глюонного поля), взаимодействие кварков и глюонов (кварки покрыты облаками глюонов и кварк-антикварковых пар), сложную структуру адрона, состоящего из «одетых» в облака кварков, и др. * Лептоны, фотоны и промежуточные бозоны (W- и Z-частицы) не несут света, а поэтому не участвуют в сильном взаимодействии. Возможно, пока преждевременно оценивать квантовую хромодинамику как окончательную и завершенную теорию сильного взаимодействия, но экспериментальный статус ее достаточно прочен и достижения многообещающи. 10.3.5. На пути к Великому объединению С созданием квантовой хромодинамики появилась надежда на построение единой теории всех (или хотя бы трех из четырех) фундаментальных взаимодействий. Модели, единым образом описывающие хотя бы, три из четырех фундаментальных взаимодействий, называются моделями Великого объединения. Теоретические схемы, в рамках которых объединяются все известные типы взаимодействий (сильное, слабое, электромагнитное и гравитационное) называются моделями супергравитации. Опыт успешного объединения слабого и электромагнитного взаимодействий на основе идеи калибровочных полей подсказал возможные пути дальнейшего развития принципа единства физики, объединения фундаментальных физических взаимодействий. Один из них основан на том удивительном факте, что константы взаимодействия электромагнитного, слабого и сильного взаимодействий становятся равными друг другу при одной и той же энергии. Эту энергию называли энергией объединения . При энергии более 1014 ГэВ, или на расстояниях 10- 29 см, сильные и слабые взаимодействия описываются единой константой, т. е. имеют общую природу. Кварки и лептоны здесь практически не различимы. В 70—90-е гг. было разработано несколько конкурирующих между собой теорий Великого объединения. Все они основаны на одной и той же идее. Если электрослабое и сильное взаимодействия в действительности представляют собой лишь две стороны Великого единого взаимодействия, то последнему также должно соответствовать калибровочное поле с некоторой сложной симметрией. Она должна быть достаточно общей, способной охватить все калибровочные симметрии, содержащиеся и в квантовой хромодинамике, и в теории электрослабого взаимодействия. Отыскание такой симметрии — главная задача на пути создания единой теории сильного и электрослабого взаимодействия. Существуют разные подходы, порождающие конкурирующие варианты теорий Великого объединения. Тем не менее все эти гипотетические варианты Великого объединения имеют ряд общих особенностей. Во-первых , во всех гипотезах кварки и лептоны — носители сильного и электрослабого взаимодействий — включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты. Во-вторых , привлечение абстрактных калибровочных симметрий приводит к открытию новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны. В простейшем варианте теории Великого объединения для превращения кварков в лептоны требуется двадцать четыре поля. Двенадцать из квантов этих полей уже известны: фотон, две W-частицы,Z-частица и восемь глюонов. Остальные двенадцать квантов — новые сверхтяжелые промежуточные бозоны, объединенные общим названием Х-и У-частицы (обладающие цветом и электрическим зарядом). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, Х- и У-частицы могут превращать кварки в лептоны (и наоборот). На основе теорий Великого объединения предсказаны по крайней мере две важные закономерности, которые могут быть проверены экспериментально: нестабильность протона и существование магнитных монополей. Экспериментальное обнаружение распада протона и магнитных монополей могло бы стать веским доводом в пользу теорий Великого объединения. На проверку этих предсказаний направлены усилия экспериментаторов. Обнаружение распада протона было бы самым великим экспериментом XX в.! Но пока еще твердо установленных экспериментальных данных на этот счет нет. А о прямом экспериментальном обнаружении Х- и У-бозонов речь пока и вовсе не идет. Дело в том, что теории Великого объединения имеют дело с энергией частиц выше 10-14 ГэВ. Это очень высокая энергия. Трудно сказать, когда удастся получить частицы столь высоких энергий в ускорителях. Современные ускорители с трудом достигают энергии 100 ГэВ. И потому основной областью применения и проверки теорий Великого объединения является космология. Без этих теорий невозможно описать раннюю стадию эволюции Вселенной, когда температура первичной плазмы достигала 1027 K. Именно в таких условиях могли рождаться и аннигилировать сверхтяжелые бозоны Х и У. Но объединение трех из четырех фундаментальных взаимодействий — это еще не единая теория в подлинном смысле слова. Ведь остается еще гравитация. Теоретические модели, в которых объединяются все четыре взаимодействия, называются супергравитацией. Супергравитация базируется на идее суперсимметрии, т.е. такого перехода от глобальной калибровочной симметрии к локальной, который бы позволил переходить от фермионов (носителей субстрата материи) к бозонам (носителям структуры материи, переносчикам взаимодействий) и наоборот. Одна из теоретических моделей сводит воедино 70 частиц со спином 0; 56 частиц со спином 1/2; 28 частиц со спином 1; 8 частиц по спином 3/2 (их назвали гравитино) и 1 частица со спином 2 (гравитон). Все эти частицы были объединены единой суперсилой при колоссальной энергии 1019 ГэВ (Т = 1032 К, r ≈ 10-33 см, ρ ≈ 1094 г/см3 ). В теориях суперсимметрии возникла также идея о введении новых дополнительных измерений (10, 11 или даже 26) пространства, которые позволят описать все проявления свойстввещества и переносчиков взаимодействий. Только три из них проявляются в нашем мире, а остальные остались скрученными, замкнутыми в масштабе r ≈ 10-33 см. Вместе с тем на пути объединения гравитации с остальными фундаментальными взаимодействиями пока еще остается много проблем. Таким образом, последовательное объединение фундаментальных взаимодействий началось с синтеза электричества и магнетизма в рамках теории Максвелла в XIX в. Объединение слабого и электромагнитного взаимодействий получило надежное подтверждение в 1983 г. благодаря открытию W- и Z-частиц. Данных, подтверждающих Великое объединение, пока нет, но их ожидают. Число теоретических предпосылок для создания единой теории всех фундаментальных взаимодействий быстро растет. Возможно, что уже в начале XXI в. эта величайшая задача всей истории познания материи будет решена (рис. 4). В определенном смысле это означает конец физической науки как науки о фундаментальных основаниях материи. Но не исключены и другие варианты развития физики XXI в — открытие новых фундаментальных взаимодействий, новых субкварковых частиц, появление иных трактовок единства материи и др. Особенно значимы на этом пути те необычные представления, которые сейчас складываются там, где микромир оказывается связанным с мегамиром, ультрамалое с ультрабольшим, физика с астрономией и космологией. Современная астрономическая картина мира 11. ОСОБЕННОСТИ АСТРОНОМИИ XX в. В XX в. в астрономии произошли поистине радикальные изменения. Прежде всего значительно расширился и обогатился теоретический фундамент астрономических наук. Начиная с 20-30-х гг. в качестве теоретической основы астрономического познания стали выступать (наряду с классической механикой) релятивистская и квантовая механика, что существенно раздвинуло «теоретический горизонт» астрономических исследований. Кроме того, радикально изменился эмпирический базис астрономии -она стала всеволновой. 11.1. Изменения способа познания в астрономии ХХ в. Общая теория относительности дала возможность модельного теоретического описания явлений космологического масштаба и по сути впервые поставила космологию — эту важную отрасль астрономии — на твердую теоретическую почву. Создание квантовой механики послужило чрезвычайно мощным импульсом развития как астрофизики, так и космогонического аспекта астрономии (в частности, выяснения источников энергии и механизмов эволюции звезд, звездных систем и др.); обеспечило переориентацию задач астрономии с изучения в основном механических движений космических тел (под влиянием гравитационного поля) на изучение их физических и химических характеристик. Выдвижение астрофизических проблем на первый план сопровождалось также интенсивным развитием таких отраслей астрономической науки, как звездная и внегалактическая астрономия. Наряду с этим существенно совершенствовались и эмпирические методы астрономического познания. Астрономия стала всеволновой, т.е. астрономические наблюдения проводятся на всех диапазонах длин волн излучений (радио, инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма- диапазоны ). Появилась возможность непосредственного исследования с помощью космических аппаратов и наблюденийкосмонавтов околоземного космического пространства. Луны и планет Солнечной системы. Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (как правило, неожиданных и во многом необъяснимых) давлений. Среди этих открытий особенное значение имеют нестационарные процессы во Вселенной: обнаружение в конце 40-х гг. существования «звездных ассоциаций», представляющих собой группы распадающихся после своего рождения звезд; обнаружение в 50-х гг. явлений распада скоплений и групп галактик; открытие в 60-е гг. квазаров*, радиогалактик, взрывной активности ядер галактик с колоссальным энерговыделением (около 1060 эрг); обнаружение нестационарных явлений в недрах звезд и нестационарных явлений в Солнечной системе (быстрый распад короткопериодических комет, планетарная эруптивная деятельность (взрывы, выбросы материи в космос) и др.). * Квазары — самые мощные из известных сейчас источников энергии. При сравнительно небольших размерах (не более 1 светового месяца) средний квазар излучает вдвое больше энергии, чем вся наша Галактика, имеющая в поперечнике размер в 100 тысяч световых лет и состоящая из 200 млрд звезд. Для квазаров характерны и признаки явной нестабильности: переменность блеска и выбросы (вещества с огромными скоростями. Кроме того, к выдающимся астрономическим открытиям следует отнести обнаружение: «реликтового» излучения, которое является важнейшим аргументом в пользу теории «горячей» Вселенной; «рентгеновских звезд»; пульсаров; космических мазеров на спектральных линиях некоторых молекул (воды, ОН и др.); вероятное открытие «черных дыр» и др. 11.2. Новая астрономическая революция Попытки объяснить эти и другие новейшие открытия столкнулись с рядом принципиальных трудностей, преодоление которых связано с необходимостью совершенствования теоретико-методологического инструментария современной астрономии. Все это привело к значительному возрастанию количества разрабатываемых астрофизических и космологических моделей, концепций, опирающихся на разные принципы и не связанных пока единой фундаментальной теорией. На этом фоне интенсивно происходят дифференциация и интеграция знаний о Вселенной. Не только выделяются новые отрасли теоретической и наблюдательной астрономии, но и возникают прикладные отрасли астрономии в связи с успехами космической техники. В то же время возрастает роль общетеоретических интегративных принципов, понятий, установок, которые формируются под влиянием математики, физики, других естественных и даже гуманитарных наук. Изменяется место астрономии в системе научного знания: она сближается не только с естественными и математическими, но и с гуманитарными науками, философией. По сути, во второй половине XX в. астрономия вступила в период научной революции, которая изменила способ астрономического познания — на смену классическому пришёл «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания и астрономической картины мира. Рассмотрим сначала основные элементы современной астрономической картины мира, а затем методологические установки неклассической астрономии. Земля — спутник Солнца в мировом пространстве, вечно кружащийся вокруг этого источника тепла и света, делающего возможной жизнь на Земле. Самыми яркими из постоянно наблюдаемых нами небесных объектов кроме Солнца и Луны являются соседние с нами планеты. Они принадлежат к числу тех девяти миров (включая Землю), которые обращаются вокруг Солнца (а его радиус 700 тыс. км, т.е. в 100 раз больше радиуса Земли) на расстояниях, достигающих нескольких миллиардов километров. Группа планет вместе с Солнцем составляет Солнечную систему. Планеты хотя и кажутся похожими на звезды, в действительности гораздо меньше последних и темнее. Они видны только потому, что отражают солнечный свет, который кажется очень яркими, поскольку планеты гораздо ближе к Земле, чем звезды. Но если бы мы перенесли на ближайшую звезду наши самые мощные телескопы, то и с их помощью не смогли бы увидеть эти спутники Солнца. Кроме планет, в солнечную «семью» входят спутники планет (в том числе и наш спутник — Луна), астероиды, кометы, метеорные тела, солнечный ветер. Планеты расположены в следующем порядке: Меркурий, Венера, Земля (один спутник — Луна), Марс (два спутника — Фобос и Деймос), Юпитер (15 спутников), Сатурн (16 спутников), Уран (5 спутников), Нептун (2 спутника) и Плутон (один спутник). Земля к Солнцу в сорок раз ближе, чем Плутон, и в два с половиной раза дальше, чем Меркурий. Возможно, что за Плутоном есть еще одна или несколько планет, но поиски их среди множества звезд слабее 15-й величины слишком кропотливы и не оправдывают затраченного на них времени. Возможно, они будут открыты «на кончике пера», как это уже было с Ураном, Нептуном и Плутоном. Планеты должны быть и около многих других звезд, однако прямые наблюдательные данные о них отсутствуют, а есть только некоторые косвенные указания. С 1962 г. планеты и их спутники успешно исследуются космическими аппаратами. Изучены атмосферы и поверхность Венеры и Марса, сфотографированы поверхность Меркурия, облачный покров Венеры, Юпитера, Сатурна, вся поверхность Луны, получены изображения спутников Марса, Юпитера, Сатурна, колец Сатурна и Юпитера. Спускаемые космические аппараты, исследовали физические и химические свойства пород, слагающих поверхность Марса, Венеры, Луны (образцы лунных пород были доставлены на Землю и тщательно изучены). По физическим характеристикам планеты делятся на две группы: планеты земного типа (Меркурий, Венера, Земля, Марс); планеты-гиганты (Юпитер, Сатурн, Уран, Нептун). О Плутоне известно мало, но, по-видимому, он ближе по своему строению к планетам земной группы. Строение планет слоистое. Выделяют несколько сферических оболочек, различающихся по химическому составу, фазовому состоянию, плотности и другим характеристикам. Все планеты земной группы имеют твердые оболочки, в которых (сосредоточена почти вся их масса. Венера, Земля и Марс обладают газовыми атмосферами. Меркурий практически лишен атмосферы. Земля имеет жидкую оболочку из воды — гидросферу, а также биосферу (результат прошлой и современной деятельности живых организмов). Аналогом земной гидросферы на Марсе является криосфера — лед в полярных шапках и в грунте (вечная мерзлота). Одна из загадок Солнечной системы — дефицит воды на Венере. Характеристики твердых оболочек планет относительно хорошо известны лишь для Земли. Модели внутреннего строения других планет земной группы строятся главным образом на основании данных о свойствах вещества земных недр. Как и у Земли, в твердых оболочках планет выделяют: кору - самую внешнюю тонкую (10—100 км) твердую оболочку; мантию — твердую и толстую (1000—3000 км) оболочку; ядро — наиболее плотная часть планетных недр. Ядро Земли, состоящее, скорее всего, из железа, подразделяется на внешнее (жидкое) и внутреннее (твердое); температура в центре Земли оценивается в 4000—5000 К. Жидкое ядро, вероятно, есть также у Меркурия и Венеры; у Марса его, по-видимому, нет. Наиболее распространены в твердом «теле» Земли железо (34,6%), кислород (29,5%), кремний (15,2%) и магний (12,7%). Таким образом, планеты земной группы резко отличаются по элементному составу от Солнца и совершенно не соответствуют средней космической распространенности элементов — очень мало водорода, инертных газов, включая гелий. Планеты-гиганты обладают иным химическим составом. Юпитер и Сатурн содержат водород и гелий в той же пропорции, что и Солнце. Вероятно, другие элементы также содержатся в пропорциях, соответствующих солнечному составу. В недрах Урана и Нептуна, по-видимому, больше тяжелых элементов. Недра Юпитера находятся в жидком состоянии, за исключением небольшого ядра, которое представляет собой результат металлизации жидкого водорода. Температура в центре Юпитера около 30 000 К. Химический и изотопный состав Юпитера отражает, по-видимому, состав межзвездной среды, какой она была 5 млрд лет назад. Вместе с тем Юпитер никогда не был настолько горяч, чтобы в нем могли протекать термоядерные реакции. Сатурн по внутреннему строению похож на Юпитер. Строение недр Урана и Нептуна иное: доля каменистых материалов в них существенно больше. Основными источниками энергии в недрах планет являются радиоактивный распад элементов и выделение гравитационной потенциальной энергии при аккреции и дифференциации вещества, его постепенном перераспределении по глубине в соответствии с плотностью — тяжелые фрагменты тонут, легкие всплывают. На Земле подобное перераспределение еще далеко не завершилось. Такие процессы вызывают перемещения отдельных участков земной коры, деформацию, горообразование, тектонические и вулканические процессы. Причина вулканических процессов в следующем. В верхней мантии существуют небольшие области, где температура достаточна для плавления ее вещества. Расплавленное вещество (магма), выдавливающееся вверх, прорывается через кору, и происходит вулканическое извержение. Судя по характеру поверхности, среди планет земной группы тектонически наиболее активна Земля, за ней следуют Венера и Марс. При этом важно, что выделяемая Землей тепловая энергия никогда не приводила ее в полностью расплавленное состояние. Поверхность планет и их спутников формируют кроме эндогенных (тектонических, вулканических) процессов и экзогенные—падение метеорных тел (кратеры), эрозия под действием ветра, осадков, воды, ледников, химическое взаимодействие поверхности с атмосферой и гидросферой и др. Эндогенные и экзогенные процессы определяют рельеф поверхности планет. Предполагается, что планеты возникли одновременно (или почти одновременно) 4,6 млрд лет назад из газово-пылевой туманности, имевшей форму диска, в центре которого располагалось молодое Солнце. Образование звезд и планетных систем — это, по-видимому, все-таки единый процесс, происходящий в результате конденсации облака межзвездного газа в силу его гравитационной неустойчивости. Таким образом, протопланетная туманность образовалась вместе с Солнцем из межзвездного вещества, плотность которого превысила критические пределы. По некоторым данным (присутствие специфических изотопов в метеоритах), такое уплотнение произошло в результате относительно близкого взрыва сверхновой звезды. Взрыв сверхновой мог ускорить и стимулировать процесс конденсации, а также обеспечить содержание в составе газовой туманности тяжелых элементов. Допланетное облако было мало массивным. Если бы его масса превышала 0,15 массы Солнца, оно аккумулировалось бы не в систему планет, а в звездообразный спутник Солнца. Протопланетное облако было неустойчивым, оно становилось все более плоским, конденсировалось в уплотненный диск, в нем возникали неустойчивости, которые приводили к образованию ряда колец, а газовые кольца превращались в газовые сгустки — протопланеты. Протопланеты сжимались, твердые пылинки сближались, сталкивались, образовывали тела все больших и больших размеров, и в относительно короткий срок (10n лет, где, по разным оценкам, n = 5—8) сформировались девять больших планет. В настоящее время господствует идея холодного, а не горячего, начального состояния Земли и других планет Солнечной системы, которые возникли в результате аккреции (объединения) частиц и твердых тел газово-пылевого протопланетного облака, окружавшего Солнце. Однако пока не решен вопрос, была ли Земля гомогенна или гетерогенна к концу своего формирования, образовались ли ядро, мантия и кора в результате гетерогенной аккреции или же наша планета создавалась из гомогенного материала, который затем подвергался дифференциации в процессе последующей геологической истории. Большинство исследователей придерживаются модели гетерогенной аккреции, хотя вопрос о разделе вещества допланетного облака на железные и силикатные частицы пока окончательно не решен. Астероиды, кометы, метеориты являются, вероятно, остатками материала, из которого сформировались планеты. Астероиды сохранились до нашего времени благодаря тому, что подавляющее большинство их движется в широком промежутке между орбитами Марса и Юпитера. Аналогичные каменистые тела, некогда существовавшие во всей зоне планет земной группы, давно либо присоединились к этим планетам, либо разрушились при взаимных столкновениях, либо были выброшены на пределы этой зоны вследствие гравитационного воздействия планет. Происхождение систем регулярных спутников (т.е. движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора) авторы космогонических гипотез обычно объясняют повторением в малом масштабе того же процесса, который они предлагают для объяснения образования планет Солнечной системы. Такие спутники есть у Юпитера, Сатурна, Урана. Происхождение иррегулярных спутников (т.е. таких, которые обладают обратным движением) эти теории объясняют захватом. Что касается Луны, то наиболее вероятным является ее образование на околоземной орбите (возможно, из нескольких крупных спутников, которые в конечном счете объединились в одно тело — Луну, что обеспечило ее быстрое нагревание), хотя продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли. 11.3.4. Химический состав вещества во Вселенной Для понимания структуры и эволюции Вселенной очень важен вопрос о химическом составе вещества во Вселенной. Как известно, всякое вещество состоит из атомов. В естественном виде на Земле встречается около 90 разных видов атомов; кроме того, несколько новых видов атомов получено искусственно. Вещество, образованное атомами только одного какого-нибудь вида, называется элементом. Атомы большинства элементов способны объединяться друг с другом или с атомами других элементов, образуя молекулы; конкретные законы такого объединения являются предметом изучения химии. Любое вещественное образование — от самого твердого ( алмаза) до газообразного, от органических соединений тела человека до отдаленнейших галактик — представляет собой различные комбинации тех же основных элементов. Простейший элемент — водород. Его атом состоит всего из двух частиц — электрона и протона. Следующий простейший элемент — гелий, каждый атом которого содержит шесть частиц: два протона и два нейтрона, расположенные в центре, образуют ядро, а два электрона, связанные с ядром электрическим притяжением, вращаются вокруг него по орбитам. Основные различия между атомами обусловлены разным количеством протонов в их ядрах. Сейчас известны все атомы, ядра которых содержат от 1 до 92 протонов. Самым сложным из существующих в природе элементов является уран; ядро его атома включает 92 протона и около 140 нейтронов, а вокруг него обращаются 92 электрона. Элементы, имеющие в ядре более 92 протонов и полученные искусственным путем (например, нептуний и плутоний), неустойчивы (радиоактивны) и довольно быстро распадаются. Поэтому они не были найдены на Земле в естественном виде. При спектроскопическом исследовании астрономических объектов во всей доступной нам Вселенной обнаруживаются одни и те же элементы *. Однако относительная распространенность элементов, присущих Земле, не характерна для других частей Вселенной. Так, около 90% всех атомов во Вселенной — атомы водорода; остальные — главным образом атомы гелия. Более тяжелые атомы, которые обычны для нашей планеты Земля, составляют во Вселенной лишь ничтожно малую часть. Ясно, что Земля сформировалась в особенных условиях, не характерных для среднестатистического распространения элементов во Вселенной, что вначале во Вселенной не было сложных атомов, но впоследствии образовался какой-то способ синтеза сложных элементов из более легких и простых. Когда и как образовалась такая «фабрика» химических элементов — одна из центральных проблем современного естествознания, лежащая на «стыке» астрономии, химии и физики. * Гелий был открыт на Солнце (об этом говорит его название), причем ранее, чем на Земле. Звезды — далекие солнца. Звезды — это огромные раскаленные солнца, но столь удаленные от нас по сравнению с планетами Солнечной системы, что, хотя они сияют в миллионы раз ярче, их cвет кажется нам относительно тусклым. При взгляде на ясное ночное небо вспоминаются строки М.В. Ломоносова: Открылась бездна, звезд полна, Звездам числа нет, бездне — дна. В ночном небе невооруженным газом можно видеть около 6000 звезд. С уменьшением блеска звезд число их растет, и даже простой их счет становится затруднительным. «Поштучно» сосчитаны и занесены в астрономические каталоги все звезды ярче 11-й звездной величины. Их около миллиона. А всего нашему наблюдению доступно около двух миллиардов звезд. Общее количество звезд во Вселенной оценивается в 1022 . Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые большие звезды (сверхгиганты) превосходят размер Солнца в десятки и сотни раз. Звезды-карлики имеют размеры Земли и меньше. Предельная масса звезд равна примерно 60 солнечным массам. Весьма различны и расстояния до звезд. Свет звезд некоторых далеких звездных систем идет до нас сотни миллионов световых лет. Самой близкой к нам звездой можно считать звезду первой величины α- Центавра, не видимую с территории России. Она отстоит от Земли на расстоянии 4 световых лет. Курьерский поезд, идя без остановок со скоростью 100 км/ч, добрался бы до нее через 40 миллионов лет! В звездах сосредоточена основная масса (98—99%) видимого вещества в известной нам части Вселенной. Звезды — мощные источники энергии. В частности, жизнь на Земле обязана своим существованием энергии излучения Солнца. Вещество звезд представляет собой плазму, т.е. находится в ином состоянии, чем вещество в привычных для нас земных условиях. (Плазма — это четвертое (наряду с твердым, жидким, газообразным) состояние вещества, представляющее собой ионизированный газ, в котором положительные (ионы) и отрицательные заряды (электроны) в среднем нейтрализуют друг друга.) Поэтому, строго говоря, звезда — это не просто газовый шар, а плазменный шар. На поздних стадиях развития звезды звездное вещество переходит в состояние вырожденного газа (в котором квантово-механическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах — давлении, теплоемкости и др.), а иногда и нейтронного вещества (пульсары — нейтронные звезды, барстеры — источники рентгеновского излучения и др.). Звезды в космическом пространстве распределены неравномерно. Они образуют звездные системы: кратные звезды (двойные, тройные и т.д.); звездные скопления (от нескольких десятков звезд до миллионов); галактики — грандиозные звездные системы (наша Галактика, например, содержит около 150—200 млрд звезд). В нашей Галактике звездная плотность также весьма неравномерна. Выше всего она в области галактического ядра. Здесь она в 20 тыс. раз выше, чем средняя звездная плотность в окрестностях Солнца. Большинство звезд находится в стационарном состоянии, т.е. не наблюдается изменений их физических характеристик. Это отвечает состоянию равновесия. Однако существуют и такие звезды, свойства которых меняются видимым образом. Их называют переменными звездами и нестационарными звездами . Переменность и нестационарность — проявления неустойчивости состояния равновесия звезды. Переменные звезды некоторых типов изменяют свое состояние регулярным или нерегулярным образом. Следует отметить также и новые звезды , в которых непрерывно или время от времени происходят вспышки. При вспышках (взрывах) сверхновых звезд вещество звезд в некоторых случаях может быть полностью рассеяно в пространстве. Высокая светимость звезд, поддерживаемая в течение длительного времени, свидетельствует о выделении в них огромных количеств энергии. Современная физика указывает на два возможных источника энергии — гравитационное сжатие , приводящее к выделению гравитационной энергии, и термоядерные реакции , в результате которых из ядер легких элементов синтезируются ядра более тяжелых элементов и выделяется большое количество энергии. Как показывают расчеты, энергии гравитационного сжатия было бы достаточно для поддержания светимости Солнца в течение всего лишь 30 млн лет. Но из геологических и других данных следует, что светимость Солнца оставалась примерно постоянной в течение миллиардов лет. Гравитационное сжатие может служить источником энергии лишь для очень молодых звезд. С другой стороны, термоядерные реакции протекают с достаточной скоростью лишь при температурах, в тысячи раз превышающих температуру поверхности звезд. Так, для Солнца температура, при которой термоядерные реакции могут выделять необходимое количество энергии, составляет, по различным расчетам, от 12 до 15 млн К. Такая колоссальная температура достигается в результате гравитационного сжатия, которое и «зажигает» термоядерную реакцию. Таким образом, в настоящее время наше Солнце является медленно горящей водородной бомбой. Предполагается, что у некоторых (но вряд ли у большинства) звезд есть собственные планетные системы, аналогичные нашей Солнечной системе. 11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти» Процесс звездообразования . Эволюция звезд — это изменение со временем физических характеристик, внутреннего строения и химического состава звезд. Современная теория эволюции звезд способна объяснить общий ход развития звезд в удовлетворительном согласии с данными наблюдений. Ход эволюции звезды зависит от ее массы и исходного химического состава, который, в свою очередь, зависит от времени, когда образовалась звезда и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав которого определялся космологическими условиями (почти 70% водорода, 30% гелия и ничтожная примесь дейтерия и лития). В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием в таблице Менделеева), которые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующихпоколений сформировались из вещества, содержавшего 3—4% тяжелых элементов. «Рождение» звезды — это образование гидростатически равновесного объекта, излучение которого поддерживается за счет собственных источников энергии. «Смерть» звезды — это необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофическому сжатию. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время . Звезды образуются в результате гравитационной конденсации вещества межзвездной среды. К молодым относятся звезды, которые еще находятся в стадии первоначального гравитационного сжатия. Температура в центре таких звезд недостаточна для протекания ядерных реакций, и свечение происходит только за счет превращения гравитационной энергии в теплоту. Гравитационное сжатие — первый этап эволюции звезд. Он приводит к разогреву центральной зоны звезды до температуры «включения» термоядерной реакции (примерно 10—15 млн К) — превращения водорода в гелий (ядра водорода, т.е. протоны, образуют ядра гелия). Это превращение сопровождается большим выделением энергии. Звезда как саморегулирующаяся система . Источниками энергии у большинства звезд являются водородные термоядерные реакции в центральной зоне. Водород — главная составная часть космического вещества и важнейший вид ядерного горючего в звездах. Запасы его в звездах настолько велики, что ядерные реакции могут протекать в течение миллиардов лет. При этом, до тех пор пока в центральной зоне весь водород не выгорит, свойства звезды изменяются мало. В недрах звезд, при температурах более 10 млн К и огромных плотностях, газ обладает давлением в миллиарды атмосфер. В этих условиях звезда может находиться в стационарном состоянии лишь благодаря тому, что в каждом ее слое внутреннее давление газа уравновешивается действием сил тяготения. Такое состояние называется гидростатическим равновесием. Следовательно, стационарная звезда представляет собой плазменный шар, находящийся в состоянии гидростатического равновесия . Если внутри звезды температура по какой-либо причине повысится, то звезда должна раздуться, так как возрастает давление в ее недрах. Стационарное состояние звезды характеризуется еще и тепловым равновесием . Тепловое равновесие означает, что процессы выделения энергии в недрах звезд, процессы теплоотвода энергии из недр к поверхности и процессы излучения энергии с поверхности должны быть сбалансированы. Если теплоотвод превысит тепловыделение, то звезда начнет сжиматься и разогреваться. Это приведет к ускорению ядерных реакций, и тепловой баланс будет вновь восстановлен. Звезда представляет собой тонко сбалансированный «организм», она оказывается саморегулирующейся системой . Причем чем звезда больше, тем быстрее она исчерпывает свой запас энергии. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка — расширяться. Звезда принимает гетерогенную структуру. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта . С этого момента жизнь звезды начинает клониться к закату. Полагают, что звезда типа нашего Солнца может увеличиться настолько, что заполнит орбиту Меркурия. Правда, наше Солнце станет красным гигантом примерно через 8 млрд лет. Так что особых оснований для беспокойства у жителей Земли нет. Ведь сама Земля образовалась всего лишь 5 млрд лет назад. От красного гиганта до белого и черного карликов . Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. С ее повышением в термоядерные реакции включаются все более тяжелые ядра. На этом этапе (при температуре свыше 150 млн К) в ходе ядерных реакций осуществляется синтез химических элементов . В результате роста давления, пульсаций и других процессов красный гигант непрерывно теряет вещество, которое выбрасывается в межзвездное пространство. Когда внутренние термоядерные источники энергии полностью истощаются, дальнейшая судьба звезды зависит от ее массы. При массе менее 1,4 массы Солнца звезда переходит в стационарное состояние с очень большой плотностью (сотни тонн на 1 см3). Такие звезды называются белыми карликами. Здесь электроны образуют вырожденный газ (вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую), давление которого уравновешивает силы тяготения. Тепловые запасы звезды постепенно истощаются, и звезда медленно охлаждается, что сопровождается выбросами оболочки звезды. Молодые белые карлики, окруженные остатками оболочки, наблюдаются как планетарные туманности. Белый карлик как бы вызревает внутри красного гиганта и появляется на свет, когда красный гигант сбрасывает свои поверхностные слои, образовывая планетарную туманность. Когда энергия звезды иссякнет, звезда изменяет свой цвет от белого к желтому, затем к красному; наконец, она перестанет излучать и начнет непрерывное путешествие в необозримом космическом пространстве в виде маленького темного безжизненного объекта. Так белый карлик медленно превращается в черный карлик — мертвую холодную звезду, размер которой обычно меньше размеров Земли, а масса сравнима с солнечной. Плотность такой звезды — в миллиарды раз выше плотности воды. Так заканчивают свое существование большинство звезд. Сверхновые звезды . При массе более 1,4 массы Солнца стационарное состояние звезды без внутренних источников энергии становится невозможным, так как давление не может уравновесить силу тяготения. Теоретически конечным результатом эволюции таких звезд должен быть гравитационный коллапс — неограниченное падение вещества к центру . В случае, когда отталкивание частиц и другие причины все же останавливают коллапс, происходит мощный взрыв — вспышка сверхновой с выбросом значительной части вещества звезды в окружающее пространство с образованием газовых туманностей . Вспышки сверхновых были зафиксированы в 1054, 1572 , 1604 гг. Китайские летописцы следующим образом писали о событии 4 июля 1054 г.: «В первый год периода Чи-хо, в пятую Луну, в день Чи-Чу появилась звезда-гостья к юго-востоку от звезды Тиен -Куан и исчезла более чем через год». А другая летопись зафиксировала: «Она была видна днем, как Венера, лучи света исходили из нее во все стороны, и цвет ее был красновато-белый. Так была видна она 23 дня». Подобные скупые записи были сделаны арабскими и японскими очевидцами. Уже в наше время было выяснено, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения. Как мы уже отмечали (см. 6.1), вспышка сверхновой в 1572 г.. в созвездии Кассиопеи была отмечена в Европе, изучалась и широкий интерес к ней общественности сыграл важную роль в расширении астрономических исследований и последующем утверждении гелиоцентризма. В 1885 г. появление сверхновой звезды было отмечено в туманности Андромеды. Ее блеск превышал блеск всей Галактики и оказался в 4 млрд раз более интенсивным, чем блеск Солнца. Систематические исследования позволили уже к 1980 г. открыть свыше 500 вспышек сверхновых. Со времени изобретения телескопа ни одна вспышка сверхновой звезды не наблюдалась в нашей звездной системе — Галактике. Астрономы наблюдают пока их только в других неимоверно далеких звездных системах, столь далеких, что даже в мощнейший телескоп в них нельзя увидеть звезду, подобную нашему Солнцу. Взрыв сверхновой — гигантский по силе взрыв старой звезды, вызванный внезапным коллапсом ее ядра, который сопровождается кратковременным испусканием огромного количества нейтрино. Обладающие только слабым взаимодействием, эти нейтрино тем не менее разметают наружные слои звезды в космическом пространстве и образуют клочья облаков расширяющегося газа. При вспышке сверхновой звезды выделяется чудовищная энергия (порядка 1052 эрг). Вспышки сверхновых имеют фундаментальное значение для обмена веществом между звездами и межзвездной средой, для распространения химических элементов во Вселенной, а также для рождения первичных космических лучей. Астрофизики подсчитали, что с периодом в 10 млн лет сверхновые звезды вспыхивают в нашей Галактике, в непосредственной близости от Солнца. Дозы космического излучения при этом могут превышать нормальные для Земли в 7 тысяч раз! Это чревато серьезнейшими мутациями живых организмов на нашей планете. Так объясняют, в частности, внезапную гибель динозавров. Нейтронные звезды . Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела — нейтронной звезды или черной дыры. Открытые в 1967 г. новые объекты — пульсары отождествляются с теоретически предсказанными нейтронными звездами. Плотность нейтронной звезды очень высока, выше плотности атомных ядер — 1015 г/см3. Температура такой звезды около 1 млрд градусов. Но нейтронные звезды очень быстро остывают, светимость их слабеет. Зато они интенсивно излучают радиоволны в узком конусе по направлению магнитной оси. Для звезд, в которых магнитная ось не совпадает с осью вращения, характерно радиоизлучение в виде повторяющихся импульсов. Поэтому-то нейтронные звезды называют пульсарами. Уже открыты сотни нейтронных звезд. Экстремальные физические условия в нейтронных звездах делают их уникальными естественными лабораториями, представляющими обширный материал для исследования физики ядерных взаимодействий, элементарных частиц и теории гравитации. Черные дыры . Но если конечная масса белого карлика превышает 2—3 массы Солнца, то гравитационное сжатие непосредственно ведет к образованию черной дыры. Черная дыра — область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость (параболическая скорость) для находящихся в этой области тел должна превышать скорость света, т.е. из черной дыры ничто не может вылететь — ни излучение, ни частицы, ибо в природе ничто не может двигаться со скоростью, большей скорости света. Границу области, за которую не выходит свет, называют горизонтом черной дыры. Для того чтобы поле тяготения смогло «запереть» излучение и вещество, создающая это поле масса звезды должна сжаться до объема, радиус которого меньше гравитационного радиуса r = 2GM/C2 , где G - гравитационная постоянная; с — скорость света; М - масса звезды. Гравитационный радиус чрезвычайно мал даже для больших масс (например, для Солнца r ≈ 3 км). Звезда с массой, равной массе Солнца, всего лишь за несколько секунд превратится из обычной звезды в черную дыру, а если масса равна массе миллиарда звезд, то такой процесс займет несколько дней. Свойства черной дыры необычны. Особый интерес вызывает возможность гравитационного захвата черной дырой тел, прилетающих из бесконечности. Если скорость тела вдали от черной дыры много меньше световой и траектория его движения подходит близко к окружности сR = 2 r , то тело совершит много оборотов вокруг черной дыры, прежде чем снова улетит в космос. Если же тело подойдет вплотную к указанной окружности, то его орбита будет неограниченно навиваться на окружность, тело окажется гравитационно захваченным черной дырой и никогда снова не улетит в космос. Если же тело подлетит еще ближе к черной дыре, то после нескольких оборотов иди даже не успев сделать ни одного оборота, оно упадет в черную дыру. Представим себе двух наблюдателей: одного на поверхности коллапсирующей звезды, а другого далеко от нее. Предположим, что наблюдатель на коллапсирующей звезде через равные промежутки времени посылает (радио- или световые) сигналы второму наблюдателю, информируя его о происходящем. По мере приближения первого наблюдателя к гравитационному радиусу сигналы, которые он посылает через равные интервалы времени, будут достигать другого наблюдателя через все более длительные промежутки времени. Если первый наблюдатель передаст последний сигнал как раз перед тем, как звезда достигнет гравитационного радиуса, то сигналу потребуется почти бесконечное время для того, чтобы прийти к удаленному наблюдателю; если же наблюдатель послал сигнал после того, как достиг гравитационного радиуса, наблюдатель вдали никогда не примет его, потому что сигнал никогда не покинет звезду. Когда фотоны либо частицы уходят за гравитационный радиус, они просто исчезают. Только во внешней области непосредственно у гравитационного радиуса они могут быть видимыми, причем создается впечатление, что они как бы скрываются за занавесом и больше не появляются. В черной дыре пространство и время взаимосвязаны необычным образом. Для наблюдателя внутри черной дыры направление возрастания времени является направлением уменьшения радиуса. Оказавшись внутри черной дыры, наблюдатель не может вернуться к поверхности. Он не может даже приостановиться в том месте, где оказался. Он «попадает в область бесконечной плотности, где время кончается» *. * Хокинг С. От большого взрыва до черных дыр. Краткая история времени. М., 1990. С. 79. Изучение свойств черных дыр (Я.Б. Зельдович, С. Хокинг и др.) показывает, что в некоторых случаях они могут «испаряться». Этот «механизм» связан с тем, что в сильном поле тяготения черной дыры вакуум (физические поля в самом низком энергетическом состоянии) неустойчив и может рождать частицы (фотоны, нейтрино и др.), которые, улетая, уносят энергию черной дыры. Вследствие этого черная дыра теряет энергию, уменьшаются ее масса и размеры. Сильное гравитационное поле черной дыры может вызывать бурные процессы при падении в них газа. Газ при падении в поле тяготения черной дыры образует закручивающийся вокруг последней быстро вращающийся уплощенный диск. При этом колоссальная кинетическая энергия частиц, разгоняемых тяготением сверхплотного тела, частично переходит в рентгеновское излучение, и по этому излучению черная дыра может быть обнаружена. Вероятно, одна черная дыра уже обнаружена таким способом в рентгеновском источнике Лебедь Х-1. В целом же, по-видимому, на долю черных дыр и нейтронных звезд в нашей Галактике приходится около 100 млн звезд. Итак, черная дыра так сильно искривляет пространство, что как бы отсекает себя от Вселенной. Она может буквально исчезнуть из Вселенной. Возникает вопрос «куда». Математический анализ дает несколько решений. Особенно интересно одно из них. В соответствии с ним черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной вселенной. Таким образом, воображаемый космический путешественник мог бы использовать черную дыру для передвижения в пространстве и времени нашей Вселенной и даже проникновения в другую вселенную. Что же происходит, когда черная дыра переходит в другую часть Вселенной или проникает в иную вселенную? Рождение черной дыры во время гравитационного коллапса является важным указанием на то, что с геометрией пространства-времени происходит нечто необычное — изменяется ее метрика, топологические характеристики. Теоретически коллапс должен завершиться образованием сингулярности, т.е. должен продолжаться до тех пор, пока черная дыра не станет нулевых размеров и бесконечной плотности (хотя на самом деле речь должна идти не о бесконечности, а о каких-то очень больших, но конечных величинах). Во всяком случае, момент сингулярности — это, возможно, момент перехода из нашей Вселенной в другие вселенные или момент перехода в другие точки нашей Вселенной. Много вопросов возникает и вокруг исторической судьбы черных дыр. Черные дыры испаряются за счет испускания частиц и излучения, но не из самой черной дыры, а из того пространства, которое находится перед горизонтом черной дыры. Причем, чем меньше черная дыра по размерам, массе, тем выше ее температура и тем быстрее она испаряется. А размеры черных дыр могут быть различными: от массы галактики (1044 г) до песчинки массой 10-5 г. Продолжительность жизни черной дыры пропорциональна кубу ее радиуса. Черная дыра массой в десять масс Солнца испарится за 1069 лет. Это значит, что массивные черные дыры, образовавшиеся на ранних стадиях эволюции Вселенной, и сейчас существуют, причем,возможно, даже в пределах Солнечной системы. Их пытаются обнаружить с помощью гамма-телескопов. Таким образом, большая часть излучающего свет вещества сосредоточена в звездах. Каждая звезда — это подобие нашего Солнца, хотя размеры звезд, их цвет, состав и эволюция существенно различаются. Звезды вместе с некоторым количеством пыли и газа (и других объектов) группируются в гигантские скопления — галактики. 11.5. Острова Вселенной: галактики 11.5.1. Общее представление о галактиках и их изучении Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, так и названные туманностями, видимые в разных созвездиях неизменно в одних и тех же местах. С помощью сильных телескопов В. Гершель и его сын Джон открыли множество таких туманных пятен, а к концу прошлого века было обнаружено, что некоторые из них имеют спиральную форму. Но долго оставалось загадкой, что представляют собой эти туманности. Только в 20-е гг. XX в. с помощью крупнейших в то время телескопов удалось разложить туманности на звезды. Стало ясно, что туманности — это не облака пыли, светящиеся отраженным светом, и не облака разреженного газа, а чрезвычайно далекие звездные системы, в которых звезд несравненно больше, чем в близких к Солнцу шаровых скоплениях. Галактики — это гигантские звездные системы (примерно до 1013 звезд). Такого же порядка (n = 13) и массы галактик по отношению к массе Солнца. Некоторые галактики можно разглядеть в хороший бинокль. Галактику Андромеды, большую по размерам и находящуюся достаточно близко к Солнцу (всего в 1,5 млн световых лет), в состоянии увидеть человек с хорошим зрением: это размытое пятно в созвездии Андромеды. Современные телескопы позволяют отыскать сотни миллионов других галактик. Строение их различно. Но наиболее характерна и примечательна одна форма —уплощенный диск с выпуклостью в центре, откуда исходят спиральные рукава. Галактика Андромеды, как и наша собственная, принадлежит к спиральному типу галактик. Солнечная система расположена в одном из спиральных рукавов Галактики на расстоянии примерно двух третей ее радиуса от центра. Следует помнить, что, наблюдая Вселенную, мы видим галактики не такими, какие они есть теперь, а такими, какими они были в далеком прошлом. Ведь свет от них приходит к нам через пространство в миллионы и миллионы километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает Земли через 1,5 млн лет. С помощью больших телескопов можно наблюдать еще намного более далекие галактики, и мы видим их такими, какими они были миллиарды лет. назад. Расстояние до самых дальних из наблюдаемых в настоящее время галактик — свыше 10 млрд световых лет. Изучение мира галактик является сейчас наиболее бурно развивающейся областью астрономии. Именно в этой области происходят наиболее поразительные открытия, которые подводят нас к раскрытию глубинных тайн Вселенной, загадок, наиболее потрясающих воображение. Изучение галактик требует максимально мощных инструментов, в частности, оптических телескопов с зеркалом диаметром более метра, а также новейших средств и методов исследования слабых объектов (в частности, радиоастрономии). Велики не только размеры галактик и расстояния до них, велико и количество галактик, которые наблюдаются астрономами. Так, самый большой 6-метровый телескоп позволяет сфотографировать миллиарды галактик. В хорошо исследованной области пространства, на расстояниях 1500 Мпк, находится сейчас несколько миллиардов галактик. Таким образом, наблюдаемая нами область Вселенной - это прежде всего мир галактик. Одна из центральных проблем внегалактической астрономии связана с определением расстояний до галактик и размеров самих галактик. Расстояния до ближайших галактик, которые можно разложить на звезды, определяются по их светимости. Сложнее оценить расстояние до далеких галактик. В 1912 г. американский астроном В. Слайфер обнаружил эффект красного смещения в спектрах далеких галактик: их спектральные линии оказались смещенными к длинноволновому (красному) краю по сравнению с такими же линиями в спектрах источников, неподвижных относительно наблюдателя. В 1929 г. американский астроном Э. Хаббл, сравнивая расстояния до галактик и их красные смещения, обнаружил, что последние растут в среднем пропорционально расстояниям (закон Хаббла). Этот закон дал астрономам эффективный метод определения расстояний до галактик по следующей формуле: r =с z / H (Мпк), где r - расстояние до галактики; с — скорость света;H - постоянная Хаббла. По современной оценке, постоянная Хаббла (отношение скорости удаления (V) внегалактических источников к расстоянию (R ) до них Н = V/R ) составляет от 50 до 100 км/(с·Мпк). В настоящее время измерены красные смещения тысяч галактик и квазаров. Определение расстояний до галактик и их положения на небе позволило сделать еще один вывод. Оказалось, что большинство галактик входит в группировки, которые насчитывают от нескольких галактик (группа галактик ) до сотен и тысяч галактик (скопление галактик ) и даже облака скоплений (сверхскопления ). Наблюдаются и одиночные галактики, но они относительно редки (не более 10%). Другими словами, если галактики — это «острова Вселенной», то они, как правило, объединены в архипелаги. Размеры галактик тоже различны. Есть галактики-карлики в несколько десятков световых лет и галактики-великаны с поперечником до 18 млн световых лет. Средние расстояния между галактиками в группах и скоплениях примерно в 10—20 раз больше, чем размеры крупнейших галактик. Расстояния между скоплениями галактик составляют десятки мега-парсек. Таким образом, галактики заполняют пространство с большей относительной плотностью, чем звезды во внутригалактическом пространстве (расстояния между звездами в среднем в 20 млн раз больше их диаметра). Наиболее исследована местная группа галактик, в которой самыми яркими являются наша Галактика и туманность Андромеды. Вокруг них, в свою очередь, располагаются еще целые семейства галактик. Так, в семейство нашей Галактики входят 14 карликовых эллиптических галактик, несколько внегалактических шаровых скоплений и ряд так называемых неправильных галактик, среди которых крупнейшие Магеллановы Облака (Большое и Малое). Недавно открыта новая галактика, которая находится от нас на расстоянии всего 55 тыс. световых лет. Ее назвали Сникерс (усмешка, ухмылка). Несколько меньшее семейство у туманности Андромеды (одна спиральная, две эллиптические и несколько карликовых). Ближайшие соседние группы галактик располагаются в 2—5 Мпк от Местной группы и по составу похожи на нее. В пределах 10—20 Мпк около нашей Галактики обнаружено несколько десятков групп галактик. Ближайшее крупное скопление галактик находится в созвездии Девы на расстоянии около 20 Мпк. В это скопление входит около 200 галактик средней и высокой светимости. Скопление в созвездии Девы представляет собой, по-видимому, центральное сгущение еще более крупной системы галактик — сверхскопления галактик. (Уже давно замечено, что яркие галактики расположены по небу не беспорядочно, а поясом, который можно назвать Млечным Путем галактик.) Общее число галактик нашего сверхскопления, исключая карликовые, около 20 000, диаметр его около 60 Мпк. Ближайшие соседи нашего Сверхскопления — сверхскопления в созвездии Льва (на расстоянии 140 Мпк) и в созвездии Геркулеса (190 Мпк). В настоящее время выявлено свыше полусотни сверхскоплений галактик. Чрезвычайно многообразны и формы галактик. Типология форм галактик, разработанная еще Э. Хабблом, в основном сохранилась до настоящего времени, хотя, конечно, за прошедшие десятилетия были обнаружены и новые типы галактик. Хаббл выделял три основных типа галактик: эллиптические , имеющие круглую или эллиптическую форму (обозначаются Е); это наиболее простые галактики, не содержащие горячих звезд, сверхгигантов, пыли и газовых туманностей; в центре их нет ядра; спиральные, которые Хаббл разбил на два семейства — обычные (S ) и пересеченные (SB ). У первых ветви выходят непосредственно из ядра; у вторых ядро пересечено широкой, яркой полосой, называемой перемычкой или баром; спиральные ветви отходят от концов бара; неправильные галактики (Ir ) имеют клочковатое строение и неправильную форму; яркость и светимость их невелики; они изобилуют горячими сверхгигантами, газовыми туманностями и пылью (например, Большое и Малое Магеллановы Облака); к неправильным галактикам относятся также взаимодействующие галактики; большинство неправильных галактик — карлики. Форма и структура галактик связаны с их основными физическими характеристиками: размером, массой, светимостью. И по этим характеристикам мир галактик оказался поразительно разнообразным. В центрах галактик обычно сосредоточено огромное количество; вещества (до 10% всей ее массы). Здесь происходят выбросы большого количества вещества, что приводит к интенсивному движению от центра туч водорода. В отдельных галактиках ядро, по-видимому, может представлять собой черную дыру. По нашим человеческим меркам галактики невообразимо огромны, но в космологических масштабах они ничтожно малы. Галактики разбросаны по Вселенной более или менее беспорядочно, однако они обычно собраны в небольшие группы. Подобные группы галактик — «атомы» космологии. Космология рассматривает поведение Вселенной лишь в масштабах такого или более высокого порядков. Процессы, происходящие в отдельных галактиках (хотя они могут быть очень важными) редко становятся существенными для космологии. 11.5.2. Наша Галактика - звездный дом человечества Особый интерес вызывает вопрос о том, что представляет собой наш звездный дом — наша Галактика. Те отдельные звезды, которые мы можем различить на ночном небе,— просто ближайшие к нам члены нашей Галактики. Большая же часть Галактики видна лишь как размытая световая полоса, пересекающая небо. Это так называемый Млечный Путь. Благодаря этому (в отличие от других галактик) нашу Галактику может легко наблюдать на небе каждый: на ночном небе светящаяся полоса Млечного Пути представляет собой огромное количество удаленных звезд нашей Галактики, диск которой мы видим как бы «с ребра». Средний телескоп позволяет различить в Млечном Пути мириады отдельных звезд. Для изучения структуры Галактики очень невыгодно положение Земли: мы живем в ней и видим ее изнутри. Это очень затрудняет установление того, что мы могли бы выявить, бросив на нее лишь мимолетный взгляд откуда-нибудь извне. Наша Галактика — гигантская звездная система, состоящая приблизительно из 200 млрд звезд, среди них и наше Солнце. Кроме звезд Галактика содержит много пыли, газа; она пронизана магнитными полями, заполнена космическими лучами. По форме она представляет собой достаточно правильный диск с шарообразным утолщением (балдж) в центре (это напоминает линзу или чечевицу). Диаметр Галактики около 100 000 световых лет (примерно 30 кпк), толщина ее в 10—15 раз меньше, а масса Галактики 2 • 1011 масс Солнца. Около 1 % этой массы составляет межзвездный водород, преимущественно нейтральный. Возраст Галактики около 15 млрд лет. Звездный состав Галактики очень разнообразный. Звезды различаются по физическим, химическим характеристикам, особенностям орбит, возрасту и др. Есть старые звезды и молодые (около 100 тыс. лет), некоторые звезды рождаются в настоящее время. Подавляющее большинство звезд имеет «средний» возраст — несколько миллиардов лет. К ним относится и наше Солнце — рядовая звезда нашей Галактики, — которое расположено ближе к ее краю, примерно в 25 000 световых лет от ядра Галактики. Солнечная система обращается вокруг центра Галактики со скоростью около 220 км/с. Центр нашей Галактики лежит в направлении на созвездие Стрельца (хотя расположен гораздо дальше). Солнце совершает один оборот вокруг центра Галактики за 250 млн лет. Этот период может быть назван галактическим годом. История человечества по сравнению с этим периодом — только краткий миг. Вся наша Галактика вращается вокруг центра Местной системы галактик (примерно на 2/3 пути между нашей Галактикой и туманностью Андромеды, на расстоянии 0,46 Мпк от Галактики). Особый интерес для астрономов представляет ядро Галактики. Здесь нет горячих сверхгигантов и возбуждаемых ими к свечению диффузных газовых туманностей. Нет и пыли, но есть нейтральный водород, который по не вполне понятной причине растекается оттуда в плоскости Галактики со скоростью 50 км/с. Основное излучение ядра создается оранжевыми звездами-гигантами (но не сверхгигантами). Ядро Галактики должно было бы казаться очень ярким, если бы не поглощение света в массах космической пыли. Но пыль меньше поглощает инфракрасные лучи и почти не поглощает радиоволны. В центре ядра находится небольшое сгущение звезд с малым, но чрезвычайно компактным и сильным радиоисточником (Стрелец А). Высказано предположение, что он является черной дырой (массой равной примерно миллиону солнечных масс). Хотя в мощные телескопы нам удается увидеть только галактики, в темных пространствах, разделяющих их, несомненно присутствует вещество. Вопрос в том, сколько его и в каком состоянии оно находится. Кроме вещества, Вселенная насыщена излучениями и быстрыми частицами различных типов. Сюда входят электромагнитное и гравитационное излучения, потоки нейтрино и космические лучи (состоящие из множества разнообразных субатомных частиц). Межзвездное пространство заполнено газом и пылью. Основной компонент межзвездного газа — водород. Но втором месте — гелий, Значительно меньше в ней углерода, азота, кислорода и других химических элементов. Тяжелые элементы попадают в Космос как остатки взрывов сверхновых звезд. Таким образом, межзвездная среда - это вещество и поля, заполняющие межзвездное пространство внутри галактик. Межзвездная среда тесно связана со звездами. Из межзвездного газа образуются звезды, которые на поздних стадиях эволюции вновь отдают часть своего вещества межзвездной среде. Обмениваясь со звездами веществом, межзвездная среда обогащается создаваемыми в недрах звезд тяжелыми элементами. Примерно 85% всех тяжелых элементов возникло на заре образования нашей Галактики, т.е. примерно 9—10 млрд лет назад. В это время происходил интенсивный процесс звездообразования. Много возникало и сверхновых звезд. Однако 11—13% тяжелых элементов имеют возраст 5 млрд лет. В межзвездной среде астрофизики наблюдают и различные органические соединения: углеводород, спирты, альдегид, эфиры, аминокислоты и другие соединения, в которых молекулы содержат до 18 атомов углерода, а самые тяжелые имеют массу до 123 единиц масс водорода. В настоящее время в межзвездной среде открыто около 40 органических молекул. Чаще всего они встречаются в местах наи большей концентрации газопылевого вещества. Звезды поставляют в межзвездную среду также электромагнитное излучение и космические лучи. Органические молекулы из межзвездной среды, электромагнитное излучение и космические лучи могли способствовать возникновению простейших форм жизни на Земле. Совокупность галактик всех типов, квазаров, межгалактической среды образует Метагалактику — доступную наблюдениям часть Вселенной. Одно из важнейших свойств Метагалактики — ее постоянное расширение, «разлет» скоплений галактик. Об этом свойстве Метагалактики свидетельствуют «красное смещение» в спектрах галактик и открытие реликтового излучения (фоновое, независимое от направления внегалактическое тепловое излучение, соответствующее температуре около 3 К). Из явления расширения Метагалактики вытекает важное следствие: в прошлом расстояния между галактиками были меньше. А если учесть, что и сами галактики в прошлом были протяженными и разреженными газовыми облаками, то очевидно, что миллиарды лет назад границы этих облаков смыкались и образовывали некоторое единое однородное газовое облако, испытывавшее постоянное расширение. Важное свойство Метагалактики — равномерное распределение в ней вещества (основная масса вещества сосредоточена в звездах). В современном состоянии Метагалактика — однородна и изотропна, т.е. свойства материи и пространства одинаковы во всех частях Метагалактики (однородность) и по всем направлениям (изотропия). Маловероятно, что она была такой в прошлом. В самом начале расширения Метагалактики анизотропия и неоднородность материи и пространства вполне могли существовать. Поиски следов анизотропии и неоднородности прошлых состояний Метагалактики — одна из важнейших проблем современной внегалактической астрономии. Исчерпывает ли Метагалактика собой всю возможную материю и пространство? Многие ученые так и считают, утверждая единственность всей нашей расширяющейся Метагалактики — Вселенной. Но такие утверждения напоминают космологию Аристотеля, многократно повторявшиеся заявления о единственности Земли со светилами вокруг нее, единственности Солнечной системы, единственности нашей Галактики и т.д. И потому все чаще высказывается мысль о множественности «метагалактик», множественности вселенных, каждая из которых имеет свой собственный набор фундаментальных физических свойств материи, пространства и времени, свои тип нестационарности, организации и др. Эти гипотезы не противореча современным математическим и физико-теоретическим представлениям. Более того, многие модели релятивистской космологии закономерно подводят к выводам такого рода*. * См.: Розенталь И.Л. Проблемы начала и конца Метагалактики. М., 1985. Одна из теоретических посылок для такого вывода связана с тем, что уравнения ОТО и квантовой физики не дают ответа на вопрос о начальных условиях эволюции нашей Вселенной. Здесь возможны два варианта: 1) первичное сингулярное состояние вещества из множества потенциальных физических возможностей реализовалось в одну реальную — нашу Метагалактику; 2) во Вселенной осуществляется все многообразие физических условий, явлений и движений, допускаемых основными физическими теориями. Если допустить вторую возможность, то надо признать, что реально существует множество вселенных (метагалактик), образовавшихся в результате «Большого Взрыва», связанных между собой некими материальными «каналами», о которых мы пока можем только догадываться (представления о топосах и др.) и для познания которых понадобится как минимум завершенная теория супергравитации, а может даже и некоторая «новая физика». 11.6.1. Особенности современной космологии Вселенная как целое является предметом особой астрономической науки — космологии, имеющей древнюю историю. Истоки ее уходят в античность. Космология долгое время находилась под значительным влиянием религиозного мировоззрения, будучи не столько предметом познания, сколько делом веры. Даже И. Кант, пробивший серьезную брешь в религиозном толковании предмета космологии, полностью не освободился от представления об активности сверхъестественного фактора — Творца материи. В XX в. ситуация изменилась кардинально: был достигнут существенный прогресс в научном понимании природы и эволюции Вселенной как целого. В наши дни космологические проблемы — не дело веры, а предмет научного познания. Они решаются с помощью научных понятий, представлений, теорий, а также приборов и инструментов, позволяющих понять, какова структура Вселенной и как она сформировалась. Конечно, понимание этих проблем пока еще далеко от своего завершения, и, несомненно, будущее приведет к новым великим переворотам в принятых сейчас взглядах на картину мироздания. Тем не менее важно отметить, что здесь мы имеем дело именно с наукой, с рациональным знанием, а не с верованиями и религиозными убеждениями. Современная космология - это сложная, комплексная и быстро развивающаяся система естественно-научных (астрономия, физика, химия и др.) и философских знаний о Вселенной в целом, основанная как на наблюдательных данных, так и на теоретических выводах, относящихся к охваченной астрономическими наблюдениями части Вселенной. Теоретико-методологический фундамент космологии составляют современные физические теории, а также философские принципы и представления. Глубинная связь космологии и физики базируется на том, что космологи в современной Вселенной ищут «следы» тех процессов, которые происходили в момент рождения Вселенной. А такими «следами» прежде всего выступают фундаментальные свойства физического мира — три пространственных измерения и одно временное; четыре фундаментальных взаимодействия; преобладание частиц над античастицами и др. Эмпирические данные, представленные главным образом внегалактической астрономией, свидетельствуют о том, что мы живем в эволюционирующей, расширяющейся, нестационарной Вселенной. Имеет ли смысл рассматривать Вселенную в целом как единый целостный динамический объект? Современная космология в основном исходит из предположения, что на этот вопрос следует ответить положительно. Иначе говоря, предполагается, что Вселенная в целом подчиняется тем же естественным законам, которые управляют поведением ее отдельных составных частей. При этом определяющую роль в космологических процессах играет гравитация. Понятие релятивистской космологии . Поскольку именно тяготение определяет взаимодействие масс на больших расстояниях, а значит, динамику космической материи в масштабах Вселенной, то теоретическим ядром космологии выступает теория тяготения, а современной космологии — релятивистская теория тяготения. Поэтому современную космологию называют релятивистской. Ньютоновская физика рассматривает пространство и время как «арену», на которой разыгрываются физические процессы; она не связывает воедино пространство и время. Согласно общей теории относительности (см. 9.2), распределение и движение материи изменяют геометрические свойства пространства-времени и в то же время сами зависят от них; гравитационное поле проявляется как искривление пространства-времени (чем значительнее кривизна пространства-времени, тем сильнее гравитационное поле). Первым релятивистскую космологическую модель попытался построить А. Эйнштейн. В соответствии с методологическими установками классической астрономии о стационарности Вселенной, он исходил из предположения о неизменности свойств Вселенной как целого во времени (радиус кривизны пространства он считал постоянным). Эйнштейн даже видоизменил общую теорию относительности, чтобы она удовлетворяла этому требованию, и ввел дополнительную космическую силу отталкивания, которая должна уравновесить взаимное притяжение звезд. Вселенная Эйнштейна пространственно конечна; она имеет конечные размеры, но не имеет границ! В этой модели пространственный объем Вселенной с равномерно распределенными в нем галактиками конечен; но границ у этого пространства нет. Оно не распространено бесконечно во все стороны, а замыкается само на себя. Как и на поверхности сферы, в нем можно совершать «кругосветные» путешествия: обитатель такой вселенной мог бы, послав в каком-либо направлении (световой или радио) сигнал, со временем обнаружить, что этот сигнал вернулся к нему с противоположной стороны, обойдя всю Вселенную. Как и многие другие абстрактные понятия современной физики и астрономии, идея замкнутой, конечной, но неограниченной вселенной трудно представима в наглядных образах. Поэтому часто спрашивают, что же находится «снаружи» конечной вселенной. Дело в том, что этот вопрос не имеет смысла для трехмерных существ, т.е. в пространственно-временной метрике нашего мира. Как не имеет смысла аналогичный вопрос, что находится «вне» поверхности сферы, для плоских существ, вынужденных постоянно жить на сферической поверхности. В такой вселенной просто нет понятия «снаружи». Ведь различение «снаружи» и «внутри» предполагает некоторую границу, которой на самом деле нет, и каждая точка в ней эквивалентна любой другой — ни края, ни центра здесь нет. Нестационарная релятивистская космология. С критикой предложенной Эйнштейном космологической модели выступил наш отечественный выдающийся математик и физик-теоретик А. А. Фридман. Именно А.А. Фридман, опубликовавший свою работу в 1922 г., впервые сделал из общей теории относительности космологические выводы, имеющие поистине революционное значение: он заложил основы нестационарной релятивистской космологии. Фридман показал, что теоретическая модель Эйнштейна является лишь частным решением гравитационных уравнений для однородных и изотропных моделей, а в общем случае решения зависят от времени. Кроме того, они не могут быть однозначными и не могут дать ответа на вопрос о форме Вселенной, ее конечности или бесконечности. Исходя из противоположного постулата (о возможном изменении радиуса кривизны мирового пространства во времени), Фридман нашел нестационарные решения «мировых уравнений» Эйнштейна. Встретив решения Фридмана с большим недоверием, Эйнштейн затем убедился в его правоте и согласился с критикой молодого физика. Нестационарные решения уравнений Эйнштейна, основанные на постулатах однородности и изотропии, называются фридмановскими космологическими моделями. А. А. Фридман показал, что решения уравнений общей теории относительности для Вселенной позволяют построить три возможные модели Вселенной. В двух из них радиус кривизны пространства монотонно растет и Вселенная бесконечно расширяется (в одной модели — из точки; в другой — начиная с некоторого конечного объема). Третья модель рисовала картину пульсирующей Вселенной с периодически изменяющимся радиусом кривизны. Выбор моделей зависит от средней плотности вещества во Вселенной. Модели Вселенной Фридмана уже вскоре получили удивительно точное подтверждение в непосредственных наблюдениях движений далеких галактик — в эффекте «красного смещения», который свидетельствует о взаимном удалении всех достаточно далеких друг от друга галактик. Таким образом, в настоящее время наблюдается расширение Вселенной. Характер дальнейшей ее эволюции зависит от средней плотности вещества во Вселенной и его отношения с критической плотностью ρ = З H2 /8πG . Если средняя плотность окажется больше критической, то расширение Вселенной через некоторое время прекратится и сменится сжатием. Если средняя плотность меньше критической, то расширение будет продолжаться неограниченно долго. В настоящее время критическая плотность определяется величиной 10-29 г/см3 . А средняя плотность вещества во Вселенной по современным представлениям оценивается 3 • 10-31 г/см3 . Иначе говоря, Вселенная будет сколь угодно долго расширяться. Но определение средней плотности вещества во Вселенной пока ненадежно. Во Вселенной могут присутствовать не обнаруженные еще виды материи, дающие свой вклад в среднюю плотность. И тогда на «вооружение» придется брать «закрытую» модель Вселенной, в которой предполагается, что расширение в будущем сменится сжатием. Космологический постулат . В современной космологии представление о нестационарности Вселенной удивительным образом сочетается с представлением об однородности Вселенной. Достаточно неожиданно то, что Вселенная оказывается однородной в самых различных смыслах. Во-первых, Вселенная однородна в том смысле, что структурные элементы далеких звезд и галактик, физические законы, которым они подчиняются, и физические константы, по-видимому, с большой степенью точности одинаковы повсюду, т.е. те же, что и в нашей области Вселенной, включая Землю. Типичная галактика, находящаяся в сотне миллионов световых лет от нас, выглядит в основном также, как наша. Спектры атомов, следовательно, законы химии и атомной физики там идентичны известным на Земле. Это обстоятельство позволяет уверенно распространять открытые в земной лаборатории законы физики на более широкие области Вселенной. Во-вторых, говоря о космической однородности Вселенной, имеют в виду также однородность распределения вещества. Вещество Вселенной «разбросано» в виде сгустков — оно собрано в звезды, которые в свою очередь группируются в скопления, в галактики, в скопления галактик. В настоящее время распространено убеждение, подкрепленное наблюдениями, что подобное объединение останавливается на скоплениях галактик, а более крупномасштабное распределение вещества одинаково во всей Вселенной. Это распределение однородно (одинаково во всех областях) и изотропно (одинаково во всех направлениях). Предположение о том, что Вселенная в крупных масштабах однородна, разделяют большинство (хотя и не все) космологи; оно известно как космологический постулат. Представление об однородности Вселенной еще раз доказывает, что Земля не занимает во Вселенной сколько-нибудь привилегированного положения. Даже после Коперника у астрономов время от времени возникали допущения, что с Землей, Солнцем, нашей Галактикой может быть связана какая-нибудь исключительность. Но сейчас физические условия в ближайших к нам областях Вселенной не рассматриваются как особые; доказано, что они характерны для любой области во Вселенной. Конечно, Земля, Солнце и Галактика кажутся нам, людям, важными и исключительными, но для Вселенной в целом они такими не являются. Возраст Вселенной . Космологический постулат может трактоваться еще более широко: не только наша область Вселенной типична для нее в целом, но и наша современная эпоха типична во все времена. То есть Вселенная, когда бы ее ни рассматривали, должна была бы выглядеть более или менее одинаковой — так, как мы видим ее сейчас. Такое представление о Вселенной, распространенное среди астрономов в XIX в., существенно изменилось в XX в. Одно из важнейших следствий фридмановских космологических моделей — представление об ограниченности эволюции Вселенной во времени и наличии особых, сингулярных состояний, в которых радиус Вселенной обращается в нуль, а плотность материи — в бесконечность. (О теоретических моделях таких состояний см. далее.) Ограниченность эволюции во времени приводит к понятию возраста Вселенной. В 1929 г. Э. Хаббл показал, что удаленные галактики разбегаются от нас; и чем дальше галактика, тем быстрее она удаляется. Отсюда следовал однозначный вывод — Вселенная находится в состоянии расширения. Это открытие подтвердило идеи Фридмана и коренным образом изменило все представления космологии. Расширяющаяся Вселенная — это Вселенная изменяющаяся. А значит, у нее есть своя история, время возникновения и время гибели; можно сказать, своя биография, имеющая даты рождения и смерти. Закон Хаббла дает возможность определить возраст Вселенной. Современная оценка постоянной Хаббла от 50 до 100 км/(с • Мпк). Обратная величина t = 1/Н имеет размерность времени и равна 10— 20 млрд лет, что определяет приблизительный возраст нашей Вселенной. В соответствии с наиболее распространенным представлением возраст Вселенной составляет 15 млрд лет. Космологический горизонт . Конечность времени, прошедшего с момента сингулярности, приводит к существованию космологического горизонта — границы, отделяющей область пространства, которую в данный момент может видеть наблюдатель, oт области, которая для него пока принципиально ненаблюдаема. Существование космологического горизонта связано с расширением Вселенной. От момента сингулярного состояния Вселенной прошло t ≈ 15—20 млрд лет. За это время свет успевает пройти в расширяющейся Вселенной конечное расстояние l ≈ ct , т.е. примерно 15—20 млрд световых лет. Поэтому каждый наблюдатель в момент t' после начала расширения может видеть только область, ограниченную сферой, имеющей в этот момент радиус r = ct'. За этой границей, являющейся горизонтом наблюдений, объекты принципиально ненаблюдаемы в моментt ' : свет от них еще не успел дойти до наблюдателя, даже если он вышел в момент начала расширения Вселенной. Вблизи горизонта мы видим вещество в далеком прошлом, когда плотность его была гораздо больше сегодняшней. С течением времени горизонт расширяется по мере того, как к наблюдателю доходит свет от более далеких областей Вселенной. В настоящее время космологический горизонт равен:ct ≈ c/H ≈ 6000 Мпк (при H = 50 км/(с • Мпк). Таким образом, он охватывает больше половины доступного в принципе для наблюдений объема пространства Вселенной. С каждым днем доступная земным телескопам область Вселенной возрастает на 1018 кубических световых лет. Представление о космологическом горизонте позволяет понять, что в каждый данный момент для наблюдателя доступна некоторая конечная часть объема Вселенной, с конечным числом галактик и звезд. Более того, очевидно, что у каждого наблюдателя, находящегося в каком-либо месте во Вселенной, в каждый данный момент времени свой горизонт, своя конечная Вселенная. Это подобно тому, как и на земном шаре каждый наблюдатель имеет свой горизонт. Строго говоря, космологический горизонт ограничен еще одним фактором, связанным со свойствами электромагнитного поля. На ранних стадиях развития Вселенной при большой плотности вещества фотоны не могли свободно распространяться из-за поглощения и рассеяния. До Земли в неискаженном виде дошло только то излучение, которое возникло в эпоху, когда Вселенная стала практически прозрачной для излучения, и не раньше. Эта эпоха связана с процессом рекомбинации водорода, который протекал через 1 млн лет после начала расширения Вселенной и соответствовал плотности вещества ρ = 10-20 г/см3 . Но 1 млн лет—весьма незначительный период по сравнению с 15—20 млрд лет. Поэтому горизонт видимости во Вселенной практически определяется началом ее расширения. 11.7.1. Модель горячей Вселенной В основе современных представлений об эволюции Вселенной лежит модель горячей Вселенной, или «Большого Взрыва», основы которой были заложены в трудах американского физика русского происхождения Дж. Гамова и его сотрудников в конце 40-х гг. XX в. В соответствии с этой концепцией Вселенная на ранних стадиях расширения характеризовалась не только высокой плотностью вещества, но и его высокой температурой. Ключ к пониманию ранних этапов эволюции Вселенной — в гигантском количестве теплоты, выделившейся при Большом Взрыве. В простейшем варианте теории горячей Вселенной предполагается, что Вселенная возникла спонтанно в результате взрыва из состояния с очень большой плотностью и энергией (состояние сингулярности). По мере расширения Вселенной температура падала (сначала быстро, а затем все медленнее) от очень большой до довольно низкой, обеспечивавшей возникновение условий, благоприятных для образования звезд и галактик. На протяжении около 1 млн лет температура превышала несколько тысяч градусов, что препятствовало образованию атомов, и, следовательно, космическое вещество имело вид разогретой плазмы, состоящей из ионизированных водорода и гелия. Лишь когда температура Вселенной понизилась приблизительно до температуры поверхности Солнца, возникли первые атомы. Таким образом, атомы — это реликты эпохи, наступившей через 1 млн лет после Большого Взрыва. Модель горячей Вселенной получила экспериментальное подтверждение после открытия в 1965 г. реликтового излучения — микроволнового фонового излучения с температурой около 3 К. Косвенным подтверждением этой модели служит также наблюдаемое обилие гелия, превышающее повсеместно 22% по массе, а также обнаруженное в межзвездном газе неожиданно высокое содержание дейтерия, происхождение которого можно объяснить лишь ядерными реакциями синтеза легких элементов в горячей Вселенной. Зная современную температуру реликтового излучения, можно провести экстраполяцию в прошлое, используя хорошо известные и проверенные законы механики, термодинамики, статистической, атомной и ядерной физики, физики элементарных частиц и др.* * Фундаментальным открытием самых последних лет, конца XX в., является обнаружение пространственной анизотропии реликтового излучения, фона Вселенной. Это расширяет возможности релятивистской космологии, делает несущественным влияние различных мешающих познанию начальных этапов Вселенной факторов — рассеяние электромагнитных волн на свободных электронах, на холодном молекулярном газе, поглощение пылью и др. Возможность установить процессы, происходившие в первые секунды и минуты существования Вселенной, безусловно, следует рассматривать как блестящее достижение современного естествознания. Моделирование первой секунды существования Вселенной приближает нас к главной загадке природы — самому акту «сотворения мира»! Первые секунды Вселенной — это время таинственных состояний вещества и неведомых сил природы. Конечно, здесь следует быть осторожным. Наши представления об этом отрезке времени основаны во многом на гипотезах и гипотетических экстраполяциях, теоретическом моделировании, во многом спорных и умозрительных. Экстремальные условия первых секунд жизни Вселенной сегодня можно изучать экспериментально. На современных ускорителях элементарных частиц удается воспроизводить физические условия, существовавшие в то время, когда возраст Вселенной составлял 10-4 с, когда температура достигала 1012 К, а вся наблюдаемая сегодня Вселенная была «сжата» до размеров Солнечной системы. За этими границами возможна только теоретическая экстраполяция известных нам физических законов. В целом она не вызывает сомнений вплоть до того момента, когда начинают проявляться квантовые свойства гравитации. Вблизи сингулярности решения релятивистских уравнений неприменимы, поскольку там должны проявляться квантовые свойства гравитации, а свойства вещества в этом состоянии неизвестны. Существующие теории вещества и тяготения применимы к состояниям материи, плотность и температура которой меньше планковских: ρ = 1093 г/см3 ; Т ≈ 1032 К. Планковской плотности и температуре соответствует возраст Вселенной τ ≈ 10-43 с и расстояние r ≈ 10-33 см. В планковскую эпоху физические условия были таковы, что для их описания требуется еще несозданная квантовая теория тяготения, и поэтому для описания самых ранних моментов рождения Вселенной пользуются гипотетическими, умозрительными моделями. 11.7.2. Большой Взрыв: инфляционная модель Первая и важнейшая проблема связана с причинами Большого Взрыва, сложившимися в первые мгновения Вселенной. Они моделируются так называемой гипотезой инфляционной Вселенной. В основе этой гипотезы — представление о существовании компенсирующей гравитационное притяжение силы космического отталкивания невероятной величины, которая смогла разорвать некое начальное состояние материи и вызвать ее расширение, продолжающееся по сей день. В этой модели начальное состояние Вселенной является вакуумным. Физический вакуум — это наинизшее энергетическое состояние всех полей, форма материи, лишенная вещества и излучения, но характеризующаяся активностью, возникновением и уничтожением виртуальных частиц (постоянно «кипит», но не выкипает) и способностью находиться в одном из многих состояний с сильно различающимися энергиями и давлениями, причем эти давления — отрицательные. Возбужденное состояние такого вакуума называют «ложным вакуумом», который способен создать гигантскую силу космического отталкивания. Эта сила и вызвала безудержное и стремительное раздувание «пузырей пространства» (зародышей одной или нескольких вселенных, каждая из которых характеризуется, допустим, своими фундаментальными постоянными*), в которых концентрировались колоссальные запасы энергии. Подобное раздувание Вселенной осуществлялось по экспоненте (за каждые 10-32 с диаметр Вселенной увеличивался в 1050 раз). Скорость раздувания значительно превосходила световую, но это не противоречит закону теории относительности, так как раздувание не связано с установлением причинно-следственных связей в веществе. Данный тип раздувания был назван инфляцией. Такое быстрое расширение означает, что все части Вселенной разлетаются, как при взрыве. А это и есть Большой Взрыв. В период квантовой космологии, т. е. с 10-43 с по 10-34 с произошло, по-видимому, и формирование пространственно-временных характеристик нашей Вселенной. * О концепции множественности вселенных см.: Розенталь И.Л. Вселенная и частицы. М., 1990. Но фаза инфляции не может быть длительной. Отрицательный (ложный) вакуум неустойчив и стремится к распаду. Когда распад завершается, отталкивание исчезает, следовательно, исчезает и инфляция. Вселенная переходит во власть обычного гравитационного притяжения. «Часы» Вселенной в этот момент показывали всего 10-34 с. Но благодаря полученному первоначальному импульсу, приобретенному в процессе инфляции, расширение Вселенной продолжается, но неуклонно замедляется. Постепенное замедление расширения Вселенной — это единственный след, который сохранился до настоящего времени от начальных моментов Большого Взрыва. В конце фазы инфляции Вселенная была пустой и холодной. Но по окончании фазы огромные запасы энергии, сосредоточенные в исходном физическом вакууме; высвободились в виде излучения, которое мгновенно нагрело Вселенную до температуры примерно 1027 К и энергии 1014 ГэВ. С этого момента начинается эволюция горячей Вселенной. Благодаря энергии возникли вещество и антивещество, затем Вселенная стала остывать и испытывать последовательные фазовые переходы, в которых постепенно стали «кристаллизоваться» все ее элементы, наблюдаемые сегодня. Инфляционная модель Большого Взрыва объясняет крупномасштабную однородность и изотропность Вселенной, образование структур галактик и их скоплений из первичных малых возмущений плотности, особенности изменения радиуса пространственной кривизны (современное значение его близко к единице, как и в момент Большого Взрыва). Несмотря на то что инфляционная модель разработана пока только частично, тем не менее она позволяет успешно объяснить ряд фундаментальных космологических закономерностей. Большой Взрыв перестал быть загадкой, лежащей за пределами естествознания. 11.7.3. Первые секунды Вселенной Ранняя Вселенная представляла собой гигантскую лабораторию природы, в которой энергия, высвободившаяся в результате Большого взрыва, пробудила физические процессы, не воспроизводимые в земных условиях. Следующий этап рождения Вселенной связан с так называемой эрой Великого объединения: возраст Вселенной всего лишь 10-34 с, а температура около 1027 К. В этот момент Космос был заполнен «супом» из странных, неведомых нам частиц, в том числе чрезвычайно массивных. Важнейшими составляющими экзотического «супа» были, вероятно, сверхмассивные частицы — переносчики взаимодействия в теориях Великого объединения, так называемые Х - и У -частицы (см. 10.3.5). Именно эти частицы привели к асимметрии в соотношении вещества и антивещества. Как показал А.Д. Сахаров (1967), при падении Т < 1027 К Х - и У - бозоны уже не могут эффективно рождаться, задерживается и процесс аннигиляции; начинает преобладать процесс распада. Но распад частиц и античастиц идет по-разному (с нарушением барионного числа). В результате появляется небольшой избыток частиц над античастицами. По оценкам, эта асимметрия характеризуется отношением (109 + 1): 109 , т.е. на каждый миллиард античастиц рождается миллиард плюс одна частица. Несмотря на малость этого эффекта, он играет решающую роль. По мере остывания Вселенной антивещество аннигилировало с веществом и при этом почти все вещество исчезало. «Почти», но не все, поскольку имелся избыток вещества над антивеществом в одну частицу на миллиард. Именно этот мизерный остаток и послужил материалом, из которого построена вся Вселенная, включая человека. Если бы этого остатка не было, то мир был бы практически «пустым», т.е. заполнен только полем, но не веществом. Можно сказать, что вещество возникло благодаря оплошности природы. Именно в эти самые ранние моменты развития Вселенной сложилась ее современная структура. Таким образом, подавляющая часть вещества, возникшего в процессе Большого Взрыва, аннигилировала в первые секунды Вселенной, а вместе с ним исчезло и все космическое антивещество. (Теперь понятно, почему во Вселенной так мало антивещества.) Исчезнув, оно превратилось в энергию: в процессе аннигиляции на каждый уцелевший электрон (или протон) возникало около миллиарда гамма-квантов. В результате расширения Вселенной это гамма-излучение «остыло», образовав к настоящему времени так называемое фоновое тепловое излучение, которое составляет значительную часть энергии Вселенной. Спустя 10 -12 с после Большого Взрыва температура была столь высока (Т > 1015 К), что тепловой энергии оказалось достаточно для рождения всех известных частиц и античастиц, причем такой плотности, что установилось равновесие, при котором энергия равномерно распределялась между всеми видами частиц. На этой стадии характер вещества во Вселенной резко отличался от всего, что мы можем непосредственно наблюдать: вещество представляло собой «кварковую жидкость»; адроны не имели индивидуальных свойств; протоны и нейтроны не существовали как различные объекты; не различались слабое и электромагнитное взаимодействия; такие частицы, как электроны, мюоны и нейтрино, не существовали в обычном виде; кварки, лептоны, бозоны не обладают массой покоя, как и фотон; свойства фотонов перемешаны со свойствамиW - и Z -частиц. Однако вещество не могло продолжительно существовать в столь нестабильной фазе. Падение температуры ниже 1015 К вызывает внезапный фазовый переход, напоминающий замерзание воды и образование льда. В этот момент нарушается калибровочная симметрия, а электромагнитное взаимодействие отделяется от слабого. W и Z -бозоны, кварки и лептоны приобретают массу, а фотон остался безмассовым. Результатом этого перехода явилось возникновение известных нам частиц — электронов, нейтрино, фотонов и кварков, которые теперь вполне различимы. Следующий фазовый переход происходит через одну миллисекунду после Большого Взрыва при Т = 1013 К и приводит к конденсации кварков. Кварки объединяются в группы (попарно или по три) и образуются адроны (протоны, нейтроны, мезоны и другие сильно взаимодействующие частицы). С этого момента открылся прямой путь для синтеза гелия, который и начинается через несколько минут после Большого Взрыва. При Т ≈ 2 • 1010 К и t ≈ 0,2 с электронные нейтрино перестают взаимодействовать с частицами. Поскольку нейтрино стабильны и очень слабо взаимодействуют с веществом, мир для них оказывается практически прозрачным; они легко перемещаются во Вселенной, сохранившись до наших дней, только их энергия уменьшается из-за ее расширения. К нашей эпохе температура этих реликтовых нейтрино должна оказаться около 2 К. Обнаружение этого излучения будет великим достижением астрономии. Но пока, к сожалению, методы обнаружения таких реликтовых нейтрино не разработаны. 11.7.4. От первых минут Вселенной до образования звезд и галактик Методом математического моделирования астрофизикам удалось воспроизвести детали ядерных процессов, происходивших в первые минуты существования Вселенной *. * См.: Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. М.,1981. Согласно полученным результатам, в конце первой секунды температура достигала 1010 К. При такой высокой температуре сложные ядра существовать не могут. Тогда все пространство было заполнено хаотически движущимися протонами и нейтронами вперемешку с электронами, нейтрино и фотонами. Ранняя Вселенная расширялась чрезвычайно быстро и по прошествии еще минуты температура упала на два порядка, а спустя еще несколько минут стала ниже уровня, при котором возможны ядерные реакции. В этот относительно короткий (буквально несколько минут) промежуток времени протоны и нейтроны могли объединяться, образуя сложные ядра. В тот период основной ядерной реакцией было слияние протонов и нейтронов с образованием ядер гелия, каждое из которых состоит из двух протонов и двух нейтронов. Поскольку протоны немного легче нейтронов, они присутствовали в несколько большем количестве и по завершении синтеза гелия часть протонов оставалась свободной. Образовавшаяся плазма состояла примерно на 10% из ядер гелия и на 90 % из ядер водорода (протонов). Эти цифры соответствуют наблюдаемому содержанию названных элементов в современной Вселенной. Великое счастье для нас, что в первичном веществе был избыток протонов над нейтронами. Благодаря ему остались во Вселенной несвязанные протоны, и впоследствии образовался водород, без которого не светило бы Солнце, не было бы воды, не могла возникнуть жизнь. Не было бы жизни, не было бы и человечества. Так наше существование и сама возможность познания Вселенной прямо определяется отдаленным прошлым, начальными моментами Вселенной. После стадии термоядерных реакций температура вещества была еще настолько высока, что оно находилось в состоянии плазмы еще сотни тысяч лет, вплоть до периода рекомбинации (Т ≈ 4000 К), когда ядра присоединяли электроны и превращались в нейтральные атомы. Первыми образовались атомы гелия и водорода. Как полагают, из этих первичных водорода и гелия, находившихся в газообразном состоянии, сформировались первые звезды и галактики. Когда размеры Вселенной были примерно в 100 раз меньше, чем в настоящую эпоху, из зарождавшихся неоднородностей газообразного водорода и гелия возникли газовые сгустки — протогалактические сгущения. Постепенно они фрагментировались, в них образовывались меньшие сгустки вещества. Из таких сгустков разной массы, имевших определенный вращательный момент, постепенно сформировались звезды и галактики. Расширение Вселенной определило разлет галактик, которые сами практически не расширяются. 11.7.5. Образование тяжелых химических элементов Таким образом, согласно современным космологическим представлениям, атомы существовали не всегда: они являются реликтами физических процессов, происходивших в глубинах Вселенной задолго до образовании Земли. Атомы — это «ископаемые» космоса. Первооснову космического вещества составляли водород и гелий; элементов среднего и тяжелого веса космическое вещество практически не содержало. Такие элементы — это «зола» ядерных «костров», пылающих в недрах звезд. Как мы уже отмечали, ядро звезды представляет собой термоядерный реактор, в котором горючим служат в основном ядра водорода (протоны). Огромная температура заставляет протоны преодолевать электростатическое отталкивание и соударяться друг с другом. При соударении протоны сближаются до радиуса сильного ядерного взаимодействия и могут слиться в ядро (синтез). Правда, ядро, состоящее из двух протонов, неустойчиво. Но если один из протонов (в результате слабого взаимодействия) превратится в нейтрон, то образуется устойчивое ядро дейтерия. Такая реакция высвобождает значительную энергию, способствующую поддержанию в недрах звезды высокой температуры. Последующие реакции синтеза приводят к превращению дейтерия в гелий, образованию углерода, а затем и все более сложных ядер. По мере исчерпания запасов ядерного горючего звезды ее внутренняя структура представлена слоями различных химических элементов, каждый из которых отражает различные стадии ядерного синтеза. Так на протяжении своей «жизни» звезда постепенно превращается из смеси первичного водорода и гелия в хранилище тяжелых химических элементов. На заключительном этапе эволюции такой звезды ядерные реакции уже не могут поддерживать необходимые значения температуры и давления, которые обеспечивают ее устойчивость. Неустойчивость звездной массы постепенно нарастает. В результате гравитация, выйдя из-под контроля, вызывает мгновенное сжатие звезды. Но внутреннее давление противостоит сжатию и приводит к выбросу гигантской энергии: внешние слои звезды буквально сдуваются в окружающее пространство, разбрасывая тяжелые элементы по просторам галактики. Подобный выброс обычно называют взрывом сверхновой (см. 11.4.2). Каждый взрыв сверхновой обогащает галактику тяжелыми элементами, из которых впоследствии и могут образоваться планетные системы, где возможны зарождение и эволюция жизни. За всю историю развития нашей Галактики в ней вспыхнуло примерно один миллиард сверхновых звезд! 11.7.6. Сценарии будущего Вселенной Любопытно знать не только далекое прошлое Вселенной, но и ее далекое будущее. Тем более что это будущее не менее поразительно, чем ее прошлое. Теоретическое моделирование будущего Вселенной существенно различается в «открытых» и «закрытых» ее моделях. «Закрытые» модели предполагают, что в будущем расширение Вселенной сменится ее сжатием. Исходя из общей массы Вселенной 1052 т можно предположить, что примерно через 30 млрд лет она начнет сжиматься и через 50 млрд лет вновь вернется в сингулярное состояние. Полный цикл расширения и сжатия Вселенной составляет примерно 100 млрд лет. Таким образом, Вселенная может быть представлена как грандиозная закрытая система, испытавшая множество эволюционных циклов. При переходе от одного цикла к другому некоторые общие параметры Вселенной (Метагалактики) могут изменяться. Например, могут изменяться фундаментальные физические константы. Совершенно иначе предстает будущее Вселенной в «открытых» космологических моделях, которые, По сути, представляют собой сценарии «тепловой смерти» Вселенной. В соответствии с ними уже через 1014 лет многие звезды остынут, что достаточно быстро (через 1015 лет) приведет к тому, что планеты начнут отрываться от своих звезд, а звезды покидать свои галактики. Примерно через 1019 лет большая часть звезд покинут свои галактики и постепенно превратятся в «черные карлики»; центральные области галактик коллапсируют, образуя «черные дыры» и тем самым прекращают свое существование. Дальнейшая эволюция будущей Вселенной не вполне ясна. Если обнаружится, что протон действительно нестабилен и распадается через 1032 лет на у -квант и нейтрино, то Вселенная и будет представлять собой совокупность нейтрино, квантов света с убывающей энергией и черных дыр. Самые массивные черные дыры испарятся за 1096 лет и через 10100 лет во Вселенной останется лишь электронно-позитронная плазма ничтожной плотности. Иначе разворачивается возможный сценарий будущего Вселенной в том случае, если протон стабилен. Тогда примерно через 1065 лет любое твердое вещество превратится даже при абсолютном нуле в жидкость. Все оставшиеся черные карлики станут жидкими каплями. А через 101500 лет любое вещество станет радиоактивным, и все жидкие капли (т.е. бывшие звезды) станут железными. От грандиозной и разнообразнейшей Вселенной останутся только жидкие холодные железные капли! Что же дальше? Пройдет невообразимое число лет, которое можно выразить числом 1010 , пока такие железные капли не превратятся в «черные дыры». Эти, уже последние, «черные дыры» за относительно небольшой промежуток времени 1067 лет испарятся, превратив Вселенную в поток сверхдлинноволновых квантов и электронно-позитронную плазму. Такое состояние — окончательная «смерть» Вселенной. 11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций 11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности В последние десятилетия в массовом сознании отмечается наплыв очередной волны мистицизма. На этом фоне широкое распространение получило обсуждение вопроса о внеземных цивилизациях, их поисках и контактах с ними. Увлечение поисками НЛО и страстное ожидание пришельцев из внеземных цивилизаций стали чуть ли не повальными. Подчас это увлечение приобретает явные черты массового психоза — почти ежемесячно в средствах массовой информации (в том числе и достаточно серьезных) появляется «информация» об инопланетянах, контактах с ними и даже об умыкании ими землян прямо в центрах многомиллионных городов. Ширятся слухи о начатой операторами НЛО эвакуации землян в просторы Вселенной... Нет числа сообщениям о найденных доказательствах посещения Земли представителями высокоразвитых разумных цивилизаций в прошлом... Занимается ли вопросом о внеземных цивилизациях современная наука? И если занимается, то как она его решает? Прежде всего следует отметить, что вопрос о внеземных цивилизациях имеет свою научную постановку, которая существенно отличается от его трактовок массовым, обыденным, вненаучным сознанием. Современная наука трактует внеземные цивилизации как общества разумных существ, которые могут возникать и существовать вне Земли (на других планетах, космических телах, в иных Вселенных, средах и др.). С позиций современной науки предположение о возможности существования внеземных цивилизаций имеет объективные основания: представление о материальном единстве мира; о развитии, эволюции материи как всеобщем ее свойстве; данные естествознания о закономерном, естественном характере происхождения и эволюции жизни, а также происхождения и эволюции человека на Земле; астрономические данные о том, что Солнце — типичная, рядовая звезда нашей Галактики и нет оснований для его выделения среди множества других подобных звезд; в то же время астрономия исходит из того, что в Космосе существует большое разнообразие физических условий, что может привести в принципе к возникновению самых разнообразных форм высокоорганизованной материи. Оценка возможной распространенности внеземных (космических) цивилизаций в нашей Галактике осуществляется по формуле Дрейка: N=R • f • n • k • в • q • L. где N — число внеземных цивилизаций в Галактике; R — скорость образования звезд в Галактике, усредненная по всему времени ее существования (число звезд в год);f — доля звезд, обладающих планетными системами; n — среднее число планет, входящих в планетные системы и экологически пригодных для жизни;k — доля планет, на которых действительно возникла жизнь;d — доля планет, на которых после возникновения жизни развились ее разумные формы;q — доля планет, на которых разумная жизнь достигала фазы, обеспечивающей возможность связи с другими мирами, цивилизациями;L — средняя продолжительность существования таких внеземных (космических, технических) цивилизаций. За исключением первой величины (R ), которая относится к астрофизике и может быть подсчитана более или менее точно (около 10 звезд в год), все остальные величины являются весьма и весьма неопределенными, поэтому они определяются компетентными учеными на основе экспертных оценок, которые, разумеется, носят субъективных характер. Вот как, например, оценивается вероятность возникновения жизни. Ясно, что далеко не на всякой планете может возникнуть жизнь. Для возникновения жизни (посредством естественного отбора) необходим сложный комплекс условий. Во-первых, значительные интервалы времени; поэтому жизнь может возникнуть только вокруг старых звезд. Причем старых звезд не первого, а второго поколения, поскольку только рядом с ними могут быть остатки тяжелых элементов, оставшиеся после взрывов сверхновых звезд первого поколения. Во-вторых, на планете должны быть соответствующие температурные условия: слишком высокая или слишком низкая температуры исключают появление жизни. В-третьих, масса планеты не должна быть слишком маленькой. Ведь в этом случае планета быстро теряет свою атмосферу, которая попросту испаряется («диссипация»). Чем легче газ, тем быстрее он уходит за пределы планеты. С другой стороны, масса планеты не должна быть очень большой, чтобы не удерживать свою первоначальную атмосферу (из водорода и гелия), не препятствовать изменению ее состава и появлению вторичной атмосферы. В-четвертых, наличие жидкой оболочки на ее поверхности. Ведь первичные формы жизни скорее всего возникли в воде. И наконец, в - п я т ы х, на планете должны быть условия для возникновения сложных молекулярных соединений, на основе которых могут протекать разнообразные химические процессы. В результате учета всех этих условий оказывается, что лишь у 1—2% всех звезд в Галактике могут быть планетные системы с явлениями жизни. Иначе говоря, при самых оптимальных оценках около 1 млрд звезд могут иметь планетные системы, на которых в принципе возможна жизнь *. В целом остается большой и неопределенность в оценке общей величиныN : от 109 цивилизаций в Галактике до одной цивилизации в нескольких соседних галактиках. * Что касается Солнечной системы, то современная астрономия пришла к выводу о невозможности существования высокоразвитой жизни на других планетах. Лишь на Марсе, по-видимому, могут быть простейшие формы жизни.
Как один из аргументов в пользу того, что внеземные цивилизации — явление очень редкое, выдвигается отсутствие видимых проявлений их активности. Но это утверждение тоже недостаточно строгое. Оно определяется во многом уровнем развития нашей цивилизации, в том числе и совершенством средств астрономических наблюдений. 11.8.2. Типы контактов с внеземными цивилизациями Тема контактов со внеземными цивилизациями — пожалуй, одна из самых популярных в научно-фантастической литературе и кинематографии. Она вызывает, как правило, самый горячий интерес у поклонников этого жанра, всех, интересующихся проблемами Мироздания. Но художественное воображение здесь должно быть подчинено жесткой логике рационального анализа. Такой анализ показывает, что возможны следующие типы контактов: непосредственные контакты, т.е. взаимные (или односторонние) посещения; контакты по каналам связи; контакты смешанного типа — посылка к внеземной цивилизации автоматических зондов, которые передают полученную информацию по каналам связи. Конечно, наиболее привлекательны контакты первого типа, но именно они наиболее трудны в реальном осуществлении. Основная трудность связана с длительностью полета к другим цивилизациям, которая может быть больше времени жизни самой земной цивилизации. Отсюда возникает вопрос о возвращении, ценности привезенной информации, а значит, и смысле самого полета. Например, при полетах к далеким звездам со скоростями, много меньшими скорости света (v « с ), требуются тысячелетия, а значит, такие полеты возможны только к ближайшим звездам. Теоретические аспекты таких проектов учеными обсуждаются, хотя до их практического осуществления еще очень далеко. Так называемые фотонные ракеты позволили бы перемещаться в пространстве со скоростями, близкими к скорости света (v ~ с). При этом путешествия в отдаленные области Галактики (и даже в другие галактики) заняли бы время жизни одного поколения космонавтов. Но согласно теории относительности, в условиях такого полета время сокращается только для экипажа космического корабля, а для жителей Земли оно будет течь как в нерелятивистской системе. Это значит, что за время путешествия на Земле пройдут сотни и тысячи лет, земная цивилизация изменится настолько, что не только доставленная информация станет ненужной, но исходный смысл такого полета будет утерян. Правда, учитывая эти аргументы, иногда высказывают идею космического путешествия без возвращения на Землю, т.е. межзвездного перелета со сменой поколений во время полета. В будущем эта проблема, очевидно, будет в принципе технически решаемой. Но ее смысл уже иной — это расселение земной цивилизации во Вселенной. Оценка целесообразности такого расселения — дело наших далеких потомков. В настоящее время реально возможными контактами с внеземными цивилизациями являются контакты по каналам связи. Если время распространения сигнала в обе стороны ( больше времени жизни цивилизации (t > L ), то речь может идти об одностороннем контакте. Если жеt << L , то возможен двусторонний обмен информацией. Современный уровень естественно-научных знаний позволяет серьезно говорить лишь о канале связи с помощью электромагнитных волн, а сегодняшняя радиотехника может реально обеспечить установление такой связи. Развитие естествознания во второй половине XX в., выдающиеся открытия в области астрономии, кибернетики, биологии, радиофизики позволили перевести проблему внеземных цивилизаций из чисто умозрительной и абстрактно-теоретической в практическую плоскость. Впервые в истории человечества появилась возможность вести глубокие и подробные экспериментальные исследования по этой важной фундаментальной проблеме. Необходимость такого рода исследований определяется тем, что открытие внеземных цивилизаций и установление контакта с ними могут иметь, огромное влияние на научный и технологический потенциал общества, оказать положительное воздействие на будущее человечества. 11.8.3. Поиски внеземных цивилизаций Изучению внеземных цивилизаций должно предшествовать установление той или иной формы связи с ними. В настоящее время наметилось несколько направлений поиска следов активности внеземных цивилизаций. Во-первых, поиск следов астроинженерной деятельности внеземных цивилизаций. Это направление базируется на предположении, что технически развитые цивилизации рано или поздно должны перейти к преобразованию окружающего космического пространства (создание искусственных спутников, искусственной биосферы и др.), в частности для перехвата значительной части энергии звезды. Как показывают расчеты, излучение основной части таких астроинженерных сооружений должно быть сосредоточено в инфракрасной области спектра. Следовательно, задача обнаружения подобных внеземных цивилизаций должна начинаться с поиска локальных источников инфракрасного излучения или звезд с аномальным избытком инфракрасного излучения. Такие исследования в настоящее время ведутся. В результате было обнаружено несколько десятков инфракрасных источников, однако пока нет оснований связать какой-либо из них с внеземной цивилизацией. Во-вторых, поиск следов посещения внеземных цивилизаций на Земле. В основе этого направления лежит допущение о том, что активность внеземных цивилизаций могла проявляться в историческом прошлом в виде посещения Земли, и такое посещение не могло не оставить следов в памятниках материальной или духовной культуры различных народов. Так проблема внеземных цивилизаций сближается с историей культуры, археологией, где также имеется немало «белых пятен», загадок, тайн и проблем. На этом пути немало возможностей для различного рода сенсаций — ошеломляющих «открытий », квазинаучных мифов о космических истоках отдельных культур (или их элементов); так, рассказом о космонавтах называют легенды о вознесении святых на небо. Необъяснимые пока постройки больших каменных сооружений также не доказывают их космического происхождения. Например, спекуляции такого рода вокруг гигантских каменных идолов на острове Пасхи были развеяны Т. Хейердалом:потомки древнего населения этого острова показали ему, как это делалось не только без вмешательства космонавтов, но и без всякой техники. В этом же ряду находится и гипотеза о том, что Тунгусский метеорит был не метеоритом или кометой, а космическим кораблем инопланетян. Такого рода гипотезы и предположения необходимо исследовать самым тщательным образом. В-третьих, поиск сигналов от внеземных цивилизаций. Данная проблема в настоящее время формулируется прежде всего как проблема поиска искусственных сигналов в радио- и оптическом (например, остронаправленным лучом лазера) диапазонах. Наиболее вероятной является радиосвязь. Поэтому важнейшей задачей оказывается выбор оптимального диапазона волн для такой связи. Анализ показывает, что наиболее вероятны искусственные сигналы на волнах λ ≡ 21 см (радиолиния водорода),λ ≡ 18 см (радиолиния ОН), λ ≡ 1,35 см (радиолиния водяного пара) или же на волнах, скомбинированных из основной частоты с какой-либо математической константой (π, е и др.). Серьезный подход к поиску сигналов от внеземных цивилизаций требует создания постоянно действующей службы, охватывающей всю небесную сферу. Причем такая служба должна быть достаточно универсальной — рассчитанной на прием сигналов различного вида (импульсных, узкополосных и широкополосных). Первые работы по поиску сигналов внеземных цивилизаций были выполнены в США в 1960 г. Исследовалось радиоизлучение ближайших звезд (τ Кита и ε Эридана) на волне 21 см. В последующем (70— 80-е гг.) такие исследования проводились и в СССР. В ходе исследований были получены обнадеживающие результаты. Так, в 1977 г. в США (обсерватория Огайского университета) в процессе обзора неба на волне 21 см был зарегистрирован узкополосный сигнал, характеристики которого указывали на его внеземное и, вероятно, искусственное происхождение. Однако повторно этот сигнал зарегистрировать не удалось, и вопрос о его природе остался открытым. С 1972 г. поиски в оптическом диапазоне проводились на орбитальных станциях. Обсуждались проекты строительства многозеркальных телескопов на Земле и на Луне, гигантских космических радиотелескопов и др. Поиск сигналов от внеземных цивилизаций — это одна сторона контакта с ними. Но существует и другая — сообщение таким цивилизациям о нашей, земной цивилизации. Поэтому наряду с поисками сигналов от космических цивилизаций предпринимались попытки направить послание внеземным цивилизациям. В 1974 г. с радиоастрономической обсерватории в Аресибо (Пуэрто-Рико) в сторону шарового скопления М-31, находящегося от Земли на расстоянии 24 тыс. световых лет, было направлено радиопослание, содержащее закодированный текст о жизни и цивилизации на Земле. Информационные сообщения также неоднократно помещались на космические аппараты, траектории которых обеспечивали им выход за пределы Солнечной системы. Конечно, очень мало шансов на то, что эти послания когда-либо достигнут цели, но начинать с чего-то надо. Важно, что человечество не только серьезно зaдyмывaeтcя о контактах с разумными существами из других миров, но уже и оказывается способным налаживать такие контакты, пусть в самой, простейшей форме. В последнее десятилетие среди ученых и философов все более преобладает мнение, что Человечество одиноко если не во всей Вселенной, то во всяком случае в нашей Галактике. Такое мнение влечет за собой важнейшие мировоззренческие выводы о значении и ценности земной цивилизации, ее достижений. Вполне возможно, что наша планета Земля является высшим «цветом» развития всей или, по крайней мере, огромной части Вселенной, в человечестве сконцентрированы все основные результаты, итоги саморазвития Мира, Природы. Это значит, что мы, люди, человечество, в огромной степени ответственны — не только за нашу планету, но и за развитие Вселенной в целом! 11.9. Методологические остановки «неклассической» астрономии XX в. Краткий обзор современной астрономической картины мира показывает, что астрономия в XX в. кардинально преобразовала старые классические представления о Вселенной, ее структуре и эволюции, пережила глубокую научную революцию, которая изменила способ астрономического познания. На смену классическому пришел «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания. · Основа астрономического познания - признание объективного существования предмета астрономической науки (космических тел, их систем и Вселенной в целом) и их принципиальной познаваемости научно-рациональными средствами (причем не только структурного, но и исторического аспекта Вселенной). Следовательно, можно говорить о полной победе материалистического принципа познаваемости природы, истории Вселенной в системе методологии астрономии XX в. · Эмпирическая основа современной астрономии - наблюдение во всеволновом диапазоне. Теоретические исследования и экспериментальные попытки регистрации гравитационных волн открывают перспективы развития гравитационной астрономии. Сведения о космосе несут не только волновые процессы, но и частицы (космические лучи, нейтрино). Причем важная особенность наблюдений во внеонтических диапазонах состоит в том, что они дают информацию, как правило, о нестационарных процессах во Вселенной. · Теоретическая основа современной астрономии - не только классическая механика, но и релятивистская и квантовая механика , квантовая теория поля. Классическая механика не потеряла своего значения для астрономического познания (прежде всего, для объяснения процессов, происходящих в Солнечной системе). Как и прежде, все основные расчеты движений тел планетной системы и искусственных спутников Земли, Луны и планет, космических аппаратов, созданных человеком, осуществляются (в силу слабости релятивистских и квантовых эффектов для этих систем) на базе ньютоновской механики. · Физическая реальность состоит из трех качественно несводимых друг к другу уровней: микро-, макро-и мегамиров. В системе астрономического познания выделяются две большие подсистемы: во-первых, астрономические науки, изучающие закономерности космических тел и процессов макроуровня (небесная механика, астродинамика, астрометрия и др.); во-вторых, астрономические науки, изучающие космические процессы на уровне мегамира (внегалактическая астрономия, релятивистская космология и др.). Считается, что исследования носят космологический характер, если предмет изучения имеет линейные размеры, превышающие 109 пк; именно здесь проходит разграничительная линия между «обычным» астрономическим и космологическим масштабами. · В системе астрономического познания большую роль играет исследование закономерностей микромира, связанных с процессами излучения звезд, ранних этапов эволюции Вселенной и т.п., поэтому современная астрономия пользуется и аппаратом микрофизики (квантовая механика, квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика и др.). Вопрос о глубинных внутренних связях между микро-, макро- и мегамирами, о том, что на определенном уровне они представляют собой некое (диалектическое) единство, также входит в поле зрения современной астрономии *. * Косвенным свидетельством в пользу наличия такого единства является необъяснимая пока закономерность взаимосвязи физических констант (гравитационная постоянная, постоянная Планка, скорость света, заряд электрона, константы сильного и слабого взаимодействий, массы электрона, протона и других элементарных частиц, постоянная Хаббла, средняя плотность масс во Вселенной и др.). из которых можно построить безразмерные величины двух видов: порядка 10-2 и порядка 1040 , в которых связаны как атомные, так и космологические константы. · Вопрос о единственности Вселенной как объекта космологии в современной астрономии решается отнюдь не однозначно . Наряду с точкой зрения, что Вселенная как объект космологии — это наша Метагалактика в ее самых общих свойствах (причем данная точка зрения пока доминирует), существует мнение, что отождествлять Вселенную с Метагалактикой нельзя, поскольку Вселенная может состоять из множества метагалактик, множеств вселенных, порождаемых виртуальной «пеной» физического вакуума, могут сосуществовать друг с другом, а тезис об уникальности Вселенной должен рассматриваться как исторически относительный, определяемый уровнем практики. Хотя эмпирических данных, подтверждающих представление о множественности метагалактик (вселенных), пока нет (более того, проблематична даже та конкретная логико-гносеологическая форма, в которой такой эмпирический базис может быть зафиксирован), тем не менее среди астрономов все чаще высказывается мнение о существовании других метагалактик (вселенных). Одна из теоретических посылок для такого вывода состоит в следующем. Уравнения общей теории относительности и квантовой физики не дают ответа на вопрос о начальных условиях эволюции нашей Вселенной. Здесь возможны два варианта: во-первых, первичное сингулярное состояние вещества из множества потенциальных физических возможностей реализовалось в одну реальную — нашу Метагалактику; в о - в т о р ы х, во Вселенной осуществляется все многообразие физических условий, явлений и движений, допускаемых основными физическими теориями. Если допустить вторую возможность, то надо признать, что реально существует множество вселенных (метагалактик), образовавшихся в результате «первоначального взрыва» (сингулярного) протовещества, связанных между собой некими материальными «каналами». · В трактовке сущности пространства и времени современная астрономия опирается на общую теорию относительности, в соответствии с которой пространственно-временные характеристики перестают быть фундаментальными, независимыми ни от чего понятиями физики. Геометрические характеристики тел, их поведение и ход часов зависят прежде всего от гравитационных полей, которые в свою очередь создаются материальными телами. Иначе говоря, предполагается, что пространственно-временная метрика Вселенной обусловлена гравитационным полем, которое создается вещественными телами. Пространственно-временная метрика Вселенной, определяющаяся гравитационным полем, в конечном счете зависит от закономерностей эволюции Вселенной. Другими словами, «искривленность» пространства и «замедленность» времени признаются-не только в отдельных частях Вселенной вблизи тяготеющих масс, но и в масштабах всей Метагалактики. Не исключена возможность, что метрика нашей Вселенной (Метагалактики) замкнута. В таком случае надо вводить представление о различии бесконечности и безграничности Вселенной в пространстве и времени. Важное значение имеет то обстоятельство, что в релятивистской физике такая характеристика, как «конечность-бесконечность», является вариантом (относительной величиной), значит, противопоставление конечности и бесконечности относительно - конечность пространства в одной системе не исключает его бесконечности в другой . Более того, относительны не только «конечность-бесконечность», но и топологические характеристики пространства-времени. Есть основания предполагать, что метрический и континуальный характер пространства-времени в нашей Вселенной относителен и возможны пространственно-временные организации вещества и поля с иными топологическими характеристиками *. * См.: Мицкевич Н.В. Парадоксы пространства-времени в современной космологии // Астрономия. Методология. Мировоззрение. М., 1979. С.163—179. · Современная астрономия теоретически и эмпирически обосновывает идею нестационарности Вселенной: мир астрономических объектов находится в состоянии постоянного качественного изменения, развития . Идея развития пронизывает всю современную астрономию. Эта идея носит не умозрительный характер, а воплощается в разного рода астрофизических и космологических моделях. Общая идея о нестационарности Вселенной (пространственной и структурной) конкретизируется в следующих методологических установках: во-первых, развитие космических тел рассматривается диалектически — со взрывами, скачками, перерывами постепенности; при этом учитывается многообразие путей развития, включая моменты нисходящего, регрессивного движения; в о - вторых, в качестве факторов, определяющих процесс развития космических тел, рассматриваются все четыре известных сейчас фундаментальных взаимодействия; прибегать ко всем четырем приходится в моделировании начальных стадий эволюции Вселенной, вблизи сингулярности; в масштабах Метагалактики решающая роль принадлежит силе тяготения; в-третьих, признается необходимость доведения теоретического описания астрономического объекта и его эволюции до выделения его индивидуальных черт, поскольку астрономические объекты даже одного типа (например, звезды или даже звезды определенного класса) имеют заметные индивидуальные различия (масса, светимость, химический состав, температура и др.). · То обстоятельство, что идея развития пронизывает все современное астрономическое знание, привело к переосмыслению роли космогонического аспекта в астрономическом познании. Современная астрономия исходит из установки о космогоническом смысле (прямом или опосредованном) любой астрономической проблемы . Именно космогонический аспект исследования Вселенной начинает все больше выступать в виде того организующего центра, который объединяет различные разделы дифференцировавшейся астрономической науки. · В современной "неклассической" астрономии (так же, как и в классической) нет свободы выбора условий наблюдения. Так же, как и классическая, современная астрономия осознает зависимость результата наблюдения от условий, в которых находится наблюдатель. Но в отличие от классической современная астрономия не во всех случаях допускает возможность пренебречь этой зависимостью или внести на нее поправку. В современной астрономии на эмпирическом уровне познания возрастает роль субъекта. Так, при объяснении с помощью общей теории относительности космологических явлений (искривленного пространства-времени) необходимо пользоваться классическими понятиями для описания содержания эксперимента с излучением от удаленных объектов, поскольку он происходит в однородной и изотропной локальной области плоского пространства-времени. Это описание условий эксперимента не может быть элиминировано в окончательном результате исследования. · Резкое возрастание теоретической активности субъекта современного астрономического познания. Современная астрономия (как и «неклассическая» физика) отвергает классический идеал абсолютного описания, согласно которому в рамках одной теории можно достичь исчерпывающего описания закономерностей и свойств мира астрономических объектов. В системе теоретического описания структуры и эволюции Вселенной необходима не одна, а множество теоретических моделей. Поэтому отсутствует единство в вопросах о содержании исходных абстракций (принципов, аксиом), в которых отражаются существенные характеристики предметной области, в вопросах выбора исходной концептуальной базы для построения таких моделей (например, разное отношение к космологическому постулату и др.). Возрастание роли субъекта своеобразно проявляет себя в так называемом антропном принципе в космологии. В соответствии с этим принципом возникновение человечества стало возможным в силу уникальных крупномасштабных характеристик нашей Вселенной, позволяющих ей саморазвиваться от простого к сложному (см. 16). · Изменяемость структуры познавательной деятельности в астрономии - одна из новых методологических установок . Принципы и способы познавательной деятельности в развитии астрономии периодически изменяются. Эпохи, когда происходят такие изменения, — это эпохи научных революций в астрономии. Итак, методологические установки современной астрономии XX в. существенно отличаются от методологических установок классической астрономии. Перечислим основные направления по котором произошло их размежевание: отказ от установки на признание неизменности структуры космических образований, признание фундаментальной роли структурной эволюции Вселенной; изменение пространственно-временных представлений; расширение теоретической базы астрономии за счет новых фундаментальных теорий; тенденции к отказу от идеи единственности Вселенной; необходимость учета «условий познания» и на этой основе — новая гносеологическая ситуация в астрономии; представление о периодической смене астрономических способов познания. Такое существенное различие в методологических установках классической и неклассической астрономии позволяет сделать вывод о том, что в XX в. в астрономии происходит научная революция — смена способов астрономического познания и астрономической картины мира. Современная биологическая картина мира 12. ОСОБЕННОСТИ БИОЛОГИИ XX в. В XX в. динамичное развитие биологического познания позволило открыть молекулярные основы живого и непосредственно приблизиться к решению величайшей проблемы науки — раскрытию сущности жизни. Радикально изменились и сама биология, и ее место, роль в системе наук, отношение биологической науки и практики. Биология постепенно становится лидером естествознания. Выражением этой тенденции являются следующие процессы: укрепление связи биологии с точными и гуманитарными науками; развитие комплексных и междисциплинарных исследований; увеличение каналов взаимосвязи с теоретическим познанием и со сферой практической деятельности, прежде всего с глобальными проблемами современности; явное участие запросов практики в актуализации тех или иных проблем биологического познания; непосредственным основанием исследовательской деятельности в биологии все в большей степени выступают прямые практические потребности, интересы и запросы общества; непосредственно программирующая роль биологии по отношению к аграрной, медицинской, экологической и другим видам практической деятельности; возрастание ответственности ученых-биологов за судьбы человечества (прежде всего в связи с перспективами генной инженерии); непосредственное проявление гуманистического начала биологического познания, широкое внедрение ценностных подходов и др. Все в большей мере становится ясно, что логика биологического познания в перспективе будет непосредственно задаваться потребностями практического преобразования природы, развития общественных отношений и интересов людей. 12.1.1. Хромосомная теория наследственности Вступление в XX в. ознаменовалось в биологии бурным развитием генетики. Важнейшим исходным событием явилось новое открытие законов Менделя. В 1900 г. законы Менделя были переоткрыты независимо сразу тремя учеными — Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Далее последовала лавина эмпирических открытий и построение различных теоретических моделей. За относительно короткий срок (20-30 лет) в учении о наследственности был накоплен колоссальный эмпирический и теоретический материал. Начало XX в. принято считать началом экспериментальной генетики, принесшей множество новых эмпирических данных о наследственности и изменчивости. К такого рода данным можно отнести: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов *; представление о линейном расположении генов; доказательство существования мутаций и возможность вызывать их искусственно; установление принципа чистоты гамет, законов доминирования, расщепления и сцепления признаков; разработка методов гибридологического анализа, чистых линий и инцухта, кроссинговера (нарушение сцепления генов в результате обмена участками между хромосомами) и др. Важно, что все эти и другие открытия были экспериментально подтверждены, строго обоснованы. * Понятия гена, генотипа, фенотипа были введены в биологию датским ученым В.Л. Иогансеном. В первой четверти XX в. интенсивно развивались и теоретические аспекты генетики. Особенно большую роль сыграла хромосомная теория наследственности, разработанная в 1910—1915 гг. в трудах А. Вейсмана, Т. Моргана, А. Стертеванта, Г.Дж. Меллера и др. Она строилась на следующих исходных абстракциях: хромосома состоит из генов; гены расположены на хромосоме в линейном порядке; ген — неделимая корпускула наследственности, «квант»; в мутациях ген изменяется как целое. Эта теория была первой обстоятельной попыткой теоретической конкретизации идей, заложенных в законах Менделя. Первые 30 лет XX в. прошли под знаком борьбы представителей различных концепций наследственности. Так, против хромосомной теории наследственности выступал У. Бэтсон, считавший, что эволюция состоит не в изменениях генов под влиянием внешней среды, а лишь в выпадении генов, в накоплении генетических утрат. 12.1.2. Создание синтетической теории эволюции Преодоление противоречий между эволюционной теорией и генетикой стало возможным с созданием синтетической теории эволюции, которая выступает основанием всей системы современной эволюционной биологии. Синтез генетики и эволюционного учения был качественным скачком в развитии как генетики, так и эволюционной теории. Он означал создание качественно нового ядра системы биологического познания, свидетельствовал о переходе биологии с классического на современный, неклассический уровень развития. Принципиальные положения синтетической теории эволюции были заложены работами С. С. Четверикова (1926), а также Р. Фишера, С. Райта, Дж. Холдейна, Н.П. Дубинина (1929-1932) и др. Непосредственными предпосылками для синтеза генетики и теории эволюции выступали: хромосомная теория наследственности, биометрические и математические подходы к анализу эволюции, закон Харди — Вейберга для идеальной популяции (гласящий, что такая популяция стремится сохранить равновесие концентрации генов при отсутствии факторов, изменяющих его), результаты эмпирического исследования изменчивости в природных популяциях и др. В основе этой теории лежит представление о том, что элементарной «клеточкой» эволюции является не организм и не вид, а популяция. Именно популяция — та реальная целостная система взаимосвязи организмов, которая обладает всеми условиями для саморазвития, прежде всего способностью наследственного изменения в смене биологических поколений. Элементарной единицей наследственности выступает ген (участок молекулы дезоксирибонуклеиновой кислоты — ДНК, отвечающий за развитие определенных признаков организма). Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием ряда эволюционных факторов (изменяющих генотипический состав популяции): мутационный процесс (поставляющий элементарный эволюционный материал), популяционные волны (колебания численности популяции в ту или иную сторону от средней численности входящих в нее особей), изоляция (закрепляющая различия в наборе генотипов и способствующая делению исходной популяции на несколько самостоятельных), естественный отбор — процесс, определяющий вероятность достижения индивидами репродукционного возраста. Естественный отбор является ведущим эволюционным фактором, направляющим эволюционный процесс. Формирование синтетической теории эволюции ознаменовало переход к популяционной концепции, сменившей организмоцентрическую, начало преодоления противопоставления исторического и структурно-инвариантного «срезов» в исследовании живого, интеграцию биологии на базе дарвинизма (в России — Н.И. Вавилов, И.И. Шмальгаузен, А.Н. Северцов, разработавший учение о главных направлениях биологического процесса — аромофозе и идиоадаптации, и др.). Это открыло качественно новый этап в развитии биологии — переход к созданию единой системы биологического знания, воспроизводящей законы развития и функционирования органического мира как целого. 12.1.3. Революция в молекулярной, биологии Во второй половине 40-х гг. в биологии произошло важное событие — осуществлен переход от белковой к нуклеиновой трактовке природы гена. Предпосылки новых открытий в области биохимии складывались раньше. В 1936 г. в СССР А. Н. Белозерский получил из растения тимонуклеиновую кислоту, которая до тех пор выделялась лишь в животных организмах, что доказало тождество животных и растительных миров на молекулярном уровне. Важные идеи, открывавшие новые широкие ориентиры познания, намного опередившие свое время, были выдвинуты Н. К. Кольцовым. Так, еще в 1927 г. он высказал мысль о том, что при размножении клеток осуществляется матричная ауторепродукция материнских молекул. Правда, Кольцов считал, что эти процессы осуществляются на белковой основе, поскольку в то время генетические свойства ДНК не были известны. Именно вследствие незнания наследственных свойств ДНК биохимия развивалась относительно независимо от генетики до середины 40-х гг. Скачок в направлении их тесного взаимодействия произошел после того, как биология перешла от белковой к нуклеиновой трактовке природы гена. (В начале 40-х гг. впервые появился термин «молекулярная биология».) В 1944 г. американскими биохимиками (О. Эвери и др.) было установлено, что носителем свойства наследственности является ДНК. С этого времени началось лавинообразное развитие молекулярной биологии. Последовавшие в 1949—1951 гг. исследования Э. Чаргаффа, сформулировавшего знаменитые правила, объясняющие структуры ДНК, а также рентгенографические исследования ДНК, проведенные М. Уилкинсом и др., подготовили почву для расшифровки в 1953 г. (Ф. Крик, Д. Уотсон) структуры ДНК, которая показала, что молекула ДНК состоит из двух комплементарных полинуклеотидных цепей, каждая из которых выступает в качестве матрицы для синтеза новых аналогичных цепей. Именно поэтому в хромосомах клеток молекула ДНК способна к ауторепродукции. Свойство самоудвоения ДНК обеспечивает явление наследственности. Расшифровка структуры ДНК была великой революцией в молекулярной биологии и стала ключом к пониманию того, что происходит в гене при передаче наследственных признаков. Но расшифровка структуры молекулы ДНК была лишь первым шагом на пути выявления механизма наследственности и изменчивости. Далее за относительно непродолжительный срок времени были получены другие важнейшие результаты: выяснена роль транспортной-РНК и информационной-РНК; расшифрован генетический код; осуществлен синтез гена; теоретически решена проблема биосинтеза белка; расшифрована аминокислотная последовательность многих белков и установлена пространственная структура для некоторых из них; на этой основе выяснен принцип и особенности функционирования ферментативных молекул, химически синтезирован ряд ферментов; получены важные результаты в плане понимания организации вирусов и фагов, характер их биогенеза в клетке; заложены основы генной инженерии, содержанием которой является активное вмешательство человека в природу наследственности и ее изменение в соответствии с потребностями человека, общества (это имеет и свои нравственно-ценностные аспекты). В последние 40 лет молекулярная биология развивалась исключительно быстрыми темпами, открытие следовало за открытием. Общее направление этих открытий — выработка представлений о сущности жизни, о природе ее фундаментальных черт— наследственности, изменчивости, обмене веществ и др. 12.1.4. Методологические установки современной биологии Методологические установки биологии XX в. значительно отличаются от методологических регулятивов классической биологии (см. 7.4.7.). Основные направления, по которым произошло их размежевание, следующие. Во-первых, качественно новое представление объекта познания (полисистемное видение биологического объекта, отказ от моноцентризма и организмоцентризма в пользу полицентризма и популяционного стиля мышления). Представление о том, что «клеточкой» эволюционного процесса выступает не организм, а популяция, может рассматриваться как исходный момент в формировании системы методологических установок неклассической биологии. Во-вторых, качественно новая гносеологическая ситуация, требующая явного указания на условия познания, на особенности субъект-объектных отношений; невозможность пренебречь ролью и позицией субъекта познания в окончательном результате биологического исследования. В-третьих, установление диалектического единства ранее противопоставлявшихся друг другу методологических подходов. На этом пути формируются методологические установки, предполагающие: единство описательно-классифицирующего и объяснительно-номотетического подходов; единство операций расчленения, редукции к более элементарным компонентам и процессов интегрирующего воспроизводства целостной организации; диалектическое сочетание структурного и исторического подходов; понимание причинности, учитывающее диалектику необходимости и случайности, внутреннего и внешнего через единство функционально-целевого и статистически-вероятностного подходов; единство эмпирических исследований с процессом интенсивной теоретизации биологического знания, включающем его формализацию, математизацию, аксиоматизацию и др. В-четвертых, в XX в. заметно преобразовывается мировоззренческая функция биологии. К концу века мировоззренческая нацеленность биологии, ориентированность ее результатов на конкретизацию наших представлений об отношении человек — мир реализуется в двух направлениях: 1) на человека, на выявление взаимосвязей биологического и социального в человеке; определение функционирования биологического в общественном (социуме). Человек становится непосредственной исходной «точкой отсчета» биологической науки, от него, для него и на него непосредственно ориентировано познание живого. Это направление развивается в контексте взаимосвязи биологического и социального познания; историческим пьедесталом здесь выступает процесс антропосоциогенеза, выявление биологических предпосылок становления человека и общества; 2) на мир, на выявление закономерностей включенности живого в эволюцию Вселенной, перспектив биологического мира в развитии мира космического. Это направление раскрывается прежде всего через взаимосвязь биологических и астрономических наук, истоки единства которых уходят в весьма далекое прошлое — в период становления мифологического сознания, чувственно-образные обобщения которого строились, в частности, и на базе единства ритмики некоторых биологических и астрономических явлений. В XIX—XX вв. основной формой интегрирования этих двух отраслей познания выступила астробиология — поиск и исследование имеющимися в нашем распоряжении средствами (во второй половине XX в. это прежде всего всеволновые астрономические наблюдения и космические аппараты) неземных форм жизни. В самое последнее время складывается новый интересный теоретический подход, имеющий не только специально научное, но и общемировоззренческое значение. Он связан с антропным принципом в космологии и принципом глобального эволюционизма (см. 16). Жизнь на Земле чрезвычайно многообразна. Она представлена ядерными и доядерными одно- и многоклеточными существами. Богатейший мир многоклеточных существ представлен тремя царствами — грибами, растениями и животными. Каждое из них в свою очередь представлено разнообразными типами, классами, отрядами, семействами, родами, видами, популяциями и особями. Все эти таксоны являются результатом исторического развития мира живого, его эволюции. 13.1. Особенности живых систем 13.1.1. Существенные черты живых систем Число видов ныне существующих растений достигает более 500 тыс., из них цветковых примерно 300 000. Царство животных не менее разнообразно, чем царство растений, а по числу видов животные превосходят растения. Описано около 1 200 000 видов животных (из них около 900 000 видов — членистоногих, 110 000 — моллюсков, 42 000 — хордовых животных). Но мир живого имеет еще и структурно-инвариантный аспект: живое обладает молекулярной, клеточной, тканевой и иной структурностью. Подавляющее большинство ныне живущих организмов (кроме вирусов и фагов) состоит из клеток. По признаку клеточного строения все живые организмы делятся на доклеточные и клеточные. Доклеточные формы жизни — вирусы (открытые в 1892 г. русским микробиологом Д.И. Ивановским) и фаги. Вирусы занимают промежуточное место между живым и неживым. Они состоят из белковых молекул и нуклеиновых кислот; не имеют собственного обмена веществ; вне организма или клетки они не проявляют признаков жизни. Все клеточные подразделяются на четыре царства: безъядерные (бактерии, цианеи), растения (багрянки, настоящие водоросли, высшие растения), грибы (низшие и высшие) и, наконец, животные (простейшие и многоклеточные). Безъядерные, видимо, относятся к самым древним формам жизни на Земле. Кроме того, существует множество сообществ разной сложности, включающих как особей одного вида, так и особей, принадлежащих к разным видам. Биология XX в. углубила понимание существенных черт живого, раскрыв молекулярные основы жизни. В основе современной биологической картины мира лежит представление о том, что мир живого — это грандиозная СИСТЕМА высокорганизованных систем. Любая система (и в неорганической, и в органической природе) состоит из совокупности элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними. Сначала об элементах и компонентах биологических систем. В них выражена дискретная составляющая живого. Живые объекты, системы в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа — из определенных органелл. Органеллы образуются дискретными, обычно высокомолекулярными, органическими веществами. Среди живых систем нет двух одинаковых особей, популяций и видов. Вместе с тем сложная организация немыслима без целостности. Целостность порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности и самоорганизацией. Живые системы — открытые системы, постоянно обменивающиеся веществом и энергией со средой. Для них характерны отрицательная энтропия (увеличение упорядоченности), возрастающая в процессе органической эволюции, способность к самоорганизации материи. Всем живым системам свойственны следующие существенные черты: обмен веществ, подвижность, раздражимость, рост, размножение, приспособляемость. Каждое из этих свойств порознь может встречаться и в неживой природе и поэтому само по себе не может рассматриваться как специфическое для живого. Однако все вместе они никогда не характеризуют объекты неживой природы и свойственны только миру живого, и в своем единстве являются критериями, отличающими живое от неживого. Живой организм — это множественная система химических процессов, в ходе которых происходит постоянное разрушение молекулярных органических структур и их воспроизводство. Современная молекулярная биология показала поразительное единство живой материи на всех уровнях ее развития — от простейшего микроорганизма до высшего млекопитающего. Выяснилось, что существует только два основных класса молекул, взаимодействие которых определяет то, что мы называем жизнью. Это — нуклеиновые кислоты и белки. Взятые вместе, они и образуют основу живого. Основой воспроизводства является синтез белков, который происходит в клетках организма при помощи нуклеиновых кислот — ДНК и РНК (рибонуклеиновая кислота). Белки — это очень сложные макромолекулы, структурными элементами которых являются аминокислоты. Структура белка задается последовательностью образующих его аминокислот. Причем характерно то, что из 100 известных в органической химии аминокислот в образовании белков всех организмов используется только 20. Почему именно эта двадцатка аминокислот, а не какие-либо другие синтезирует белки нашего органического мира, до сих пор так и не ясно. Нуклеиновые кислоты обладают более простой структурой. Они образуют длинные полимерные цепи, звеньями которых выступают нуклеотиды — соединения азотистого основания, сахара и остатка фосфорной кислоты. В ДНК основаниями служат аденин, гуанин, цитозин и тимин. Эти азотистые основания присоединяются к сахару по одному в разной последовательности. Аденин и гуанин являются пуринами, а цитозин, тимин и урацил — пирамидинами. В РНК тимин заменен урацилом, а сахар дезоксирибоза в ДНК — рибозой в РНК. Сущность живого наиболее концентрированно выражена в замечательном явлении конвариантной редупликации. Конвариантная редупликация — «самовоспроизведение с изменениями», осуществляемое на основе матричного принципа синтеза макромолекул. В его основе — уникальная способность к самовоспроизведению основных управляющих систем (ДНК, хромосом и генов), которые обладают относительно высокой степенью стабильности. Такая стабильность и обеспечивает возможность идентичного самовоспроизведения (явление наследственности). Все основные свойства живого немыслимы без наследственной передачи свойств в ряду поколений. С другой стороны, при самовоспроизведении управляющих систем в живых организмах происходит не абсолютное повторение, а воспроизведение с внесением изменений, что также определяется свойствами молекул ДНК. Абсолютной стабильности в природе не бывает. Любая достаточно сложная молекулярная структура, претерпевает структурные изменения в результате движения атомов и молекул. Если эти изменения не ведут к летальному исходу, они будут передаваться по наследству в результате самовоспроизведения по матричному принципу. Конвариантная редупликация означает возможность передачи по наследству мутаций, т.е. дискретных отклонений от исходного состояния. 13.1.2. Основные уровни организации живого Системно-структурные уровни организации многообразных форм живого достаточно многочисленны. Среди них: молекулярный, клеточный, тканевой, органный, онтогенетический, популяционный, видовой, биогеоценотический, биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней должны быть выделены некоторые основные. Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании таких критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, онтогенетический, популяционно-видовой, биогеоценотический. Молекулярно-генетический уровень . Знание закономерностей молекулярно-генетического уровня организации живого — необходимая предпосылка для ясного понимания жизненных явлений, происходящих на всех остальных уровнях организации жизни. На этом уровне организации жизни гены представляют собой элементарные единицы. В XX в. развитие хромосомной теории наследственности, анализ мутационного процесса, изучение строения хромосом, фагов и вирусов, развитие молекулярной биологии, биохимии позволило раскрыть основные черты организации элементарных генетических структур и связанных с ними явлений. Выяснено, что основные структуры на этом уровне, несущие в себе коды наследственной информации, представлены молекулами ДНК, дифференцированными по длине на элементы кода — триплеты азотистых оснований, образующих гены. Основные свойства генов: способность их к конвариантной редупликации, к локальным структурным изменениям (мутациям), способность передавать хранящуюся в них информацию внутриклеточным управляющим системам. Молекула ДНК представляет собой две спаренные нити, закрученные в спирали. Каждая из этих нитей соединяется с другой водородными связями; причем каждая из таких связей попарно соединяет либо аденин одной цепи с тимином другой, либо гуанин с цитозином. Конвариантная редупликация происходит по матричному принципу. Сначала разрываются водородные связи двойной спирали ДНК с участием фермента ДНК-полимеразы. Затем каждая из нитей на своей поверхности строит соответствующую нить, после чего новые нити комплементарно соединяются между собой. Пиримидиновые и пуриновые основания комплементарных нитей «сшиваются» между собой ДНК-полимеразой. Этот процесс осуществляется очень быстро. Так, на самосборку ДНК, состоящей примерно из 40 тыс. пар нуклеотидов, требуется всего 100 с. В синтезе белков важная роль принадлежит также и РНК. Синтез белка происходит в особых областях клетки — рибосомах. Рибосомы иногда образно называют «фабриками белка». Существует по крайне мере три типа РНК: высокомолекулярная РНК, локализующаяся в рибосомах; информационная-РНК, образующаяся в ядре клетки; транспортная-РНК. В ядре генетический код переносится с молекул ДНК на молекулу информационной-РНК. Генетическая информация о последовательности и характере синтеза белка переносится из ядра молекулами информационной-РНК в цитоплазму к рибосомам и там участвует в синтезе белка. Перенос и присоединение отдельных аминокислот к месту синтеза осуществляется транспортной-РНК. Белок, содержащий тысячи аминокислот, в живой клетке синтезируется за 5 — 6 мин. Таким образом, как при конвариантной редупликации, так и при внутриклеточной передаче информации используют единый матричный принцип: исходные молекулы ДНК и РНК являются матрицами, рядом с которыми строятся соответствующие макромолекулы. Молекулы ДНК играют роль кода, в котором как бы «зашифрованы» все синтезы белковых молекул в клетках организма. Характерно, что все биологические организмы, известные нам на Земле, используют одинаковый тип генетического кода. Редупликация, основанная на матричном копировании, делает возможным сохранение не только генетической нормы, но и отклонений от нее, т.е. мутаций (основа процесса эволюции). Центральная проблема современной молекулярной биологии — изучение строения и функций органических макромолекул, прежде всего иерархии их структурной организации: первичная структура (последовательность мономеров в биополимерах), вторичная структура (биополимерная спираль), третичная структура (определенная организация молекул белка), четвертичная структура (макромолекулярные комплексы молекул белков). В настоящее время молекулярной биологией успешно дешифруется заложенный в структуре нуклеиновых кислот код, служащий матрицей при синтезе специфических белковых структур. Онтогенетический уровень . Следующий, более сложный, комплексный уровень организации жизни на Земле — онтогенетический. Он связан с жизнедеятельностью отдельных биологических особей, дискретных индивидуумов. Индивид, особь — неделимая и целостная единица жизни на Земле. В многобразной земной органической жизни особи имеют различное морфологическое содержание. Здесь и одноклеточные, состоящие из ядра, цитоплазмы, множества органелл и мембран, макромолекул и т. д. Здесь и многоклеточная особь, образованная из миллионов и миллиардов клеток. Сложность многоклеточных особей неизмеримо выше сложности одноклеточных. Но и одноклеточная и многоклеточная особи обладают системной организацией и выступают как единое целое. Причем важно то, что характеристика особи не может быть исчерпана рассмотрением физико-химических свойств макромолекул, входящих в его состав. Разделить особь на части без потери «индивидуальности» невозможно. Это позволяет выделить онтогенетический уровень как особый уровень организации жизни. Таким образом, на онтогенетическом уровне единицей жизни служит особь — с момента ее рождения до смерти. Развитие особи, последовательность морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от образования зародышевой клетки до смерти составляет содержание процесса онтогенеза. Онтогенез состоит из роста, перемещения отдельных структур, дифференциации и усложнения интеграции организма. По сути, онтогенез — это процесс реализации наследственной информации, закодированной в управляющих структурах зародышевой клетки, а также испытания, проверки согласованности и работы управляющих систем во времени и пространстве, присособления особи к среде и др. Причины развития организма в онтогенезе являются предметом обстоятельного и интенсивного изучения эмбриологами, биохимиками, генетиками. Многие отрасли биологии изучают процессы и явления, происходящие в особи, согласованное функционирование ее органов и систем, механизм их работы, роль в жизнедеятельности организма, взаимоотношение органов, поведение организмов, приспособительные изменения и т.п. Пока не создана общая теория онтогенеза, не ясны всепричины и факторы, определяющие строгую организованность этого процесса. Имеющиеся результаты позволяют понять только некоторые отдельные процессы, обеспечивающие индивидуальное развитие организма. Прежде всего это касается изучения дифференциации, т.е. образования разнообразных, специализированных для выполнения определенных функций частей организма. Элементарными структурами на онтогенетическом уровне организации жизни служат клетки, а элементарными явлениями — какие-то процессы, связанные с их дифференциацией. Онтогенез определяется деятельностью некоторой саморегулирущейся иерархической системы, согласованно реализующей наследственные свойства и работу управляющих систем в пределах особи. Вместе с тем до сих пор не известно, почему в онтогенезе строго определенные процессы происходят в должное время и в должном месте. Одна из важнейших проблем современной биологии — выявление закономерностей регуляции внутриклеточных процессов, функций клетки и механизма включения генов в процессе клеточной дифференцировки, ведь в процессе развития каждой клетки в ней работают только те гены, функция которых необходима для развития данной ткани (органа). Популяционно-видовой уровень . Особи в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации. Это популяционно-видовой уровень. Он возникает там и тогда, где и когда происходит объединение особей в популяции, а популяций в виды. Популяции - это совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида . Такие объединения характеризуются появлением новых свойств и особенностей в живой природе, отличных от свойств молекулярно-генетического и онтогенетического уровней. Популяции целостны, хотя состоят из множества особей. Их целостность базируется на иных основаниях, чем целостность молекулярно-генетического и онтогенетического уровней. Она обеспечивается взаимодействием особей в популяциях и воссоздается через обмен генетическим материалом в процессе полового размножения. Виды — это системы популяций. Популяции и виды как надындивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию. Популяции выступают как элементарные, далее неразложимые эволюционные единицы, представляющие собой генетически открытые системы, так как особи из разных популяций иногда скрещиваются и популяции обмениваются генетической информацией. На популяционно-видовом уровне особую роль играет свободное скрещивание между особями внутри популяции и вида. Виды являются наименьшими генетически закрытыми системами, поскольку скрещивание особей разных видов в природе в подавляющем большинстве случаев не ведет к появлению плодовитого потомства. Популяция — основная элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне — изменение генотипического состава популяции; элементарный материал на этом уровне — мутации. В синтетической теории эволюции выделены элементарные факторы, действующие на этом уровне: мутационный процесс, популяционные волны, изоляция и естественный отбор. Каждый из этих факторов может оказать определенное воздействие на популяцию и вызвать изменения в генотипическом составе популяции. Популяции и виды, а также протекающий в популяциях процесс эволюции всегда существуют в определенной природной среде, конкретной системе, которая включает в себя биотические и абиотические факторы. Такая система получила название «биогеоценоз» — это элементарная единица следующего (биогеоценотического) уровня организации жизни на Земле. Биогеоценотический уровень . Популяции разных видов взаимодействуют между собой. В ходе взаимодействия они объединяются в сложные системы — биоценозы. Биоценоз - совокупность растений, животных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся определенными взаимосвязями между собой. Компоненты, образующие биоценоз, взаимозависимы. Изменения, касающиеся только одного вида, могут сказаться на всем биоценозе и даже вызвать его распад. Биоценозы входят в качестве составных частей в еще более сложные системы (сообщества) — биогеоценозы. Биогеоценоз (экосистема, экологическая система) - взаимообусловленный комплекс живых и абиотических компонентов, связанных между собой обменом веществ и энергией. Биогеоценоз — одна из наиболее сложных природных систем, продукт совместного исторического развития многих видов растений и животных, в ходе которого виды приспосабливались друг к другу. Структура биогеоценоза меняется в ходе эволюции видов. Биогеоценоз — это целостная система. Виды в биогеоценозе действуют друг на друга не только по принципу прямой, но и обратной связи (в том числе посредством изменения ими абиотических условий). Выпадание одного или нескольких компонентов биогеоценоза может привести к разрушению целостности биогеоценоза, что часто ведет к необратимому нарушению равновесия и гибели биогеоценоза как системы. В целом жизнь биогеоценоза регулируется силами, действующими внутри самой системы, т.е. можно говорить о саморегуляции биогеоценоза. В то же время биогеоценоз представляет собой незамкнутую систему, имеющую каналы вещества и энергии, связывающие соседние биогеоценозы. Обмен веществ и энергией между соседними биогеоценозами может осуществляться в разных формах: газообразной, жидкой и твердой, а также в форме миграции животных. Биогеоценоз — уравновешенная, взаимосвязанная и стойкая во времени система, которая является результатом длительной и глубокой адаптации составных компонентов. Устойчивость его пропорциональна многообразию его компонентов: чем многообразнее биогеоценоз, тем он, как правило, устойчивее во времени и пространстве. Например, биогеоценозы, представленные тропическими лесами, гораздо устойчивее биогеоценозов в зоне умеренного или арктического поясов, так как тропические биогеоценозы состоят из гораздо большего множества видов растений и животных, чем умеренные и тем более арктические биогеоцнозы. Высокоорганизованные организмы для своего существования нуждаются в более простых организмах; каждая экосистема неизменно содержит как простые, так и сложные компоненты. Биогеоценоз только из бактерий или деревьев никогда не сможет существовать, как нельзя представить экосистему, населенную лишь позвоночными или млекопитающими. Таким образом, низшие организмы в экосистеме — это не какой-то случайный пережиток прошлых эпох, а необходимая составная часть биогеоценоза, целостной системы органического мира, основа его существования и развития, без которой не возможен обмен веществом и энергией между компонентами биогеоценоза. Абиотическими компонентами биогеоценозов являются атмосфера, солнечная энергия, почва, вода. Первичной биотической основой для сложения биогеоценозов служат автотрофы — зеленые растения и микроорганизмы, хемосинтетики, производящие органическое вещество. Автотофные растения и микроорганизмы представляют жизненную среду для гетеротрофов — животных, грибов, большинства бактерий, вирусов. Поэтому и границы биогеоценозов чаще всего совпадают с границами растительных сообществ (фитоценозов) *. Но и животные впоследствии начинают играть важную роль в жизни растений: они осуществляют опыление, распространение плодов, участвуют в круговороте веществ и т.д. Так складывается биогеоценотический комплекс, который может существовать веками. * Автотрофы, и прежде всего фотосинтетики, играют поистине космическую роль на Земле. Фиксируя энергию солнечного света в продуктах фотосинтеза, растения выполняют роль космического очага энергии на Земле. Ежегодно растения образуют до 100 млрд т органических веществ и фиксируют до 10 кДж энергии солнечной радиации. При этом растения усваивают из атмосферы до 170 млрд т углекислого газа и разлагают до 130 млрд т воды, выделяя до 115 млрд т свободного кислорода. Таким образом, жизнь на Земле полностью зависит от фотосинтеза. Учение о фотосинтезе было создано нашим соотечественником — великим ботаником К.А. Тимирязевым. Вся совокупность связанных между собой круговоротам веществ и энергии биогеоценозов на поверхности нашей планеты образуют мощную систему биосферы Земли. Верхняя граница жизни в атмосфере достигает примерно 25—30 км, нижняя граница в земной коре сосредоточена в самом верхнем ее слое — до 10 м. (Хотя отдельные виды микроорганизмов встречаются в нефтеносных слоях на глубине до 3 км.) В гидросфере (океаны и моря) зона, богатая живыми организмами, занимает слой воды до 200 м, но некоторые организмы обнаружены и на максимальной глубине глубоководных океанских впадин — до 11 км. Таким образом, «пленка жизни» на Земле достаточно тонкая и достигает всего лишь около 40 км. Она ограничена интенсивным потоком губительных ультрафиолетовых лучей за пределами озонового слоя в тропосфере и высокой температурой земных недр (на глубине 3 км она может достигать 100° С). Благодаря деятельности растений биосфера стала аккумулятором солнечной энергии. Живые организмы представляют собой самую важную биохимическую силу, которая преобразует земную кору. Масштабы деятельности живых организмов поистине грандиозны. О них свидетельствуют тысячеметровые толщи известняка, огромные залежи каменного угля, мощные биогенные породы и т.п. Именно живое вещество определило состав атмосферы, осадочных пород, почвы, гидросферы. Благодаря этому неузнаваемо изменился внешний облик планеты. Между неорганической и органической материей на Земле существует постоянный кругооборот вещества и энергии, в котором проявляется закон сохранения массы и энергии: каждое живое существо благодаря следующим цепям питания (особенно бактериям) после окончания жизненного цикла возвращает природе все, что взяло от нее в течение жизни. Именно кругооборот вещества и энергии обеспечивает продолжительность существования жизни, потому что иначе на Земле запасы необходимых элементов были бы очень быстро исчерпаны. Рассматривая биосферу Земли как единую экологическую систему, можно убедиться, что живое вещество Земли существенно не уменьшается и не увеличивается в массе, а только переходит из одного состояния в другое. Раздел биологии, изучающий экологические, системы (биоценозы, биогеоценозы) называется биогеоценология. Основателем ее был выдающийся отечественный ученый В.Н. Сукачев, учение о биосфере создал наш великий мыслитель В.И. Вернадский. Таким образом, молекулярно-генетический, онтогенетический, популяционно-видовой и биоценотический уровни — четыре основных уровня организации жизни на Земле. 13.2. Возникновение жизни на Земле 13.2.1. Развитие представлений о происхождении жизни Происхождение жизни — одна из трех важнейших мировоззренческих проблем наряду с проблемой происхождения нашей Вселенной и проблемой происхождения человека. Попытки понять, как возникла и развивалась жизнь на Земле, были предприняты еще в глубокой древности. В античности сложились два противоположных подхода к решению этой проблемы. Первый, религиозно-идеалистический, исходил из того, что возникновение жизни на Земле не могло осуществиться естественным, объективным, закономерным образом; жизнь является следствием божественного творческого акта (креационизм), и потому всем существам свойственна особая, независимая от материального мира «жизненная сила» (vis vitalis), которая направляет все процессы жизни (витализм). В основе второго, материалистического подхода лежало представление о том, что под влиянием естественных факторов живое может возникнуть из неживого, органическое из неорганического. Несмотря на свою примитивность. Первые исторические формы концепции самозарождения сыграли прогрессивную роль в борьбе с креационизмом. Идея самозарождения получила широкое распространение в средневековье и эпоху Возрождения, когда допускалась возможность самозарождения не только простых, но и довольно высокоорганизованных существ, даже млекопитающих (например, мышей из тряпок). Например, в трагедии В. Шекспира «Антоний и Клеопатра» Леонид говорит Марку Антонию: «Ваши египетские гады заводятся в грязи от лучей вашего египетского солнца. Вот, например, крокодил...» *. Известны попытки Парацельса разработать рецепты искусственного человека (гомункулуса). * Шекспир В. Полн. собр. соч.: В 8 т. М., 1960. Т. 7. С. 157. Невозможность произвольного зарождения жизни была доказана целым рядом опытов. Итальянский ученый Ф. Реди экспериментально доказал невозможность самозарождения сколько-нибудь сложных животных. Применение микроскопа в биологических исследованиях способствовало открытию большого разнообразия одноклеточных организмов. На этой основе вновь возродились старые идеи произвольного самозарождения простейших существ. Окончательно версия о самозарождении была развенчана Л. Пастером в середине XIX в. Пастер показал, что не только в запаянном сосуде, но и незакрытой колбе с длинной S-образной горловиной хорошо прокипяченный бульон остается стерильным, потому что в колбу через такую горловину не могут проникнуть микробы. Так было доказано, что в наше время какой бы то ни было новый организм может появиться только от другого живого существа. Появление жизни на Земле пытались объяснить и занесением ее из других космических миров. В 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Эта гипотеза была поддержана многими выдающимися учеными XIX в. — У. Томсоном, Г. Гельмгольцем и др. Сходную гипотезу в 1907 г. выдвинул известный шведский естествоиспытатель С, Аррениус. Его гипотеза получила название панспермии: во Вселенной вечно существуют зародыши жизни, которые движутся в космическом пространстве под давлением световых лучей; попадая в сферу притяжения планеты, они оседают на ее поверхности и закладывают на этой планете начало живого. Естествознание XX в. сделало шаг вперед в изучении жизни, ее проявлений на Земле и за ее пределами. Такие отрасли знаний, как биохимия, биофизика, генетика, молекулярная биология, космическая биохимия и др., намного расширили представления о сущности земной жизни, о возможности существования подобных явлений вне пределов нашей планеты. Сейчас уже определенно выяснено, что «азбука» живого сравнительно проста: в любом существе, живущем на Земле, присутствует 20 аминокислот, пять оснований, два углевода и один фосфат. Существование небольшого числа одних и тех же молекул во всех живых организмах убеждает нас, что все живое должно иметь единое происхождение. Отрицание возможности самозарождения жизни в настоящее время не противоречит представлениям о принципиальной возможности развития органической природы и жизни в прошлом из неорганической материи. На определенной стадии развития материи жизнь может возникнуть как результат естественных процессов, совершающихся в самой материи. Кроме того, элементарные химические процессы на начальных этапах возникновения и развития жизни могли происходить не только на Земле, но и в других частях Вселенной и в различное время. Поэтому не исключается возможность занесения определенных предпосылочных факторов жизни на Землю из Космоса. Однако в изученной пока человеком части Вселенной только на Земле они привели к формированию и расцвету жизни. С позиций современной науки жизнь возникла из неживого вещества в результате эволюции материи, является результатом естественных процессов, происходивших во Вселенной. Жизнь — это свойство материи, которое ранее не существовало и появилось в особый момент истории нашей планеты Земля. Возникновение жизни явилось результатом процессов, протекавших сначала миллиарды лет во Вселенной, а затем многие миллионы лет на Земле. От неорганических соединений к органическим, от органических к биологическим —таковы последовательные стадии, по которым осуществлялся процесс зарождения жизни. Возраст Земли исчисляется примерно 5 млрд лет. Жизнь существует на Земле, видимо, более 3,5 млрд лет. Признаки деятельности живых организмов обнаружены в докембрийских породах, рассеянных по всему земному шару. В сложном процессе возникновения жизни на Земле можно выделить несколько основных этапов. Первый из них связан с образованием простейших органических соединений из неорганических. Образование простых органических соединений . Происхождение жизни связано с протеканием определенных химических реакций на поверхности первичной планеты. Каковы же основные этапы химической эволюции жизни? На начальных этапах своей истории Земля представляла собой раскаленную планету. Вследствие вращения при постепенном снижении температуры атомы тяжелых элементов перемещались к центру, а в поверхностных слоях концентрировались атомы легких элементов (водорода, углерода, кислорода, азота), из которых и состоят тела живых организмов. При дальнейшем охлаждении Земли появились химические соединения: вода, метан, углекислый газ, аммиак, цианистый водород, а также молекулярный водород, кислород, азот. Физические и химические свойства воды (высокий дипольный момент, вязкость, теплоемкость и т. д.) и углерода (трудность образования окислов, способность к восстановлению и образованию линейных соединений) определили то, что именно они оказались у колыбели жизни. На этих начальных этапах сложилась первичная атмосфера Земли, которая носила не окислительный, как сейчас, а восстановительный характер. Кроме того, она была богата инертными газами (гелием, неоном, аргоном). Эта первичная атмосфера уже утрачена. На ее месте образовалась вторая атмосфера Земли, состоящая на 20% из кислорода — одного из наиболее химически активных газов. Эта вторая атмосфера — продукт развития жизни на Земле, одно из его глобальных следствий. Дальнейшее снижение температуры обусловило переход ряда газообразных соединений в жидкое и твердое состояние, а также образование земной коры. Когда температура поверхности Земли опустилась ниже 100°С произошло сгущение водяных паров. Длительные ливни с частыми грозами привели к образованию больших водоемов. В результате активной вулканической деятельности из внутренних слоев Земли на поверхность выносилось много раскаленной массы, в том числе карбидов — соединений металлов с углеродом. При взаимодействии карбидов с водой выделялись углеводородные соединения. Горячая дождевая вода как хороший растворитель имела в своем составе растворенные углеводороды, а также газы (аммиак, углекислый газ, цианистый водород), соли и другие соединения, которые могли вступать в химические реакции. С особым успехом, видимо, протекали процессы роста молекул при наличии группы – N = С = N -. У этой группы большие химические возможности к росту за счет как присоединения к атому углерода атома кислорода, так и реагирования с азотистым основанием. Так постепенно на поверхности молодой планеты Земля накапливались простейшие органические соединения. Причем накапливались в больших количествах. Подсчеты показывают, что только посредством вулканической деятельности на поверхности Земли могло образоваться около 1016 кг органических молекул. Это всего на 2—3 порядка меньше массы современной биосферы! Вместе с тем астрономическими исследованиями установлено, что и на других планетах, и в космической газопылевой материи имеются углеродные соединения, в том числе углеводороды. Возникновение сложных органических соединений. Второй этап биогенеза характеризовался возникновением более сложных органических соединений, в частности белковых веществ в водах первичного океана. Благодаря высокой температуре, грозовым разрядам, усиленному ультрафиолетовому излучению относительно простые молекулы органических соединений при взаимодействии с другими веществами усложнялись и образовывались углеводы, жиры, аминокослоты, белки и нуклеиновые кислоты. Возможность такого синтеза была доказана опытами А.М. Бутлерова, который еще в середине прошлого столетия получил из формальдегида углеводы (сахар). В 1953—1957 гг. химиками различных стран (США, СССР, Германии) в целом ряде экспериментов из смеси газов (аммиака, метана, водяного пара, водорода) при 70—80°С и давлении несколько атмосфер под воздействием электрических разрядов напряжением 60 000 В и ультрафиолетовых лучей были синтезированы органические кислоты, в том числе аминокислоты (глицин, аланин, аспарагиновая и глутаминовая кислоты), которые являются материалом для образования белковой молекулы. Таким образом, были смоделированы условия первичной атмосферы Земли, при которых могли образовываться аминокислоты, а при их полимеризации — и первичные белки. Эксперименты в этом направлении оказались перспективными. В дальнейшем (при использовании других соотношений исходных газов и видов энергии) путем реакции полимеризации из простых молекул получали более сложные молекулы: белки, липиды, нуклеиновые кислоты и их производные, а позже была доказана возможность синтеза в условиях лаборатории и других сложных биохимических соединений, в том числе белковых молекул (инсулина), азотистых оснований нуклеотидов. Особенно важно то, что лабораторные эксперименты совершенно определенно показали возможность образования белковых молекул в условиях отсутствия жизни. С определенного этапа в процессе химической эволюции на Земле активное участие стал принимать кислород. Он мог накапливаться в атмосфере Земли в результате разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. (Для превращения восстановленной атмосферы первичной Земли в окисленную потребовалось не менее 1—1,2 млрд лет.) С накоплением в атмосфере кислорода восстановленные соединения начали окисляться. Так, при окислении метана образовались метиловый спирт, формальдегид, муравьиная кислота и т.д., которые вместе с дождевой водой попадали в первичный океан. Эти вещества, вступая в реакции с аммиаком и цианистым водородом, дали начало аминокислотам и соединениям типа аденина. Важно и то, что более сложные органические соединения являются более стойкими перед разрушающим действием ультрафиолетового излучения, чем простые соединения. Анализ возможных оценок количества органического вещества, которое накопилось неорганическим путем на ранней Земле, впечатляет: по некоторым расчетам за 1 млрд лет над каждым квадратным сантиметром земной поверхности образовалось несколько килограммов органических соединений. Если их все растворить в мировом океане, то концентриация раствора была бы приблизительно 1%. Это довольно концентрированный «органический бульон». В таком «бульоне» мог вполне успешно развиваться процесс образования более сложных органических молекул. Таким образом, воды первичного океана постепенно насыщались разнообразными органическими веществами, образуя «первичный бульон». Насыщению такого «органического бульона» в немалой степени способствовала еще и деятельность подземных вулканов. «Первичный бульон» и образование коацерватов . Дальнейший этап биогенеза связан с концентрацией органических веществ, возникновением белковых тел. В водах первичного океана концентрация органических веществ увеличивалась, происходили их смешивание, взаимодействие и объединение в мелкие обособленные структуры раствора. Такие структуры можно легко получить искусственно, смешивая растворы разных белков, например желатина и альбумина. Эти обособленные в растворе органические многомолекулярные структуры выдающийся русский ученый А.И. Опарин назвал коацерватными каплями или коацерватами *. Коацерваты — мельчайшие коллоидальные частицы — капли, обладающие осмотическими свойствами. Коацерваты образуются в слабых растворах. Вследствие взаимодействия противоположных электрических зарядов происходит агрегация молекул. Мелкие сферические частицы возникают потому, что молекулы воды создают вокруг образовавшегося агрегата поверхность раздела. * См.: Опарин А.И. Материя → жизнь → интеллект. М., 1977. Исследования показали, что коацерваты имеют достаточно сложную организацию и обладают рядом свойств, которые сближают их с простейшими живыми системами. Например, они способны поглощать из окружающей среды разные вещества, которые вступают во взаимодействие с соединениями самой капли, и увеличиваться в размере. Эти процессы в какой-то мере напоминают первичную форму ассимиляции. Вместе с тем в коацерватах могут происходить процессы распада и выделения продуктов распада. Соотношение между этими процессами у разных коацерватов неодинаково. Выделяются отдельные динамически более стойкие структуры с преобладанием синтетической деятельности. Однако все это еще не дает основания для отнесения коацерватов к живым системам, потому что они лишены способости к самовоспроизведению и саморегуляции синтеза органических веществ. Но предпосылки возникновения живого в них уже содержались. Коацерваты объясняют, как появились биологические мембраны. Образование мембранной структуры считается самым «трудным» этапом химической эволюции жизни. Истинное живое существо (в виде клетки, пусть даже самой примитивной) не могло оформиться до возникновения мембранной структуры и ферментов. Биологические мембраны — это агрегаты белков и липидов, способные отграничить вещества от среды и придать упаковке молекул прочность. Мембраны могли возникнуть в ходе формирования коацерватов. Повышенная концентрация органических веществ в коацерватах увеличивала возможность взаимодействия между молекулами и усложнения органических соединений. Коацерваты образовывались в воде при соприкосновении двух слабо взаимодействующих полимеров. Кроме коацерватов в «первичном бульоне» накапливались полинуклеотиды, полипептиды и различные катализаторы, без которых невозможно образование способности к самовоспроизведению и обмену веществ. Катализаторами могли быть и неорганические вещества. Так, Дж. Берналом в свое время была выдвинута гипотеза о том, что наиболее удачные условия для возникновения жизни складывались в небольших спокойных теплых лагунах с большим количеством ила, глинистой мути. В такой среде очень быстро протекает полимеризация аминокислот; здесь процесс полимеризации не нуждается в нагревании, так как частицы ила выступают в качестве своеобразных катализаторов. Возникновение простейших форм живого. Главная проблема в учении о происхождении жизни состоит в объяснении возникновения матричного синтеза белков. Жизнь возникла не тогда, когда образовались пусть даже очень сложные органические соединения, отдельные молекулы ДНК и др., а тогда, когда начал действовать механизм конвариантной редупликации. Именно поэтому завершение процесса биогенеза связано с возникновением у более стойких коацерватов способности к самовоспроизведению составных частей, с переходом к матричному синтезу белка, характерному для живых организмов. В ходе предбиологического отбора наибольшие шансы на сохранение имели те коацерваты, у которых способность к обмену веществ сочеталась со способностью к самовоспроизведению. Переход к матричному синтезу белков был величайшим качественным скачком в эволюции материи. Однако механизм такого перехода пока не ясен. Основная трудность здесь состоит в том, что для удвоения нуклеиновых кислот нужны ферментные белки, а для создания белков — нуклеиновые кислоты. Как разорвать эту «замкнутую цепь»? Иначе говоря, нужно объяснить, как в ходе предбиологического отбора объединились способности к самовоспроизведению полинуклеотидов с каталитической активностью полипептидов в условиях пространственно-временного разобщения начальных и конечных продуктов реакции. Существуют разные гипотезы на сей счет, но все они так или иначе не полны. Однако в настоящее время наиболее перспективными здесь являются гипотезы, которые опираются на принципы теории самоорганизации, синергетики *, на представления о гиперциклах, т.е. системах, связывающих самовоспроизводящиеся (автокаталитические) единицы друг с другом посредством циклической связи. В таких системах продукт реакции одновременно является и ее катализатором или исходным реагентом. Потому и возникает явление самовоспроизведения, которое на первых этапах вовсе могло и не быть точной копией исходного органического образования. О трудностях становления самовоспроизведения свидетельствует само существование вирусов и фагов, которые представляют собой, по-видимому, осколки форм предбиологической эволюции. * См.: Эйген М., Шустер П. Гиперцикл. Принципы самоорганизации макромолекул. М., 1982. В последующем предбиологический отбор коацерватов, по-видимому, шел по нескольким направлениям. Во-первых, в направлении выработки способности накопления специальных белковоподобных полимеров, ответственных за ускорение химических реакций. В результате строение нуклеиновых кислот изменялось в направлении преимущественного «размножения» систем, в которых удвоение нуклеиновых кислот осуществлялось с участием ферментов. На этом пути и возникает характерный для живых существ циклический обмен веществ: Во-вторых, в системе коацерватов присходил и отбор самих нуклеиновых кислот по наиболее удачному сочетанию последовательности нуклеотидов. На этом пути формировались гены. Самовоспроизводящиеся системы со сложившейся стабильной последовательностью нуклеотидов в нуклеиновой кислоте уже могут быть названы живыми. В проблеме возникновения жизни еще много неопределенного, она еще далека от своего окончательного разрешения. Так, например, не ясно, почему все белковые соединения, входящие в состав живого вещества, имеют только «левую симметрию». Какие механизмы предбиологической эволюции могли к этому привести? Знание условий, которые способствовали возникновению жизни на Земле, позволяют понять, почему в наше время невозможно появление живых существ из неорганических систем. В нашу эпоху отсутствуют условия для синтеза и усложнения органических веществ: простые соединения, которые могли бы где-то образоваться, сразу же были бы использованы гетеротрофами. Теперь живые существа появляются только вследствие размножения. Возникнув, жизнь стала развиваться быстрыми темпами (ускорение эволюции во времени). Так, развитие от первичных протобионтов до аэробных форм потребовало около 3 млрд лет, тогда как с момента возникновения наземных растений и животных прошло около 500 млн лет; птицы и млекопитающие развились от первых наземных позвоночных за 100 млн лет, приматы выделились за 12— 15 млн лет, для становления человека потребовалось около 3 млн лет. 13.3. Развитие органического мира 13.3.1. Основные этапы геологической истории Земли Прежде чем перейти к рассмотрению развития органического мира, ознакомимся с основными этапами геологической истории Земли. Геологическая история Земли подразделяется на крупные промежутки — эры; эры — на периоды, периоды — на века. Разделение на эры, периоды и века, конечно же, относительное, потому что резких разграничений между этими подразделениями не было. Но все же именно на рубеже соседних эр, периодов преимущественно происходили существенные геологические преобразования: горообразовательные процессы, перераспределение суши и моря, смена климата и проч. Кроме того, каждое подразделение характеризовалось качественным своеобразием флоры и фауны. Геологические эры Земли: катархей (от образования Земли 5 млрд лет назад до зарождения жизни); архей , древнейшая эра (3,5 млрд — 2,6 млрд лет); протерозой (2,6 млрд — 570 млн лет); палеозой (570 млн — 230 млн лет) со следующими периодами: кембрий (570 млн — 500 млн лет); ордовик (500 млн — 440 млн лет); силур (440 млн — 410 млн лет); девон (410 млн — 350 млн лет); карбон (350 млн — 285 млн лет); пермь (285 млн — 230 млн лет); мезозой (230 млн — 67 млн лет) со следующими периодами: триас (230 млн — 195 млн лет); юра (195 млн — 137 млн лет); мел (137 млн — 67 млн лет); кайнозой (67 млн — до нашего времени) со следующими периодами и веками: палеоген (67 млн — 27 млн лет): палеоцен (67—54 млн лет) эоцен (54—38 млн лет) олигоцен (38—27 млн лет) неоген (27 млн — 3 млн лет): миоцен (27—8 млн лет) плиоцен (8—3 млн лет) четвертичный (3 млн — наше время): плейстоцен (3 млн — 20 тыс. лет) голоцен (20 тыс. лет — наше время) 13.3.2. Начальные этапы эволюции жизни Более 3,5 млрд лет назад на дне мелководных, теплых и богатых питательными веществами морей, водоемов возникла жизнь в виде мельчайших примитивных существ. Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет «органического бульона», возникшего из неорганических систем; иначе говоря, они питались готовыми органическими веществами, синтезированными в ходе химической эволюции, т.е. были гетеротрофами. Но это не могло длиться долго, ведь такой резерв органического вещества быстро убывал. Первый великий качественный переход в эволюции живой материи был связан с «энергетическим кризисом»: «органический бульон» был исчерпан и следовало выработать способы формирования крупных молекул биохимическим путем, внутри клеток, с помощью ферментов. В этой ситуации преимущество было у тех клеток, которые могли получать большую часть необходимой им энергии непосредственно из солнечного излучения. Такой переход вполне возможен, так как некоторые простые соединения обладают способностью поглощать свет, если они включают в свой состав атом магния (как в хлорофилле). Уловленная таким образом световая энергия может быть использована для усиления реакций обмена, в частности, для образования органических соединений, которые могут сначала накапливаться, а затем расщепляться с высвобождением энергии. На этом пути и шел процесс образования хлорофилла и фотосинтеза. Фотосинтез обеспечивает организму получение необходимой энергии от Солнца и вместе с тем независимость от внешних питательных веществ. Такие организмы называются автотрофными. Это значит, что их питание осуществляется внутренним путем благодаря световой энергии. При этом, разумеется, поглощаются из внешней среды и некоторые вещества — вода, углекислый газ, минеральные соединения. Первыми фотосинтетиками на нашей планете были, видимо, цианеи, а затем зеленые водоросли. Остатки их находят в породах архейского возраста (около 3 млрд лет назад). В протерозое в морях обитало много разных представителей зеленых и золотистых водорослей. В это же время, видимо, появились первые прикрепленные ко дну водоросли. Переход к фотосинтезу и автотрофному питанию был великим революционным переворотом в эволюции живого. Значительно увеличилась биомасса Земли. В результате фотосинтеза кислород уже в значительных количествах стал выделяться в атмосферу. Первичная атмосфера Земли не содержала свободного кислорода, и для анаэробных организмов он был ядом. Потому многие одноклеточные анаэробные организмы погибли в «кислородной катастрофе»; другие укрылись в болотах, где не было свободного кислорода, и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду, получив огромное преимущество в способности запасать энергию (аэробные клетки выделяют энергии в 10 раз больше, чем анаэробные). Благодаря фотосинтезу в органическом веществе Земли накапливалось все больше и больше энергии солнечного света, что способствовало ускорению биологического круговорота веществ и ускорению эволюции в целом. Переход к фотосинтезу потребовал много времени. Он завершился примерно 1,8 млрд лет назад и привел к важным преобразованиям на Земле: первичная атмосфера земли сменилась вторичной, кислородной; возник озоновый слой, который сократил воздействие ультрафиолетовых лучей, а значит, и прекратил производство нового «органического бульона»; изменился состав морской воды, он стал менее кислотным. Таким образом, современные условия на Земле в значительной мере были созданы жизнедеятельностью организмов. С «кислородной революцией» связан и переход от прокариотов к эукариотам. Первые организмы были прокариотами. Это были такие клетки, у которых не было ядра, деление клетки не включало в себя точной дупликации генетического материала (ДНК), через оболочку клетки поступали только отдельные молекулы. Прокариоты — это простые, выносливые организмы, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко, приспосабливающиеся к изменяющимся условиям природной среды. Но новая кислородная среда стабилизировалась; первичная атмосфера была заменена новой. Понадобились организмы, которые пусть были бы и не вариабельны, но зато лучше приспособлены к новым условиям. Нужна была не генетическая гибкость, а генетическая стабильность. Ответом на эту потребность и явилось формирование эукариотов примерно 1,8 млрд лет назад. У эукариотов ДНК уже собрана в хромосомы, а хромосомы сосредоточены в ядре клетки. Такая клетка воспроизводится без каких-либо существенных изменений. Это значит, что в неизменной природной среде «дочерние» клетки имеют столько же шансов на выживание, сколько их имела клетка «материнская». 13.3.3. Образование царства растений и царства животных Дальнейшая эволюция эукариотов была связана с разделением на растительные и животные клетки. Это разделение произошло еще в протерозое, когда мир был заселен одноклеточными организмами. Растительные клетки покрыты жесткой целлюлозной оболочкой, которая их защищает. Но одновременно такая оболочка не дает им возможности свободно перемещаться и получать пищу в процессе передвижения. Вместо этого растительные клетки совершенствуются в направлении использования фотосинтеза для накопления питательных веществ. С самого начала своей эволюции растения развивались двояким образом — в них параллельно существовали группы с автотрофным и гетеротрофным питанием. Это способствовало усилению целостности растительного мира, его относительной автономности: ведь две эти группы взаимодополняли друг друга в круговороте веществ. Животные клетки имеют эластичные оболочки и потому не теряют способности к передвижению; это дает им возможность самим искать пищу — растительные клетки или другие животные клетки. Животные клетки эволюционировали в направлении совершенствования способов передвижения и способов поглощать и выделять крупные частицы (а не отдельные органические молекулы) через оболочку. Сначала крупные органические фрагменты, затем куски мертвой ткани и разлагающиеся остатки живого, и наконец, поедание и переваривание целых клеток (формирование первых хищников). С появлением хищников естественный отбор резко ускоряется. Следующим важным этапом развития жизни и усложнения ее форм было возникновение примерно 900 млн лет назад полового размножения. Половое размножение состоит в механизме слияния ДНК двух индивидов и последующего перераспределения генетического материала, при котором потомство похоже на родителей, но не идентично им. Достоинство полового размножения в том, что оно значительно повышает видовое разнообразие и резко ускоряет эволюцию, позволяя быстрее и эффективнее приспосабливаться к изменениям окружающей среды. Значительным шагом в дальнейшем усложнении организации живых существ было появление примерно 700—800 млн лет назад многоклеточных организмов с дифференцированным телом, развитыми тканями, органами, которые выполняли определенные функции. Первые многоклеточные животные представлены сразу несколькими типами: губки, кишечнополостные, плеченогие, членистоногие. Многоклеточные происходят от колониальных форм одноклеточных жгутиковых. Эволюция многоклеточных шла в направлении совершенствования способов передвижения, лучшей координации деятельности клеток, совершенствования форм отражения с учетом предыдущего опыта, образования вторичной полости, совершенствования способов дыхания и др. В протерозое и в начале палеозоя растения населяют в основном моря. Среди прикрепленных ко дну встречаются зеленые и бурые водоросли, а в толще воды — золотистые, красные и другие водоросли. В кембрийских морях уже существовали почти все основные типы животных, которые впоследствии лишь специализировались и совершенствовались. Облик морской фауны определяли многочисленные ракообразные, губки, кораллы, иглокожие, разнообразные моллюски, плеченогие, трилобиты. В теплых и мелководных морях ордовика обитали многочисленные кораллы, значительного развития достигли головоногие моллюски — существа, похожие на современных кальмаров, длиной несколько метров. В конце ордовика в море появляются крупные плотоядные, достигавшие 10—11 м в длину. В ордовике, примерно 500 млн лет назад появляются и первые животные, имеющие скелеты, позвоночные. Это было значительной вехой в истории жизни на Земле. Первые позвоночные, по-видимому, возникли в мелководных пресных водоемах, и уже затем эти пресноводные формы завоевывают моря и океаны. Первые позвоночные — мелкие (около 10 см длиной) существа, бесчелюстные рыбообразные, покрытые чешуей, которая помогала защищаться от крупных хищников (осьминогов, кальмаров). Дальнейшая эволюция позвоночных шла в направлении образования челюстных рыбообразных, которые быстро вытеснили большинство бесчелюстных. В девоне возникают и двоякодышащие рыбы, которые были приспособлены к дыханию в воде, но обладали и легкими. Как известно, современные рыбы подразделяются на два больших класса: хрящевые, и костистые. К хрящевым относятся акулы и скаты*. Костистые рыбы представляют собой наиболее многочисленную группу рыб, в настоящее время преобладающую в морях, океанах, реках, озерах. Некоторые пресноводные двоякодышащие рыбы девонского периода, очевидно, и дали жизнь сначала первичным земноводным (стегоцефалам), а затем и сухопутным позвоночным, Таким образом, первые амфибии появляются в девоне. В девоне возникает и другая чрезвычайно прогрессивная группа животных — насекомые. * В настоящее время интерес к акулам в массовом сознании «подогревается» и рассказами об их нападениях на людей, и серией фантастических фильмов «Челюсти». Акулы, действительно, обладают сложной системой поведения, прекрасным обонянием и электромагнитной системой ориентации. Акулы — очень древние животные; они появились еще в девоне и с тех пор некоторые их виды не изменились. Образование насекомых свидетельствовало о том, что в ходе эволюции сложилось два разных способа решения задач укрепления каркаса тела (основных несущих органов и всего тела в целом) и совершенствования форм отражения. У позвоночных роль каркаса играет внутренний скелет, у высших форм беспозвоночных — насекомых — наружный. Что касается форм отражения, то у насекомых чрезвычайно сложная нервная система, с разбросанными по всему телу огромными и относительно самостоятельными нервными центрами, преобладание врожденных реакций над приобретенными. У позвоночных — развитие головного мозга и преобладание условных рефлексов над безусловными. Различие этих двух разных способов решения важнейших эволюционных задач в полной мере проявилось после перехода к жизни на суше. Важнейшим событием в эволюции форм живого являлся выход растений и живых существ из воды и последующее образование большого многообразия наземных растений и животных. Из них в дальнейшем и происходят высокоорганизованные формы жизни. Переход к жизни в воздушной среде требовал многих изменений. Во-первых, вес тел здесь больше, чем в воде. Во-вторых, в воздухе не содержится питательных веществ. В-третьих, воздух сухой, он иначе, чем вода, пропускает через себя свет и звук. Кроме того, содержание кислорода в воздухе выше, чем в воде. Выход на сушу предполагал выработку соответствующих приспособлений. По-видимому, еще в протерозое на поверхности суши в результате взаимодействия абиотических (минералы, климатические факторы) и биотических (бактерии, цианеи) условий возникает почва. Почвообразовательные процессы в протерозое подготовили условия для выхода на сушу растений, а затем и животных. Выход растений на сушу начался, очевидно, в конце силура. Растения, переселявшиеся в воздушную среду, получали значительные эволюционные преимущества. И главное из них — то, что солнечной энергии здесь больше, чем в воде, а значит, и фотосинтез становится более совершенным. Проблема высыхания решалась посредством формирования водонепроницаемой внешней оболочки, пропитанной восковидными веществами. А перестройка системы питания из почвы требовала развития корневой системы и системы транспортировки питательных веществ и воды по организму. Корни способствовали также укреплению опоры. А по мере роста размеров растений формировалась и поддерживающая ткань — древесина. Жизнь на суше требовала и изменения репродуктивной системы. Первые наземные растения — псилофиты; они занимали промежуточное положение между наземными сосудистыми растениями и водорослями. У псилофитов образуются сосудистая система, перестраиваются покровные ткани, появляются примитивные листья. Именно псилофиты в конце силура покрывали сплошным зеленым ковром прибрежные участки суши. Кстати, только в силуре началось сплошное озеленение Земли. После кислородной революции и до появления первой растительности поверхность Земли была красной — результат коррозии минералов железа. Вслед за растениями из воды на сушу и воздух (сначала по берегам рек, озер, болот) последовали различные виды членистоногих — предки насекомых, пауков и скорпионов. Первые обитатели суши напоминали по виду современных скорпионов. И если первые амфибии появились в девоне, то активное завоевание суши позвоночными началось в карбоне. Первые полностью приспособившиеся к жизни на суше позвоночные — рептилии. Яйца рептилий были покрыты твердой скорлупой, не боялись высыхания, были снабжены пищей и кислородом для эмбриона. Первые рептилии были небольшими животными, напоминающими ныне живущих ящериц. В карбоне значительного развития достигают насекомые. Появляются летающие насекомые, Рассмотрим основные пути исторического развития основных наземных групп органического мира Земли — царства животных и царства растений. 13.3.5. Основные пути эволюции наземных растений Эволюция растений после выхода на сушу была связана с усилением компактности тела, развитием корневой системы, тканей, клеток, проводящей системы, изменением способов размножения, распространения и т.д. Переход от трахеид к сосудам обеспечивал приспособление к засушливым условиям, ведь с помощью сосудов можно поднимать воду на большую высоту. В наземных условиях оказались непригодными для размножения свободно плавающие голые половые клетки; здесь для целей размножения формируются разносимые ветром споры или семена. Постепенно происходит дифференциация тела на корень, стебель и лист, развитие сети проводящей системы, совершенствование покровных, механических и других тканей. С момента выхода на сушу растения развиваются в двух основных направлениях: гаметофитном и спорофитном. Высшим растениям свойственна правильная смена поколений в цикле их развития. Растение имеет две фазы развития, которые сменяют одна другую: гаметофит и спорофит. Гаметофит — это половое поколение, на котором образуются половые органы — антеридии и архегонии. Спорофит — неполовое поколение, на котором формируются органы неполового размножения. Спорофит — это нормально развитое растение, которое имеет корень, стебель и листья. На спорофите образуются споры, которые прорастают и дают начало гаметофиту. Подобная смена поколений в цикле развития растений сложилась эволюционно, в ходе естественного отбора. Гаметофитное направление было представлено мохообразными, а спорофитное — остальными высшими растениями, включая цветковые. Спорофитная ветвь оказалась более приспособленной к наземным условиям. Уже в девоне встречаются пышные леса из прогимноспермов и древних голосеменных. В карбоне растения приспособились удерживать воду и защищать семена от высыхания; это позволило им завоевать сухие места обитания. В карбоне, характеризующемся увлажненным и равномерно теплым климатом в течение всего года, мощные споровые растения — лепидодендроны и сигиллярии — достигали 40 м высоты. В карбоне и перми получают дальнейшее распространение голосеменные, у которых происходил переход от гаплоидности (одинарный набор хромосом) к диплоидности (двойной набор хромосом), что усиливало генетические потенции организма. Дальнейшая эволюция шла по пути совершенствования семян: превращение мегаспорангия в семязачаток; после оплодотворения (благодаря ветру, переносящему пыльцу, вырабатываемую в достаточном количестве) семязачаток превращается в семя; оплодотворенный эмбрион упаковывается в водонепроницаемую защитную оболочку, наполненную пищей для эмбриона. Внутри семени зародыш мог находиться достаточно долго, пока растение не рассеет семена, и они не попадут в благоприятные условия произрастания. И тогда росток раздувает семенную оболочку, прорастает и питается запасами до тех пор, пока его корни и листья не станут сами поддерживать и питать растение. Так у всех семенных растений исчезает зависимость процесса полового размножения от наличия водной среды. Переход к семенному размножению связан с рядом эволюционных преимуществ; диплоидный зародыш в семенах защищен от неблагоприятных условий наличием покровов и обеспечен пищей, а семена имеют приспособления для распространения животными и др. Эти и другие преимущества способствовали широкому распространению семенных растений. В дальнейшем происходит специализация опыления (с помощью насекомых) и распространение семян и плодов животными; усиление защиты зародыша от неблагоприятных условий: обеспечение пищей, образование покровов и др. В раннем меловом периоде у некоторых растений улучшается система защиты семян путем образования дополнительной оболочки. В это же примерно время появляются и первые покрытосеменные растения. Возникновение покрытосеменных было связано с совершенствованием процесса оплодотворения: с переходом к тому, чтобы пыльцу переносил не ветер, а животные (насекомые). Это потребовало значительных трансформаций растительного организма. Такой организм должен содержать средства сигнализации животным о себе, привлечения животных к себе, чтобы затем отнести пыльцу на другое растение того же вида; и в конце концов животное должно само что-либо при этом получить для себя (нектар или пыльцу). Весь этот комплекс вопросов решался на пути возникновения огромного множества прекрасных и разнообразных покрытосеменных (цветковых) растений: цветки каждого растения по внешнему (форме, окраске) виду (и запаху) должны отличаться от цветков прочих растений. Покрытосеменные возникают в горах тропических стран, где и ныне сосредоточено около 80% покрытосеменных. Цветковым растениям свойственна высокая эволюционная пластичность, разнообразие, порождаемые опылением насекомыми. Ведь отбор шел как по растениям, так и по насекомым. Постепенно распространяясь, цветковые растения завоевали все материки, победили в борьбе за сушу. В этом главную роль играл цветок, обеспечивавший привлечение насекомых-опылителей. Кроме того, цветковые имеют развитую проводящую систему, плод, значительные запасы пищи зародыша, развитие зародыша и семени происходит быстрее и т.д. В кайнозое формируются близкие к современным ботанико-географические области. Покрытосеменные достигли господства. Леса достигали наибольшего распространения на Земле. Территория Европы была покрыта пышными лесами: на севере преобладали хвойные, на юге — каштаново-буковые леса с участием гигантских секвой. Ботанико-географические области изменялись в зависимости от периодических потеплений и похолоданий, наступления ледников и вызванного ими отступления теплолюбивой растительности на юг, а кое-где и ее полного вымирания, а также возникновения холодоустойчивых травянистых и кустарниковых растений, смены лесов степью и т.д. А в плейстоцене складываются современные фитоценозы. 13.3.6. Пути эволюции животных Вышедшие на сушу рептилии оказались перспективной формой. Возникло множество видов рептилий; они осваивали все новые места обитания. При этом одни (большинство) уходили от воды, а некоторые вновь ушли в воду (мезозавры). В конце пермского периода рептилии уже полностью преобладали на суше. Некоторые рептилии становятся хищными, другие — растительноядными. В меловом периоде возникают гигантские растительноядные динозавры. От мелких древних рептилий, напоминающих ящериц, произошли самые разнообразные виды — плавающие, передвигающиеся по суше и летающие рептилии, динозавры (весом до 30 т и до 30 м в длину, «правившие миром» более 100 млн лет). Особенно интенсивно развиваются морские рептилии в юре (ихтиозавры, плезиозавры). Постепенно идет и завоевание воздушной среды. Насекомые начали летать еще в карбоне и около 100 млн лет были единовластными в воздухе. И только в триасе появляются первые летающие ящеры. В юре пресмыкающиеся успешно осваивают воздушную среду. Возникают самые известные летающие ящеры — птеродактили, охотившиеся на многочисленных и крупных насекомых. Некоторые летающие ящеры имели размах крыльев до 20 м! В юрском же периоде от одной из ветвей рептилий возникают птицы; первые птицы причудливо сочетали признаки peптилий и птиц. Поэтому птиц иногда называют «взлетевшими рептилиями». От примитивных рептилий, из группы цельночерепных, развивается ветвь, приведшая несколько позже — через терапсид — к возникновению в триасе млекопитающих. В юрском и меловом периодах млекопитающие стали более разнообразными. В конце мезозоя возникают плацентарные млекопитающие. В конце мезозоя в условиях похолодания сокращаются пространства, занятые богатой растительностью. Это влечет за собой вымирание сначала растительноядных динозавров, а затем и охотившихся на них хищных динозавров. В условиях похолодания исключительные преимущества получают теплокровные животные — птицы и млекопитающие. Но время расцвета насекомых, птиц и млекопитающих — это кайнозой. В палеоцене появляются первые хищные млекопитающие. В это же время некоторые виды млекопитающих «уходят» в море (китообразные, ластоногие, сиреневые). От древних хищных происходят копытные. От некоторых видов насекомоядных обособляется отряд приматов. В плиоцене встречаются уже все современные семейства млекопитающих. В кайнозое формируются те важнейшие тенденции, которые привели к возникновению человека. Это касается возникновения стайного, стадного образа жизни, который выступил ступенькой к возникновению социального общения. Причем, если у насекомых (муравьи, пчелы, термиты) биосоциальность вела к потере индивидуальности; то у млекопитающих, напротив, к подчеркиванию индивидуальных черт особи. В неогене на обширных открытых пространствах саванн Африки появляются многочисленные виды обезьян. Некоторые виды приматов переходят к прямохождению. Так в биологическим мире вызревали предпосылки возникновения Человека и мира Культуры. 14. ВОЗНИКНОВЕНИЕ ЧЕЛОВЕКА И ОБЩЕСТВА (антропосоциогенез) Что такое человек ? Каково место человека в природе? Вечно ли существует человек или он возник на каком-то этапе развития мира? Если он возник исторически, то каким образом? Каким было его раннее существование? В чем состоит его предназначение? Эти тесно связанные между собой вопросы издавна волновали людей. Ответы на них определялись достигнутым уровнем развития науки, естествознания, философскими и идеологическими позициями мыслителей, ученых. Консервативные, реакционные социальные классы, не заинтересованные в историческом прогрессе, представляли человека как существо бренное, полностью зависимое и производное от (внешних и чуждых ему) нематериальных, сверхъестественных сил. В то же время прогрессивные классы и социальные слои, смело идущие в направлении общественно-исторической эволюции, в своей идеологии обычно стремились к научно-материалистической интерпретации происхождения человека. В конце XIX и XX в. материалистическое естествознание в тесном союзе с гуманитарными и общественными науками существенно продвинулось в решении проблемы происхождения человека и общества. 14.1. Естествознание XVII— первой половины XIXв. о происхождении человека Несмотря на ряд гениальных догадок, проблема происхождения человека и общества в древности и средневековье была покрыта наслоениями мифологии, мистики, религиозных домыслов, умозрительных спекуляций, далеких от строгости, доказательности, обоснованности. Настоящий переворот в накоплении антропологических и этнографических данных начинается в эпоху Великих географических открытий (с конца XV в.). Неизмеримо расширился мир для европейских мореплавателей, ученых и исследователей. Во вновь открытых заморских странах жили народы, находившиеся на разных ступенях общественного развития, имевшие различный физический облик, различные нравственные нормы, традиции и т.д. В этот период начинается взаимное знакомство народов, удаленных друг от друга на тысячи километров, разделенных океанами и материками. Мысль о том, что живущие в Новом Свете, в Северной и Южной Америке, в Австралии и других регионах племена и народности находятся на этапе первобытного развития, который с необходимостью должны пройти все народы, в том числе европейцы, не сразу сформировалась после Великих географических открытий XV—XVI вв. Причина этого в том, что в общественном сознании еще не утвердилась идея развития. И потому естественное развитие природных и общественных форм от простого к сложному, от низшего к высшему еще не осознавалось. В сознании господствовало представление, что народы являются такими, какими их создал Творец, и другими стать не могут. В XVIII в. на основе анализа глубинных социально-экономических процессов и достижений естествознания постепенно формируется и входит в общественное сознание идея развития — в антропологии, философии и этнографии возникает представление о том, что общественный строй жизни первобытных племен похож на общественное устройство древних народов и может помочь в изучении древнейшей истории народов, ушедших далеко от первобытного состояния. Подобные идеи высказали французский исследователь-миссионер Ж.Ф. Лафито в своей книге «Обычаи американских дикарей в сравнении с обычаями первобытных времен» (1724), а также немецкий просветитель Г. Форстер, проживший бурную и полную приключений жизнь. Следующий шаг в понимании первобытной истории человечества связан с построением таких общих схем всемирно-исторического процесса, в которых народы заморских стран выступали как представители ранней ступени развития человечества. Значительную роль в разработке таких теорий сыграли великие французские просветители XVIII в. - Ж.Ж. Руссо, Д. Дидро, Ш. Монтескье, Вольтер, Ж. Кондорсе и др. Одни из них (Руссо, Дидро и др.) идеализировали первобытность, представляли ее как «золотой век» человечества, все основные позитивные качества которого утеряны последующими поколениями в эпоху цивилизации. Другие (например, Ж. Кондорсе) разрабатывали концепции исторического прогресса человеческой истории, разума и культуры. Благодаря развитию разума человек проходит следующие ступени общественного устройства — от охоты и рыболовства к одомашниванию животных (эпоха рабства), а от него — к земледелию (эпоха феодализма) *. * См.: Кондорсе Ж.А. Эскиз исторической картины прогресса человеческого разума. М., 1936. Первоначально каменные орудия древних людей, которые случайно находили в земле, не рассматривались как предметы, имеющие отношение к истории человечества. Их считали талисманами, посланиями богов, которые они метают вместе с молнией на землю. Но уже в XVIII в. возник интерес к изучению найденных в раскопках орудий труда и предметов утвари первобытных людей — ведь именно такими инструментами пользовались первобытные народы Нового Света, Африки и Южной Азии. В первой половине XVIII в. все чаще высказываются мысли о существовании каменного века у древних людей, о том, что каменные предметы — это выполненные в незапамятные времена "произведения рук человеческих", что человек существовал задолго до Адама и Евы. Долгое время такие заявления резко отторгались не только церковными, но и научными кругами. В 1730 г. в Парижской академии письменности и изящной литературы разразился громкий публичный скандал: после доклада одного французского исследователя о каменных орудиях древних людей академики устроили ему обструкцию, требуя от него признания возможности образования каменных орудий в процессе физических реакций в воздухе, вызываемых ударами молнии. В середине XVIII в. К. Линней положил начало научному представлению о происхождении человека. В своей «Системе природы» (1735) он отнес человека к животному миру, помещая его в своей классификации рядом с человекообразными обезьянами. Интересно, что Линней, подчеркивая родство человека и человекообразных обезьян, называет орангутанга Homo silvetris («человек лесной»). В XVIII в. зарождается и научная приматология; так, в 1766 г. появилась научная работа Ж. Бюффона об орангутанге. Голландский анатом П. Кампер показал глубокое сходство в строении основных органов человека и животных. Все это позволило поставить на принципиально новую, научную основу вопрос о границах между человеком и высшими приматами. В XVIII — первой половине XIX в. археологи, палеонтологи, этнографы накопили эмпирический материал, по объему уже достаточный для разработки научной теории антропосоциогенеза. Особый интерес здесь представляют исследования французского археолога Буше де Перта. В 40—50-х гг. XIX в. он искал, собирал грубо оббитые каменные орудия и доказывал, что это — орудия труда первобытного человека, жившего одновременно с древним носорогом, мамонтом и т.д. Открытия Б. де Перта отодвигали происхождение человека в такую глубь тысячелетий, что опрокидывали библейскую хронологию. Не случайно креационисты и клерикально настроенные ученые встретили эти открытия в штыки. Длительная борьба Б. де Перта с консервативными французскими академическими кругами была полна драматизма, а временами носила чуть ли не детективный характер. И только в 60-х гг. XIX в. его идеи признали в науке. В 1862 г. в археологии для периодизации истории каменного века были введены понятия «палеолит» и «неолит». Вместе с тем в первой половине XIX в. создаются и теоретические предпосылки для создания научной теории антропосоциогенеза. Они связаны с развитием в биологии идеи эволюции органических форм (см. 7.4). В свете этой идеи эмпирический материал о древнейшем прошлом человечества получал качественно новое теоретическое толкование. Однако вопросы о происхождении человека рассматривались (при всей прогрессивности по сравнению с предыдущими столетиями) все еще в духе согласия с основными религиозными догмами (творение человека Богом). Даже Ламарк не решался довести до логического завершения идею эволюции животных и человека, т.е. до отрицания роли Бога в происхождении человека. Он закончил разбор проблемы происхождения человека в своей «Философии зоологии» словами об ином происхождении человека, чем только лишь от животных. Возможность последовательно материалистического решения проблемы антропогенеза впервые появилась после создания Ч. Дарвиным селекционной теории эволюции органического мира. Теория естественного отбора нанесла сокрушительный удар идеализму, креационизму, телеологизму, явилась одним из важнейших естественно-научных подтверждений материализма, позволила заложить основы естественно-научного понимания антропосоциогенеза. В 1871 г. вышел в свет труд Дарвина «Происхождение человека и половой отбор», в котором на громадном фактическом материале (из сравнительной анатомии, зоогеографии, истории, археологии) Дарвин обосновывал два кардинально важных положения: о животном происхождении человека и о том, что современные человекообразные обезьяны представляют собой боковые ветви его эволюции, а чедовек ведет свое происхождение от каких-то вымерших более нейтральных форм. И хотя идеи Дарвина были приняты в штыки клерикалами и креационистами, подвергались чудовищным нападкам со стороны священнослужителей и реакционеров самых разных мастей, тем не менее последующее развитие учения о происхождении человека было возможно только в русле естественно-научного, материалистического мировоззрения. «Тот, кто не смотрит, подобно дикарю, на явления природы как на нечто бессвязное, не может больше думать, чтобы человек был плодом отдельного акта творения», — писал Дарвин. После работ Дарвина материалистическое положение о животном происхождении человека стало краеугольным камнем теории антропосоциогенеза. Поскольку человек — это не только биологическое, но и социальное существо, то его происхождение нельзя свести к действию исключительно биологических факторов эволюции. На определенном этапе в биологическую эволюцию предков человека должен был включиться еще и некоторый надбиологический, социокультурный фактор. Какой же это фактор? Ответ на этот вопрос дал Ф. Энгельс в работе «Роль труда в процессе превращения обезьяны в человека». В ее основе лежит идея о том, что труд — не только средство преобразования окружающей среды и удовлетворения потребностей человека, но и средство изменения самого человека. Именно трудовая деятельность является всеобщим основанием человеческого бытия, а вместе с тем и решающим критерием, разграничивающим человека и его животных предков — человекообразных обезьян. Идея о роли труда в происхождении человека и общества не потеряла своего значения и по сей день. Все специалисты по древней археологии, палеоантропологии исходят из представления о решающей роли труда в антропосоциогенезе. 14.2. Предпосылки антропосоциогенеза 14.2.1. Абиотические предпосылки Каким же образом происходило естественное возникновение человека, общества и сознания? Каковы основные закономерности антропосоциогенеза, этого связующего звена между историей природы, и историей общества? Каковы его этапы? Разумеется, мы не знаем всех деталей перехода от биологического к социальному в развитии материи. Вместе с тем современной наукой уже создана достаточно целостная и стройная общая картина. Общей предпосылкой возникновения человечества выступило длительное историческое развитие природы. Пьедесталом антропосоциогенеза явилось развитие органического (биологического) мира в его единстве с геологическими, географическими, климатическими, физико-химическими, космическими и другими неорганическими (абиотическими) системами. В соответствии с современной теорией эволюции, историческое развитие биологических организмов определяется рядом эволюционных факторов (мутационными процессами, популяционными волнами, изоляцией, естественным отбором и др.), включенными во взаимодействие с абиотическими системами природы. Эволюция действует не на отдельного индивида, а на популяцию. Через последовательную смену поколений сохраняются и утверждаются те признаки, которые оказываются удобными в данных условиях среды. Такое взаимодействие абиотических систем с эволюционными факторами определяло предпосылки и протекание антропосоциогенеза. Абиотические предпосылки антропосоциогенеза лучше всего изучены в том, что касается геологического, географического и климатического фона, на котором возник человек. Космические и физико-химические факторы, которые, безусловно, оказывали большое влияние на процесс антропосоциогенеза, пока изучены меньше. Становление человечества происходило в последний период кайнозойской эры истории Земли, в конце эпохи неогена. Геологические процессы — это важная часть абиотической среды, изменения которой определяли развитие органических видов. Геологические предпосылки антропосоциогенеза включают в себя оледенения и потепления, усиленный вулканизм, сейсмические и тектонические процессы, повышение уровня радиоактивности (в результате землетрясений, горообразовании, тектонических разломов коры и др.), изменение магнитного поля Земли (за последние 5 млн лет магнитные полюсы Земли менялись четыре раза) и др. Географические предпосылки включают в себя прежде всего изменения очертаний материков и морей. Так, например, еще в плейстоцене существовали мосты суши, которые соединяли Британские острова с Европой, острова Малайского архипелага с Азиатским континентом, Азиатский и Американский континенты и др. Это способствовало миграции животных, расселению их на Земле. Географические предпосылки связаны с климатическими изменениями , вызванными оледенениями. Периоды оледенения с резкими похолоданиями чередовались с периодами сравнительного потепления, особенно характерными для плейстоцена. В периоды древних оледенений колоссальные пространства (до 30% суши) занимали ледники, двигавшиеся с севера на юг. 250 тыс. лет назад материковые льды достигали широт Волгограда на Восточно-Европейской равнине и Оклахомы на Великих равнинах Северной Америки. Огромные территории, лежащие за пределами ледников, превращались в заболоченные тундры, которые на юге переходили в холодную степь и лесостепь. Для этих районов характерна резкая смена фауны. Хотя на юге Азии и в Африке не было материкового льда и ледники наблюдались лишь в районах больших гор, но общее похолодание отразилось и на этих регионах. В период антропогена они испытали несколько смен влажных (дождливых) и засушливых (аридных) эпох. Но смена фауны и флоры в этих районах не была такой резкой, как в более северных регионах. (Например, в Сахаре обитали крокодилы и бегемоты.) Для эволюции животного мира имели большое значение и резкие колебания уровня Мирового океана. Во время оледенений этот уровень понижался по сравнению с современным на 120 м, обнажая при этом сухопутные мосты между Азией и Америкой, Европой и Британскими островами, материковые отмели континентов. В периоды оледенений резко изменялись фауна и флора: вымирали многие виды теплолюбивых животных и растений, а оставались те виды, которым удалось приспособиться к новым условиям. При этом у них резко изменялись образ жизни, характер питания, поведенческие реакции. Так, в ходе рисского оледенения вымерли либо переселились на юг гиппопотамы, теплолюбивые виды слонов, носорогов. Их место заняли приспособившиеся к холодному климату мамонты и шерстистые носороги; кроме того, были распространены зубры, пещерные медведи, пещерные львы, северные олени, овцебыки и др.* * В четвертичном периоде выделяются следующие периоды оледенений: дунай (от 1,8 до 1.2 млн лет), гюнц (от 1 млн лет до 750 тыс. лет), мивдель (от 500 до 350 тыс. лет), рисе (от 200 до 120 тыс. лет) ивюрм (от 80 до 10 тыс. лет). Кроме того, ярко выделяются межледниковые периоды относительного потепления: гюнц — миндель, миндель - рисс, рисс — вюрм. Особенно сильными и вызывающими резкие перепады температуры и климата были плейстоценовые оледенения -миндель, рисс, вюрм. К абиотическим предпосылкам антропосоциогенеза следует отнести также влияние космических (ритмы солнечной активности, влияние космических лучей и др.) и физико-химических факторов (состав атмосферы, радиационный фон и др.). Главная роль всех этих абиотических факторов в антропосоциогенезе состояла в том, что они, будучи мощным генератором мутационных процессов, средством интенсивной перекомбинации генофонда (слияние пар хромосом либо их выпадение, сальтация генов и др.), поставляли богатый разнообразный элементарный эволюционный материал для естественного отбора, ускоряя происхождение новых видов животных. Очень важна интенсивность абиотических факторов. Абиотическая среда была такой, что, с одной стороны, она не оказывала чересчур сильного давления на предков человека и ранних людей, которое могло бы привести к их полному вымиранию. (Хотя, конечно, многие виды обезьян третичного периода несомненно вымерли, так и не перейдя на уровень человека.) С другой стороны, полное господство предков человека в своей экологической нише, отсутствие конкуренции в борьбе за существование тоже имело бы негативные последствия: отсутствие стимулов биологической эволюции, развитие в направлении узкой специализации, закрытие выходов на путь гоминидной, человеческой эволюции и др. Анализ абиотических предпосылок важен для ответа на один из ключевых вопросов учения об антропосоциогенезе — вопроса о прародине человека. Поскольку самое большое количество ископаемых остатков высших человекообразных обезьян эпохи плиоцена найдены в Южной Азии и Восточной Африке, то именно эти области претендуют на то, чтобы считаться прародиной человечества. В настоящее время больше всего аргументов свидетельствует в пользу африканской гипотезы. Ученые считают, что наиболее благоприятной для качественного перехода от животных к человеку была палеогеографическая обстановка, которая сложилась в рифтовой зоне приэкваториальной части Восточной Африки. Она характеризовалась разломами земной коры, сейсмическими процессами, выходами радиоактивных пластов, повышением радиационного фона, вулканическими извержениями. Например, в 25 км от Олдувайского ущелья, где найдены самые древние известные сейчас остатки гоминид и прегоминид, примерно 2 млн лет назад активно действовал вулкан (кратер Нгоро-Нгоро), забрасывая это ущелье продуктами своих извержений. Здесь теплый, устойчивый, достаточно влажный климат, в целом благоприятный для развития растительных и животных видов. Разнообразный ландшафт — саванны, тропические и горные леса, альпийские луга - также способствовал эволюции приматов. Конечно, это предположение о прародине человечества будет уточнено и конкретизировано (возможно, и скорректировано) в ходе дальнейшего развития науки о происхождении человека *. * См.: Решетов Ю.Г. Природа Земли и происхождение человека. М., 1966; Фоули Р. Еще один неповторимый вид. Экологические аспекты эволюции человека. М., 1990. 14.2.2. Биологические предпосылки Для понимания антропосоциогенеза большое значение имеет анализ эволюции высших биологических организмов, их анатомо-физиологического строения, которое явилось предпосылкой формирования определенной телесной организации человека, а следовательно, перехода к трудовой деятельности, формированию сознания. Современное материалистическое естествознание исходит из того, что человек естественным Образом произошел от высших представителей животного мира — человекообразных обезьян. Человек имеет настолько много общих свойств с обезьянами, что это позволяет объединить их в один отряд приматов. Приматы —высшие представители класса млекопитающих. Они обладают качествами самого широкого биологического значения. Невозможно себе представить появление человека в составе иного отряда, менее одаренного. Особенно важно то, что большая подвижность отряда приматов и разнообразие функций их передних конечностей обусловило развитие большого по размерам головного мозга и его высокую дифференциацию, поскольку быстрое перемещение в трехмерном пространстве и цепкие передние конечности, помогающие исследовать окружающую среду, требуют высокой организаций нервной системы. В современной фауне насчитывается около 200 видов приматов среди более чем 4000 видов млекопитающих. Еще в середине XIX в. Ч. Дарвин (на основании данных сравнительной анатомии и эмбриологии, которые убедительно указывали на множество сходных черт у человека и человекообразных обезьян) выдвинул и обосновал идею родства человека и обезьян, их происхождения от одного общего предка, жившего в эпоху неогена. Дарвин и его последователи (Т. Хаксли, Э. Геккель и др.) установили наличие сотен общих признаков телесного строения человека и антропоидных обезьян (шимпанзе, горилл), а также сходство эмбрионального развития человека с основными периодами развития органического мира. Более того, было показано, что антропоидные обезьяны по своей морфофизиологической организации ближе к человеку, чем к низшим обезьянам. Тем самым были заложены основы симиальной (обезьяньей) теории антропогенеза. Согласно этой теории, человек и современные человекообразные обезьяны произошли от жившего в период неогена одного общего предка — обезьяноподобного существа. Дальнейшее развитие антропологии полностью подтвердило эту идею *. Прямым доказательством родства человека и обезьян стали останки ископаемых существ — как общих предков человека и человекообразных обезьян, так и промежуточных форм между обезьяньим предком и современным человеком. Четыре вида известных сейчас антропоидов (человекообразных обезьян) — шимпанзе, горилла, орангутанг и гиббон — представляют собой боковые ветви «родственников» человека и тоже произошли от вымерших обезьян эпохи неогена. Во второй половине XX в. симиальная теория была подтверждена еще и данными молекулярной биологией, доказавшей родство белковых структур и ДНК у человека и антропоидов. * В истории антропологии имели место попытки ставить под сомнение симиальный характер сходства человека с высшими приматами. Так, в 1916 г. была высказана «тарзиальная гипотеза», в соответствии с которой человек произошел от древнетретичного долгопята, а черты сходства с обезьянами приобрел конвергентно, аналогично конвергенции обезьян Старого и Нового Света. Развитие науки не подтвердило этой точки зрения. Долгое время отсутствовали эмпирические данные о промежуточных формах между человекообразными обезьянами позднего палеогена и неогена и далекими предками человека. Дарвин знал только одну такую форму — дриопитеков (найденных в 1856 г. во Франции) и писал о них, как о далеких предках человека. Все это стимулировало появление различных гипотез о своеобразии далеких предков человека. Например, высказывалась точка зрения о том, что древесная стадия в развитии обезьяньих предков человека отсутствовала, а предки человека просто передвигались по земле. Такая точка зрения нашла свое выражение в концепции Г. Осборна об эоантропе («человеке зари»), в соответствии с которой еще в олигоцене человеческий предок уже был наземным существом, обладавшим многими особенностями человека. Только в XX в. палеоантропологические раскопки позволили обнаружить остатки ископаемых обезьян, живших в эпоху неогена (миоцен, плиоцен), т.е. примерно от 20 до 12 млн лет назад. К ним относятся проконсулы (обнаруженные в Восточной Африке), ориопитек (находка скелета в 1958 г. в Италии), рамапитек (30-е гг. XX в., в Индии), сивапитеки и др., которые уже по многим признакам обнаруживают определенное сходство как с современными человекообразными обезьянами, так и с человеком. Наиболее ранние находки высших обезьян (парапитек, проприопитек и др.) ученые относят к позднему палеогену, к эпохе олигоцена. Именно в олигоцене сформировалось то ответвление от общего ствола обезьян, которое через высших обезьян привело к возникновению далеких обезьяньих предков человека (проконсулы, дриопитеки, рамапитеки и др.). По последним данным, это ответвление произошло не более 20—23 млн лет назад. Расцвет высших обезьян пришелся на неоген, эпохи миоцена и плиоцена. Найдены остатки высших обезьян, живших в это время и обладавших по некоторым свойствам (в частности, строение зубов) уже большим сходством с человеком, чем с ныне живущими группами высших обезьян. Видовой состав антропоидной фауны в миоцене насчитывал, по-видимому, около 20 родов и около 30 видов антропоидов. Но большинство из них вымерло. Переход к человеку впоследствии осуществил лишь один вид. Анализ таких ископаемых форм позволил сделать вывод, что исходная предковая форма характеризуется меньшей, чем у современных антропоидов, приспособленностью к древесному образу жизни. Аппарат передвижения у этих предковых форм был одинаковым образом приспособлен для передвижения как по земле, так и по деревьям *. У предковой высшей обезьяны руки были короче, а ноги длиннее, чем у современных обезьян, мозг больше, чем у других обезьян того времени, клыки менее выдавались из зубного ряда. Предковая обезьяна обладала и многими другими чертами, свойственными современным антропоидам. * Однако есть мнение, что это условие не обязательно и исходная предковая форма вполне могла быть брахиатором (т.е. обладать пропорциями конечностей, позволяющими передвигаться по деревьям путем подвешивания к ветвям передними конечностями, как это присуще современным человекообразным обезьянам). С этой точки зрения брахиация даже способствовала переходу к наземному образу жизни. Один из крайне интересных вопросов антропологии: какая из ныне живущих человекообразных обезьян (шимпанзе, горилла, орангутанг, гиббон) ближе всего к человеку? В истории учений о происхождении человека отмечены попытки сблизить человека и с гориллой, и с гиббоном, и даже с орангутангом в силу сходства отдельных морфо-физиологических черт. Как недавно (по-видимому, окончательно) выяснилось, таким ближайшим «родственником» человека по антропологическому строению и поведению выступает шимпанзе. Второй вопрос связан с определением времени выделения филетической линии человека. Из-за недостаточности палеонтологического материала по этому вопросу существовали разные точки зрения. Так, долгое время считалось, что этот момент надо связывать с рамапитеком (примерно 14 млн лет назад). Однако собранные в последние 10— 15 лет палеонтологические данные определили среди палеонтологов преобладание мнения о сравнительно позднем обособлении линии человека. Новые аспекты здесь выявились с развитием эволюционной биохимии и метода молекулярной гибридизации, который позволяет оценить степень генетического родства сопоставляемых групп организмов. Применение этого метода показало, что у человека и шимпанзе 91% сходных генов, у человека и гиббона — 76%, у человека и макаки-резус — 66%. Более того, оказалось, что шимпанзе и горилла ближе к человеку, чем к орангутангу. По данным таких «молекулярных часов», время выделения мартышкообразных обезьян — 27—33 млн лет назад; линия гиббона отделилась от линии, ведущей к человеку 18—22 млн лет назад; линия орангутанга — 13—16 млн лет, линия гориллы — 8—10 млн лет, а линия шимпанзе — всего 5— 8 млн лет назад. Эти данные привели к распространению точки зрения, согласно которой «эволюция человеческой линии заняла не свыше 10 млн лет, а обезьяний предок гоминид имел черты сходства с шимпанзе, был, по существу, «шимпанзеподобен»... В качестве «модельного предка» человеческой и шимпанзоидной линии некоторые антропологи рассматривают карликового шимпанзе — бонобо — ...из джунгей Экваториальной Африки» *. * Хрисанова Е.Н., Перевозчиков И.В. Антропология. М., 1991. С. 37—38. Основные пути перестройки телесной организации ископаемого предка в направлении очеловечивания — прямохождение, развитие руки и мозга (так называемая гоминидная триада). Переход к прямохождению, смена древесного образа жизни на наземный — одна из важнейших предпосылок формирования гоминид. Многие древесные формы обезьян часто в поисках пищи спускались на землю и проводили здесь большую часть времени (есть данные о том, что начальная адаптация к двуногому передвижению формировалась еще в верхнем миоцене 23—27 млн лет назад). Некоторые виды обезьян (с относительно более короткими передними и более длинными задними конечностями) чаще других в полувертикальном положении перемещались по земле. Это освобождало их передние конечности, и они успешнее использовали камни и палки для самозащиты и охоты. Кроме того, поскольку перемещение на двух ногах было более медленным, чем брахиация (перемещение по деревьям с помощью ног и рук), то понадобилась определенная компенсация — развитая психика (способность быстрого ориентирования, необходимость координации тела, передних и задних конечностей), совершенствование стадных отношений. Значительные изменения климата, которые привели к сокращению тропических лесов и распространению пустынь, вызвали гибель многих видов древесных обезьян, не успевших приспособиться к новым условиям. Сложились предпосылки для интенсивного развития тех популяций приматов, которые освоили прямохождение, т.е. был сделан решающий шаг для перехода от обезьяны к человеку *. * Существует интересная гипотеза о том, что человек произошел от прибрежных обезьян, обитавших в неогене по берегам рек, ручьев, озер и других пресных водоемов в полусаванной гористой местности. Непосредственным предшественником человека были такие человекообразные обезьяны, у которых верхние конечности не выполняли функции опоры тела и передвижения. Только при этом условии верхние конечности могли стать пригодными для употребления и изготовления орудий. Такое недостававшее звено в цепи обезьяньих предков человека было обнаружено в 1924 г. в Южной Африке, где были найдены костные остатки вымерших высших приматов, возраст которых составляет от 5 до 2,5 млн лет. Они получили название австралопитековых. В настоящее время большинство специалистов считают, что ближайшим предшественником человека являются именно австралопитековые — прямоходящие млекопитающие. К настоящему времени обнаружены костные остатки около 400 особей австралопитековых (в основном в Южной Африке, а также в Юго-Восточной, Восточной и Передней Азии — в долине реки Иордан). Австралопитековые являлись не антропоидными, а гоминидными (т.е. близкими к человеку) приматами, были не древесными, а наземными существами, вели стадный образ жизни и передвигались на двух ногах. Если для высших приматов прямохождение носит спорадический характер, то у австралопитековых оно было нормой поведения. Австралопитековые были широко распространенной, биологически процветающей (с большой численностью и большим ареалом обитания) расой обезьян. Существовало несколько десятков их видов и поэтому они были перспективными в эволюционном отношении. Прямохождение явилось результатом сложных морфо-физиологических трансформаций — изменения анатомического строения тазовых костей и нижних конечностей, а также функций центрально-нервной регуляции поведения (обеспечивающих возможность со стороны мозга удерживать тело в равновесии во время ходьбы и бега на двух конечностях). Это в свою очередь повлекло значительное усложнение анатомической структуры мозга. И хотя в среднем объем мозга австралопитековых составлял 552 см3 , т.е. практический такой же, как средний объем мозга современных человекообразных обезьян (горилла — 496 см3 , шимпанзе — 394 см3 ), тем не менее по сложности организации мозга австралопитековые значительно отличались и от исходной предковой формы, и от параллельно развивавшейся ветви антропоидов. Овладение австралопитековыми прямохождением имело два важнейших следствия. Во-первых, прямохождение высвобождало передние конечности и создавало предпосылки для превращения их в руку — орган трудовой деятельности. Во-вторых, изменение положения головы и глаз привело к значительному возрастанию зрительной информации, расширению поля зрения, т.е. создавались предпосылки для совершенствования форм восприятия действительности в конкретных образах. Эти достоинства австралопитековых обеспечивали им явные преимущества в борьбе за существование и соответственно возможность прогрессивной эволюции. Австралопитековые в отличие от нынешних антропоидов жили не в лесу, а в открытой местности — саваннах; питались не только растительной, но и животной пищей; вели охотничий образ жизни, о чем свидетельствуют остатки животных, скопления костей рядом с ископаемыми австралопитековыми. Особенно важно то, что австралопитековые систематически использовали природные предметы (камни, палки, кости и др.) как средства защиты от врагов, нападения на жертв во время охоты и др. Использование природных предметов - это еще не труд. Труд предполагает создание самим человеком орудий труда. Поэтому австралопитековых относят еще к животному миру, а не к миру людей. Но это такие человекообразные обезьяны, для которых характерны прямохождение, питание мясом, использование природных предметов для добывания пищи, что делает их непосредственными предшественниками человека. Биологическая эволюция австралопитековых протекала в сложных условиях. Переход от древесной жизни к наземной сопровождался увеличением опасностей. Кроме того, ряд черт поведения австралопитековых, сложившихся в условиях древесной жизни, был мало пригоден, а то и вовсе вреден для наземной жизни. Так, австралопитек медленно бегал, у него не было когтей и клыков, необходимых для самозащиты. В условиях наземной жизни малая плодовитость, как и у всех высших приматов, грозила вымиранием всего вида и др. Поэтому естественный отбор происходил в направлении закрепления и развития тех качеств австралопитековых, которые позволяли противостоять враждебной окружающей среде. Прежде всего совершенствовались прямохождение и устойчивость тела, увеличивалась подвижность передних конечностей для того, чтобы использовать камни и дубины для защиты и нападения, для выкапывания корней и клубней, для сдирания шкуры с убитого животного, разрезания мяса и др.; увеличивались отделы головного мозга, которые обеспечивают ориентацию в пространстве. Кроме того, возрастала взаимозависимость членов стада, их сплоченность, усиливались связи внутри стада, развивались средства общения, психика, формы отражения. Огромным достижением австралопитековых было то, что они научились применять разнообразные по формам природные предметы в качестве средств охоты, нападения, защиты, обработки туш убитых животных и др. Существует предположение, что австралопитековые использовали в качестве орудий (и оружия) кости и зубы убитых ими на охоте животных и, как показывают раскопки, были способны накапливать ассортимент разнообразных естественных предметов, создавать «предметный фонд стада». При многократном использовании камней и дубин для нападения и обороны неизбежно возникали ситуации, когда от камня откалывались обломки, осколки с режущим, острым краем, использование которых было гораздо эффективнее, чем применение обветренных и скатанных природных камней, для раскалывания, резания, разделывания шкур. Операции обработки камней (а также палок и костей) сначала применялись спорадически, а затем закреплялись естественным отбором и превращались в навыки всего первобытного стада. Таким образом, трудовая деятельность (производство орудий труда) закономерно и неизбежно возникает в ходе систематического использования естественных предметов антропоидными предками человека. С возникновением и освоением производства орудий труда был осуществлен один из важнейших в истории развития материального мира качественный скачок: из биологического мира (посредством трудовой деятельности) выделилась качественно новая форма материи — человеческое общество *. Став устойчивым, постоянным фактором жизни, трудовая деятельность обусловила зарождение социальных отношений, сознания, мышления, воли, языка, т.е. окончательное превращение животного в человека. * Часто задают вопрос: «Почему сейчас, в нашу эпоху, человек не возникает из обезьяны?» Дело в том, что при образовании новой сложно организованной системы она сама же преобразует предпосылки, ее породившие. Мы видели это на примере происхождения жизни (см. 13.2): те условия, которые привели к появлению живого, самим же органическим миром были преобразованы и устранены. Это диалектика любого развития качественно новых систем, в том числе и человека. Именно поэтому развитие не воспроизводимо в своих деталях; и то качественно новое, что появляется в истории, появляется лишь один раз. В полной мере это относится и к человеку: еще на заре своего формирования человек устранил многие из тех предпосылок (биотических и абиотических), которые его породили. К какому времени относит наука возникновение производства орудий труда, а следовательно, человека и общества? Еще в середине XX в. было общепризнано, что древнейшим человеческим существом является найденный на острове Ява (Индонезия) питекантроп, живший примерно 800 тыс. лет назад. Тем самым длительность человеческой истории определялась примерно в 1 млн лет. Положение радикально изменилось после того, как в Восточной Африке в конце 50-х — начале 60-х гг. английский антрополог Л. Лики обнаружил в Олдувайском ущелье (Танзания) самую древнюю ископаемую форму человеческого существа — гомо хабилис (человек умелый). Гомо хабилис занимает промежуточное положение между австралопитековыми и питекантропами. Это двуногое существо ростом до 140 см с объемом мозга в среднем 668 см3 , что больше, чем у австралопитековых, но меньше, чем у питекантропов. Для кисти руки характерны некоторые черты, свойственные современному человеку: способность к мощному силовому захвату, к изготовлению каменных орудий. Рядом с ископаемыми остатками этих существ обнаружены многочисленные примитивные, грубые каменные орудия, разбитые кости животных, осколки камней, получающиеся в процессе изготовления орудий. Вскоре аналогичные существа стали находить и в других местах Восточно-Африканского региона (Кооби-Фора, оз. Рудольфа и др.). Возраст этих находок — около 2—3 млн лет. Все это позволяло сделать вывод, что грань между человеком и животными гораздо отдаленнее, чем предполагалось раньше. Историю человеческого общества следует перенести по крайней мере на 2—3 млн лет. Для древних существ, живших в Олдувайском ущелье, главным способом добычи пищи была охота. Они охотились не только на мелких, но и на крупных животных (слонов, динотериев, баранов). В процессе охоты, которая, несомненно, носила коллективный характер, применялись самые различные приемы — облавы, загоны (в том числе и в болотистую почву). Хабилисы умели изготовлять простейшие грубые каменные рубящие орудия для охоты, разделки туш, обработки дубин и проч. (около 20 типов). Для этого они использовали гальку и желваки различных пород камня (преимущественно вулканическую лаву), а также отщепы (получавшиеся при разбивании камней и после подработки их краев), которые служили для разрезания мяса, обработки туш животных, дерева, кости и др. У хабилисов существовали, очевидно, и костяные, и деревянные орудия труда. Люди олдувайской культуры умели строить жилища, охотничьи поселки, вели более или менее оседлый образ жизни, связанный с особенностями охоты в этой местности. Ведущей биологической предпосылкой, которая сцементировала все остальные предпосылки антропосоциогенеза, синтезировала и вела их к образованию исходного первичного производственного коллектива, была, очевидно, стадная охота. Именно в стадной охоте (деятельности, по существу, коллективной) складываются и орудийное, практическое отношение к природе, и социальные отношения между членами первобытного стада, а также формируется высший уровень психики — сознание. Переход от использования найденных природных предметов для обороны и охоты к систематическому изготовлению орудий труда был важнейшим, революционным скачком в создании человеческого общества. Труд стал необходимой, а затем и ведущей стороной в отношении человека и миру. Революционизирующее значение трудовой деятельности в формировании человека состоит в следующем: • она позволяет выделять объективные, т.е. не зависящие от субъекта, свойства предметов и орудий труда; • результаты труда (и техника труда) существуют и развиваются по независимым от человека объективным закономерностям; • кроме биологических потребностей начинают формироваться социально-культурные потребности; • трудовой процесс способствует выработке и накоплению стихийно-эмпирических знаний о мире; • трудовой процесс с самого начала имеет общественную природу, он предполагает определенное разделение труда; • под влиянием труда постепенно преобразуется и психология гоминид: труд требует развития мышления, целеполагания, воображения, чувственного отражения, волевых качеств, т.е. сознания; • труд, общественное производство так или иначе предполагает постепенное формирование системы социального наследования приобретенных знаний, навыков и опыта. Вместе с тем возникновение зачаточных форм труда еще не означало, что на развитие общества перестали влиять биологические факторы. Еще долгое время природные условия «вели за собой» формирующегося человека, постепенно выходившего через посредство орудий труда из животного состояния, преодолевавшего путы природно-биологических связей, формировавшего деятельное, практическое отношение к миру. «Человек вошел в мир бесшумно...» — так образно характеризовал первоначальные формы человечности один из выдающихся антропологов XX в. Пьер Тейяр де Шарден. 14.3.2. Развитие древнейшей техники человека С возникновением гомо хабилис начался длительный период сосуществования социальных и биологических закономерностей, на протяжении которого биологические факторы и закономерности постепенно вытеснялись социальными. Этот период, получивший название нижнего палеолита, длился вплоть до эпохи верхнего палеолита (40—35 тыс. лет назад) и закончился с образованием краманьонца — человека современного типа. Этот период получил название первобытного стада. Для первобытного стада характерна интенсивная морфологическая эволюция человека, в первую очередь качественная перестройка коры головного мозга, руки, органов речи. Питекантроп, синантроп, гейдельбергский человек и другие ископаемые формы первобытного человека отличались более совершенным строением тела, большим объемом мозга (в среднем 900—1000 см3 ) и более высокой техникой обработки каменных орудий. Важно то, что не только объем мозга увеличился, но и усложнилась его структура, особенно тех зон коры больших полушарий, которые связаны со специфическими функциями труда и речевого общения. Постепенно развивалась также техника производства и использования орудий труда. В нижнем палеолите отсутствуют устойчивые, стабильные формы орудий, а значит, и устойчивые способы их изготовления. Но, хотя и медленно, техника обработки орудий все-таки совершенствовалась, а вместе с ней совершенствовались навыки и способы изготовления орудий, отрабатывались устойчивые, стабильные приемы. Очевидно, именно в это время появляется необходимость во взаимной передаче опыта обработки орудий в процессе обучения, появляются первые формы передачи социального опыта. Большую роль в эволюции человечества сыграло освоение огня. Первая стадия приспособления этой природной силы состояла в использовании естественного огня (молния, вызвавшая пожар), постоянном поддержании процесса горения. Так, в пещерах, где жили синантропы (350—400 тыс. лет назад), археологи обнаружили слой пепла и угля толщиной до 7 м. С помощью огня первобытные люди обрабатывали мясную пищу, которая благодаря этому лучше усваивалась и дольше сохранялась. Вторую стадию — искусственное добывание огня специалисты относят к 120—100 тыс. лет до н.э. Несомненно, что освоение огня стимулировалось похолоданием климата (сначала миндельское оледенение, а затем и рисское). Освоение огня было грандиозным шагом по пути достижения человеком определенной независимости от климатических условий. Это позволило человеку резко расширить свой ареал обитания, увеличить количество видов продуктов питания, изготовлять более совершенные орудия труда, повышать эффективность охоты и рыболовства. Как удачно отметил известный отечественный антрополог П.И. Борисковский, «с появлением огня и очага возникло совершенно новое явление — пространство, строго предназначенное для людей» *. * Борисковский П.И. Древнейшее прошлое человечества. М., 1980. С. 88. В эпоху мустье (от 100 до 40 тыс. лет назад; неандертальский человек) начался процесс разделения труда при производстве орудий труда. Неандертальцы эпохи мустье достигли относительно высокой производительности труда, изготовляли более 60 видов орудий труда, вели развитый охотничий промысел, занимались собирательством, жили в постоянных поселениях. Люди мустьерской эпохи производили различные типы остроконечников (употреблявшиеся как ножи для резания, кинжалы, наконечники копий и др.), скребел (использовавшиеся при разделывании туш, обработки шкур и дерева), выемчатые и зубчатые орудия (применявшиеся для обтачивания деревянных предметов, резания и пиления), рубилища разных форм (служившие ударным орудием) и др. Все это говорит о специализации орудий труда. Если начальные этапы производства орудий труда характеризовались созданием универсальных орудий, то в эпоху мустье орудия труда уже носили специализированный характер. Увеличение разнообразия орудий труда свидетельствует об усложнении технологии их изготовления. Хотя структура технологического процесса осталась старой, но совершенствовались ее основные этапы; приобрели более правильную форму ядрища; стали более совершенными отщепы; росло число операций; технология производства стала в основном трехступенчатой: оббивка, скалывание, ретушь. Такой сложный процесс требовал значительного опыта, навыка, координации движений. Очевидно, в рамках рода складывалась определенная специализация. Позже появились составные орудия (копья, рогатины, ножи и скребла с деревянными рукоятками и др.) и стал применяться такой технологический прием, как раскаливание камня в огне, а затем охлаждение его в воде. 14.4. Становление социальных отношений 14.4.1. Биологические предпосылки социальных отношений Генезис человека — это единый процесс морфофизиологического превращения животного в человека (антропогенез) и стадных объединений животных в человеческое общество (социогенез). Становление социальных отношений способствовало обузданию биологических инстинктов, в том числе и проявлений зоологического индивидуализма, замене их отношениями социальной коллективности. Коллективность человеческих объединений обусловлена также характером передачи человеческого опыта. Если в биологическом мире опыт передается через естественный отбор, то накопленный в процессе труда опыт, т.е. социальный опыт, надо передавать каждый раз заново от одной особи к другой, от одного поколения к другому. Результаты труда не закрепляются генетически, и каждое новое поколение, рождаясь, должно усвоить опыт предыдущих поколений, чтобы получить возможность эффективно трудиться по исторически выработанным меркам человеческой деятельности. Исследования приматологов позволяют сделать вывод, что социальная активность имеет определенные предпосылки в стадах обезьян *. Отношения между обезьянами в стаде не являются абсолютно индивидуалистическими. Стадо обезьян — это не аморфное, бесструктурное образование, где каждый делает что хочет, а достаточно организованная целостная структура, в которой каждая особь занимает свое особое место. Это некоторая предсоциальная иерархия. * См.: Тих Н.А. Предыстория общества. Л., 1970; Фирсов Л.А. Поведение антропоидов в природных условиях. Л., 1977; Мак-Фарленд Д. Поведение животных. Психобиология, этология и эволюция. М., 1988; Тинберген Н. Социальное поведение животных. М., 1993; Гудолл Дж. Шимпанзе в природе: поведение. М., 1992; Поведение приматов и проблемы антропогенеза. М., 1991; и др. Многие стороны поведения обезьян регулируются в рамках этой целостной структуры. Прежде всего, существуют отношения доминирования и подчинения: есть вожак, которому все подчиняются, есть рядовые взрослые, юноши, дети — и у каждого своя форма поведения, выход за рамки которой наказуем, причем в стадах обезьян немало отношений, выражающих сотрудничество и взаимопомощь*. Такие отношения складываются между потомством одной матери, между представителями одного поколения («молодежные группы») и др. В то же время в стадах приматов между отдельными особями подчас устойчиво проявляются и противоположные отношения — антипатия, враждебность и др., но они не являются определяющими. * У нас в свое время неправомерно большой акцент делали на зоологическом индивидуализме обезьяньих предков человека. Данные приматологии показывают, что у обезьян фактор помощи превалирует, над фактором вражды, враждебности, насилия. Так, в естественных условиях наблюдались случаи, когда обезьяне со сломанной рукой соплеменники помогали переправляться через речку или обрыв. Раньше считали, что для стадного общества обезьян характерны индивидуализм и агрессивность, но агрессивность обезьян не столь высока, а коллективная помощь развита в гораздо большей степени, чем предполагали. Это обстоятельство помогает развеять миф о природной агрессивности человека, о неизбежности войн между людьми, вражды между народами, обществами. Такое биосоциальное общение у антропоидов поддерживается средствами коммуникации — язык жестов, звуковые сигналы (выражающие радость, печаль, злобу, возбуждение и др.), действиями (поцелуи, объятия и др.). Важную роль играет и «демонстрационное манипулирование» как зачаточная форма передачи индивидуального опыта стадному коллективу (или его части). 14.4.2. Возникновение разделения труда Формирование общественных отношений было обусловлено, с одной стороны, расшатыванием стадных отношений и стереотипов стадного поведения, а с другой стороны, укреплением связей особей вокруг производства орудий деятельности, передачей социального опыта, сплоченностью (в силу привязанности к постоянному месту обитания) и др. Исторической основой собственно человеческих форм общения является разделение труда. Для нижнепалеолитических первобытных коллективов характерно очень медленное развитие разделения труда, а его основным поприщем выступает производство орудий труда и охота. В первую очередь, происходит становление технологических отношений, связанных с разделением труда и разделением производственного цикла на ряд операций. Этапы производства даже простого орудия труда разделены во времени, а это выдвигает особые требования к организации производства, к психике, сознанию, к развитию памяти. Особенно важно, что в процессе производства орудия труда нужно заранее учитывать его специфическое назначение, организовать и координировать с другими свои действия в направлении достижения цели. В сфере сознания происходит разграничение отраслей целеполагания и целереализации. Если однозвенному процессу производства орудий труда соответствует предметное сознание, т.е. нерасчлененностъ практического и познавательного отношений , то многозвенному процессу — образное, мифологическое сознание. Определенный тип технологического разделения труда складывается и в связи с охотой. Как показывают археологические данные по олдувайской культуре, охота была ведущей формой деятельности гомо хабилисов. Хабилисы охотились не только на мелких, но и на крупных животных — слонов, динотериев, антилоп, гиппопотамов. Помимо прямого поражения жертвы с помощью ударов твердыми предметами с близкого расстояния, охота на крупных животных предполагала и применение методов непрямого поражения жертвы — загоны в болото, в ямы, с обрыва и др. Конечно, здесь требовалась (при всей стихийности такой охоты) выработка определенной «стратегии поведения», коллективной организации, определенной (пока, конечно, примитивной) системы целеполагания. Вместе с тем разделение труда было связано также с преследованием, загоном и поражением жертв: одни члены стада оставались в группе загона, другие — в группе поражения жертв и т.д. Принципиально важно, что охота как форма первобытного производства имела коллективный характер. Подобная коллективность выступала основой кооперации как формы организации труда, воплощающей социальный характер трудовой деятельности. Кооперация предполагает, что индивиды сообща планомерно работают в одном производстве, взаимодействуя между собой, или в разных, но взаимосвязанных производствах. Одновременно формируется и социальное разделение труда, которое сначала строилось по естественно-биологическому, прежде всего половозрастному, признаку. Это значит, что каждая группа определенного возраста и пола имела свои функции в хозяйственном механизме первобытного стада: одни в основном охотились (таких, очевидно, было большинство, как правило, мужчины); другие (преимущественно женщины) занимались собирательством и больше уделяли внимания детям и обработке пищи; пожилые занимались изготовлением орудий труда. Естественное разделение труда становится мощным фактором повышения производительности труда и постепенно утверждается, трансформируясь в ранние формы экономических отношений (обмена продуктами и результатами труда). Особенность общественных отношений в первобытном обществе состоит в том, что они строились на коллективной собственности на средства и продукты производства. Распределение продуктов тоже носило коллективный характер. В частности, анализ олдувайской культуры дает основания полагать, что (в отличие от животных, прежде всего хищников) хабилисы не поедали добычу на месте поражения жертвы, а доставляли ее к местам обитания (охотничьим лагерям), где делили между всеми членами стада (очевидно, по принципу доминирования — подчинения, хотя в смягченном варианте) Это, конечно, не исключало отдельных вспышек зоологического индивидуализма — драк, борьбы за пищу, самок, конфликты и проч. Формирование разделения труда, первичных производственных отношений осуществлялось параллельно с ограничением биологических инстинктов, через их подчинение. Первобытное стадо было эндогамной группой, т.е. брачные отношения осуществлялись внутри него, между родственниками. В силу законов генетики это тормозило развитие физической природы человека и могло привести к его вырождению. Дальнейшее развитие общества было возможно только при том условии, что биологические инстинкты будут поставлены под контроль человека. Такой контроль закладывал основы общественных отношений. В эпоху мустье окончательно вступили в силу и запрет брачных отношений внутри первобытного коллектива (агамия), и обязанность вступать в брачные отношения вне своего родового коллектива (экзогамия). Так образовалась исторически первая форма социальной организации брачных отношений — дуально-родовой брак. Это завершило становление социальных начал, основы общественной жизни окончательно выделились из биологического мира. Создание родового общества (35—40 тыс, лет назад) означало полную победу социальных факторов развития человека над биологическими, завершение антропосоциогенеза. 14.5. Генезис сознания и языка. 14.5.1. Раскрытие тайны происхождения сознания Важной стороной антропосоциогенеза являлся генезис сознания. Сознание — высшая форма отражения мира. Носителем сознания выступает человек, обладающий мозгом — высокоразвитой материальной системой, способной осуществлять идеальное отражение мира. Сознание формируется только в системе социального общения людей и поэтому носит социально-исторический характер. Сознание позволяет человеку познавать окружающий мир, переживать свое отношение к этому миру, регулировать свою деятельность. В сфере сознания складываются цели деятельности человека (идеальное целеполагание), формы мышления (понятие, суждение, умозаключение и др.), чувственно-образные и волевые моменты человеческой жизнедеятельности. Основой, ядром, стержнем сознания является мышление. Именно благодаря мышлению в сознании формируется объективный образ, картина мира. Генезис сознания, как и возникновение человека и общества, носит естественно-исторический характер *. Сознание складывалось на базе высокоразвитой психики животных — высших приматов. Основные предпосылки генезиса сознания: увеличение размеров и качественное (структурное) изменение мозга высших приматов; трудовая, практическая деятельность; развитие социальных отношений, разделение труда, коллективность; развитие коммуникативной, сигнальной деятельности, языка, речи. * Анализ проблемы генезиса сознания см.: Гурьев Д.В . Загадка происхождения сознания. М.,1997. Основой генезиса сознания является обобщение (и коллективное закрепление) результатов действий по производству орудий труда. Сознание возникает как отражение прежде всего тех объективных свойств природных предметов, которые выявляются в процессе производства орудий труда. В этом процессе необходимо взаимодействие между собой (по крайней мере) двух природных предметов (камней, палок, костей). Результат их взаимодействия (т.е. орудие труда) определяется объективными свойствами таких природных предметов. Ставя во взаимодействие между собой два природных предмета, человек получает возможность выделять их объективные свойства (если одним камнем ударить по другому, то результат совсем иной, чем в ситуации удара камня по дереву: так проявляется объективное свойство твердости). Взаимодействие двух материальных предметов между собой позволяет выделять их объективные свойства, т.е. свойства, не зависящие от того, кто ставит во взаимодействие эти предметы. Это принципиально важно и во многом объясняет, почему труд является основой сознания, познания, мышления. Без учета объективных свойств материальных предметов систематическое производство орудий труда просто невозможно. Другими словами, производя орудия труда, субъект получил возможность отражать не только преимущественно ситуативные, относительные связи между организмом и средой (что свойственно-психике животных), но и объективные связи между предметами, вещами самой природной среды. Животное непосредственно не выделяет объективных свойств предметов среды, а выделяет лишь те свойства среды, которые для него биологически значимы, определяются инстинктивными программами поведения. Объективные свойства среды отражаются животными только в ходе исторической эволюции вида, естественного отбора, т.е. через смену поколений, отбор одних и вымирание других особей и др. На уровне человека объективные связи, свойства среды проявляют себя прежде всего через устойчивые, повторяющиеся предметные действия субъекта. Их фиксация и выделение из множества случайных, второстепенных действий есть не что иное, как обобщение. Если результат обобщения закрепляется в каком-нибудь знаке, то тогда он может, во-первых, передаваться другим членам коллектива, во-вторых, достаточно долго сохраняться в коллективной памяти. Итак, производство и воспроизводство сознания изначально носит коллективистский характер, оно невозможно вне деятельности и общения людей; развитие форм деятельности и общения есть условие развития сознания. Обобщение, зафиксированное в некотором знаке, в самом широком смысле уже есть познание как таковое. Таким образом, в сознании изначально заложен познавательный компонент. Когда мы говорим о том, что человек обладает сознанием, то прежде всего подразумеваем, что человек познает мир, что он обладает определенной системой знаний. Знания — это выраженные в определенной системе знаков (слово, навык, жест, схема и др.) обобщенные элементы сознания, благодаря которым различаются вещи объективного мира, их существенные и несущественные свойства, сам человек и его отношение к внешнему миру. Система знаний складывается в историческом опыте человечества. Каждый отдельный индивид осваивает ее заново в процессе социализации, обучения, образования, воспитания и др. Безусловно, знание является сердцевиной, ядром сознания, но содержание сознания не может быть сведено только к знанию. Оно обладает еще одной стороной — эмоционально-волевой, т.е. сферой переживания действительности, которая выражает отношение субъекта к тому, что он отражает, преобразовывает. Это сфера выражения потребностей, интересов и целей. Человек не только познает мир, но и оценивает его свойства с точки зрения их значимости для удовлетворения своих потребностей. Функцию оценки во многом выполняют эмоции человека. Эмоциональная сфера гоминид выступала базой исторического формирования ценностного аспекта сознания человека. На начальных этапах сознание было предметно-действенным, было включено в акты предметных действий, логика отдельных идеальных действий еще отсутствовала, наличествовала лишь логика внешнего предметного действия. Поэтому человек не мог воспроизвести каких-либо действий по производству орудий труда в отрыве от этих орудий. Накапливавшийся опыт такого рода передавался в процессе коллективного подражания. На этом этапе еще не было устойчивого идеального целеполагания как некоторой сложившейся подсистемы сознания, о чем свидетельствует случайная, нестабильная форма орудий труда, создаваемых в результате еще во многом инстинктивных действий. В сознании еще не воспроизводилась закономерная связь между началом, процессом и результатом обработки предмета труда, поскольку логика практических действий была однозвенной (т.е. для производства орудий труда требовалось осуществление одного типа действий — скалывание заготовки отбойником). Орудия были однотипны и приспосабливались не к объекту, а к человеку. Качественное изменение в характере труда и сознания связано с переходом к многозвенной структуре трудового процесса, к созданию составных и специализированных орудий. Сначала процесс производства разделился на два этапа: на первом изготавливались стандартизированные заготовки для орудий, на втором они превращались в собственно орудия. Вместе с этим возрастали опыт, квалификация, навыки работников, вырабатывались более совершенные приемы использования орудий труда, улучшалась организация труда, развивалось разделение труда. Качественный переход завершился в эпоху мустье, когда действия по изготовлению орудий стали многоступенчатыми: изготовление из ядрища заготовки путем оббивки; скалывание; вторичная подправка. При этом происходит интериоризация сознания, т.е. предметное действие человека, выражающее обобщенное значение, уходит во внутренний план, а непосредственным носителем мысли становится язык. Предметно-действенное сознание сменяется мифологическим. Обобщение мира происходит не в форме предметных действий, а форме идеальных чувственных образов. Вместе с тем стихийно-эмпирическое накопление первобытных рациональных знаний приобретает пока еще несовершенный, но уже системный характер (см. 1.1). Генезис и развитие сознания неразрывно связаны с генезисом и развитием языка, речи. Происхождение и начальные этапы развития языка — одна из интереснейших проблем истории культуры. Далеко не все детали этого процесса известны. Но в общих чертах можно воспроизвести его основные направления. Коммуникация животных — необходимое условие их жизнедеятельности, обеспечивающая их взаимодействие и согласованность, стадную организацию, в конечном счете их безопасность. Исходной базой, предпосылкой формирования человеческого языка являлись виды коммуникации животных: зрительно-двигательная, жестовая (позы, жесты, движения, выражающие страх, угрозу, подчинение и др.), действующая только при дневном свете и в пределах видимости; обонятельная (с помощью запахов); звуковая. Звуковая коммуникация имеет ряд несомненных преимуществ: звуки могут быть дифференцированными и выражать широкий спектр эмоциональных состояний; звуковая сигнализация не ограничивается дневным светом и воспринимается практически мгновенно. Современные теории языка исходят из того, что у человекообразных обезьян и первобытных людей в зачаточной форме сосуществовали два типа языка — первичный и вторичный *. Первичный язык развивался на основе зрительно-двигательной (жестовой) коммуникации и выражал информацию об эмоциональном состоянии и поведенческих установках особи, значимую для другой особи. (В современной приматологии существует целое направление, исследующее способности человекообразных обезьян к жестовой коммуникации.) Вторичный язык формировался на базе звуковой коммуникации, в основе которой были эмоционально окрашенные крики обезьян и нейтральные шумы, не сопровождавшиеся видимым возбуждением. * О происхождении языка см.: Якушин Б.В. Гипотезы о происхождении языка. М.,1985. В истории становления человека (общества, сознания) соотношение между этими двумя типами языка было, по-видимому, весьма непростым. На начальных этапах антропогоциогенеза, когда развивалось предметно-действенное сознание, определенное развитие и преимущество получила зрительно-двигательная, жестовая коммуникация. Австралопитековые, по-видимому, общались между собой преимущественно языком жестов, которые, по-видимому, сопровождались звуковыми восклицаниями (лалии). Жест являлся ведущим средством предметного обобщения-действия, а значит, и регуляции (индивидуального и коллективного) действия. Но в этой своей роли язык жестов является несовершенной формой коммуникации. Поскольку жест осуществлялся с помощью рук — главных рабочих органов, то он не всегда был возможен (в некоторых ситуациях руки просто заняты). Жестовый язык не мог применяться ночью, на больших расстояниях, в условиях ограниченной видимости и проч. Кроме того, жест не приспособлен для выражения сложных ситуаций, так как он плохо подразделяется на составные элементы. Все эти факторы не позволяли жестовому языку стать полноценным вторым (наряду с предметным действием) материальным носителем мысли в условиях, когда дальнейшее развитие сознания было связано с его интериоризацией, т.е. уходом во внутренний план. Интериоризация сознания стала возможной, когда для обобщенной мысли подошел иной материальный носитель — звуковой носитель мысли, звуковая коммуникация. Ведь процесс становления человека включал в себя наряду с развитием языка жестов и параллельное непрерывное совершенствование звуковой коммуникации. Постепенно она приобретала характер вокально-информационной системы. Так, например, если у человекообразных обезьян было 20-30 сигналов, то у австралопитековых их могло быть уже несколько десятков или даже свыше сотни. Язык развивался вместе с развитием речи. Можно предположить, что членораздельная речь возникла в эпоху формирования питекантропа. В его речи присутствовали щелкающие и носовые звуки; наряду с жестами слова выступали обозначениями предметов и лишь в отдельных случаях переходили в слова-предложения; речь носила диалогический характер. Но в целом в речи питекантропов и синантропов еще преобладает жестовая коммуникация, а речевые акты подобны телеграфному стилю. У неандертальцев совершенствовалась артикуляция. Правда, возможно, были затруднения с произнесением отдельных гласных. Постепенно формировалась простейшая грамматика и синтаксис; появилась монологическая речь; расширялась лексика. Как показывают новейшие макетные исследования ротовой полости неандертальца, неандертальцы в принципе могли общаться с помощью членораздельной звуковой речи*, и у них уже образовались сложные формы высказываний, синтаксически сложные предложения **. * Панов Е.Г. Знаки, символы, языки. М., 1983. ** См.: Алексеев В.П. Становление человечества. М., 1984. С 222-224. Язык всегда предполагает определенную систему знаков. С развитием языка зарождается сложная система знаков как выразителей смыслов и значений сознания. Генезис сознания, становление языка и речи завершились при переходе к верхнему палеолиту,к первобытно-общинному строю, к чувственно-образному мифологическому сознанию. естествознание на пороге XXI в. 15. ТЕОРИЯ САМООРГАНИЗАЦИИ (СИНЕРГЕТИКА) В течение последних трех столетий естествознание развивалось невероятно динамично. Горизонт научного познания расширился поистине до фантастических размеров. На микроскопическом конце шкалы масштабов физика элементарных частиц вышла на уровень изучения процессов, которые происходят за время около 10-23 с и на расстояниях 10-15 см., На другом конце шкалы космология и астрофизика изучают процессы, происходящие за время порядка возраста Вселенной ≈ 1018 с и радиуса Вселенной ≈ 1028 см. Недавно обнаружены астрономические объекты, свет от которых идет к нам чуть ли не 12 млрд лет! Свет от этих объектов «вышел» тогда, когда до возникновения Земли оставалось еще... 7 млрд лет. Человек получает возможность заглянуть в самое начало «творения» Вселенной. В современном обществе значительно возросла роль науки. На основе научного знания рационализируются, по сути, все формы общественной жизни. Как никогда близки наука и техника. Наука стала непосредственной производительной силой общества. По отношению к практике она выполняет программирующую роль. Новые информационные технологии и средства вычислительной техники, достижения генной инженерии и биотехнологии обещают в очередной раз коренным образом изменить материальную цивилизацию, уклад нашей жизни. Под влиянием науки (в том числе) возрастает личностное начало, роль человеческого фактора во всех формах деятельности. Вместе с тем радикально изменяется и сама система научного познания. Размываются четкие границы между практической и познавательной деятельностью. В системе научного знания проходят интенсивные процессы дифференциации и интеграции знания, развиваются комплексные и междисциплинарные исследования, новые способы и методы познания, методологические установки, появляются новые элементы картины мира, выделяются новые, более сложные типы объектов познания, характеризующиеся историзмом, универсальностью, сложностью организации, которые раньше не поддавались теоретическому (математическому) моделированию. Одно из таких новых направлений в современном естествознании представлено синергетикой. 15.1. От моделирования простых систем к моделированию сложных Классическое и неклассическое естествознание объединяет одна общая черта: их предмет познания — это простые (замкнутые, изолированные, обратимые во времени) системы. Однако такое понимание предмета познания является сильной абстракцией. Вселенная представляет собой множество систем. Но лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как «механизмы». Во Вселенной таких «закрытых» систем меньшая часть. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся биологические и социальные системы, которые больше всего интересуют человека. Человек всегда стремился постичь природу сложного, пытаясь ответить на вопросы: как ориентироваться в сложном и нестабильном мире? какова природа сложного и каковы законы его функционирования и развития? в какой степени предсказуемо поведение сложных систем? В 70-е гг. XX в. начала активно развиваться теория сложных самоорганизующихся систем. Результаты исследований в области нелинейного (порядка выше второго) математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании — синергетики. Как и кибернетика, синергетика — это некоторый междисциплинарный подход. В отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения. Мир нелинейных самоорганизующихся систем гораздо богаче, чем закрытых, линейных систем. Вместе с тем «нелинейный мир» сложнее моделировать. Как правило, для (приближенного) решения большинства возникающих нелинейных уравнений требуется сочетание современных аналитических методов с вычислительными экспериментами. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.п. Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных процессов в химии до эволюции звезд и космологических процессов, от электронных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики — существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций. 15.2. Характеристики самоорганизующихся систем Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом: «Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки» *. Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, — систем, способных к самоорганизации, саморазвитию. * Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 28—29. См. также: Николис Г., Пригожин И. Познание сложного. М.. 1990; Пригожин И., Стенгерс И. Время. Хаос и Квант. М., 1994; и др. Основные свойства самоорганизующихся систем — открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми, нелинейными диссипативными системами, далекими от равновесия. Объект изучения классической термодинамики — закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой Т . Изменение энтропии определяется формулой:dE= dQ_/T , гдеdQ - количество теплоты, обратимо подведенное к системе или отведенное от нее (см. 8.1.2). Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно второму началу термодинамики, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к «тепловой смерти». Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. Сo временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее. Вместе с тем уже во второй половине XIX в. и особенно в XX в. биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к понижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее в противоположном направлении — от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. И только с переходом естествознания к изучению открытых систем появилась такая возможность. Открытые системы — это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы — это системы необратимые; в них важным оказывается фактор времени. В открытых системах ключевую роль — наряду с закономерным и необходимым — могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается. Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Неравновесность, в свою очередь, порождает избирательность системы, ее необычные реакции на внешние воздействия среды. Неравновесные системы имеют способность воспринимать различия во внешней среде и «учитывать» их в своем функционировании. Так, некоторые более слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда совместные действия причин А и В вызывают эффекты, которые не имеют ничего общего с результатами воздействия А и В по отдельности. Процессы, происходящие в нелинейных системах, часто носят пороговый характер — при плавном изменении внешних условий поведение системы изменяется скачком. Другими словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению. Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е. система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обусловливают изменения в самой этой системе (например, в ходе химической реакции или какого-то другого процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными. Открытые неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние — диссипативность, которую можно определить как качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Неравновесное протекание множества микропроцессов приобретает некоторую интегративную результирующую на макроуровне, которая качественно отличается оттого, что происходит с каждым отдельным ее микроэлементом. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, совершаться переходы от хаоса и беспорядка к порядку и организации, возникать новые динамические состояния материи. Диссипативность проявляется в различных формах: в способности «забывать» детали некоторых внешних воздействий, в «естественном отборе» среди множества микропроцессов, разрушающем то, что не отвечает общей тенденции развития; в когерентности (согласованности) микропроцессов, устанавливающей их некий общий темп развития, и др. Понятие диссипативности тесно связано с понятием параметров порядка. Самоорганизующиеся системы — это обычно очень сложные открытые системы, которые характеризуются огромным числом степеней свободы. Однако далеко не все степени свободы системы одинаково важны для ее функционирования. С течением времени в системе выделяется небольшое количество ведущих, определяющих степеней свободы, к которым «подстраиваются» остальные. Такие основные степени свободы системы получили название параметров порядка. В процессе самоорганизации возникает множество новых свойств и состояний. Очень важно, что обычно соотношения, связывающие параметры порядка, намного проще, чем математические модели, детально описывающие всю новую систему. Это связано с тем, что параметры порядка отражают содержание оснований неравновесной системы. Поэтому задача определения параметров порядка — одна из важнейших при конкретном моделировании самоорганизующихся систем. 15.3. Закономерности самоорганизации Главная идея синергетики — это идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации является образование петли положительной обратной связи системы и среды. При этом система начинает самоорганизовываться и противостоит тенденции ее разрушения средой. Например, в химии такое явление называют автокатализом. В неорганической химии автокаталитические реакции довольно редки, но, как показали исследования последних десятилетий в области молекулярной биологии, петли положительной обратной связи (вместе с другими связями — взаимный катализ, отрицательная обратная связь и др.) составляют саму основу жизни (см. 13.2.2). Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. Система самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты — точки бифуркации. Вблизи точек бифуркации в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает. В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации (фазовые переходы и диссипативные структуры — лазерные пучки, неустойчивости плазмы, флаттер, химические волны, структуры в жидкостях и др.). В точке бифуркации система как бы «колеблется» перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация (момент случайности) может послужить началом эволюции (организации) системы в некотором определенном (и часто неожиданном или просто маловероятном) направлении, одновременно отсекая при этом возможности развития в других направлениях. Как выясняется, переход от Хаоса к Порядку вполне поддается математическому моделированию. И более того в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых различных сферах действительности (в природе и обществе — его истории, экономике, демографических процессах, духовной культуре и др.) подчиняются подчас одному и тому же математическому сценарию *. * См.: Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997. Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы — это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации — от низших и простейших к высшим и сложнейшим (человек, общество, культура). Одна из важнейших идей европейской цивилизации — идея развития мира. В своих простейших и неразвитых формах (преформизм, эпигенез, кантовская космогония) она начала проникать в естествознание еще в XVIII в. (см. 7.2 и 7.4). Но уже XIX в. по праву может быть назван веком эволюции. Сначала в геологии, затем биологии и социологии теоретическому моделированию развивающихся объектов стали уделять все большее и большее внимание. Но в науках физико-химического цикла идея развития пробивала себе дорогу очень сложно. Вплоть до второй половины XX в. в ней господствовала исходная абстракция закрытой обратимой системы, в которой фактор времени не играет роли. Даже переход от классической ньютоновской физики к неклассической (релятивистской и квантовой) в этом отношении ничего не изменил. Правда, в классической термодинамике был сделан некоторый робкий прорыв — введено понятие энтропии и представление о необратимых процессах, зависящих от времени. Этим самым в физические науки была введена «стрела времени». Но, в конечном счете, и классическая термодинамика изучала лишь закрытые равновесные системы, а неравновесные процессы рассматривались как возмущения, второстепенные отклонения, которыми следует пренебречь в окончательном описании познаваемого объекта. Проникновение идеи развития в геологию, биологию, социологию, гуманитарные науки в XIX - первой половине XX в. происходило независимо в каждой из этих отраслей познания. Философский принцип развития мира (природы, общества, человека) не имел общего, стержневого для всего естествознания (а также для всей науки) выражения. В каждой отрасли естествознания он имел свои (независимые от другой отрасли) формы теоретико-методологической конкретизации. Только к концу XX в. естествознание нашло теоретические и методологические средства для создания единой модели универсальной эволюции, выявления общих законов природы, связывающих в единое целое происхождение Вселенной (космогенез), возникновение Солнечной системы и нашей планеты Земля (геогенез), возникновение жизни (биогенез) и, наконец, возникновение человека и общества (антропосоциогенез). Такой моделью является концепция глобального эволюционизма. В этой концепции Вселенная предстает как развивающееся во времени природное целое, а вся история Вселенной от Большого Взрыва до возникновения человечества рассматривается как единый процесс, в котором космический, химический, биологический и социальный типы эволюции преемственно и генетически связаны между собой. Космохимия, геохимия, биохимия отражают здесь фундаментальные переходы в эволюции молекулярных систем и неизбежности их превращения в органическую материю. В концепции глобального эволюционизма подчеркивается важнейшая закономерность — направленность развития мирового целого на повышение своей структурной организации. Вся история Вселенной — от момента сингулярности до возникновения человека — предстает как единый процесс материальной эволюции, самоорганизации, саморазвития материи. Важную роль в концепции универсального эволюционизма играет идея отбора: новое возникает как результат отбора наиболее эффективных формообразований, неэффективные же инновации отбраковываются историческим процессом; качественно новый уровень организации материи окончательно самоутверждается тогда, когда он оказывается способным впитать в себя предшествующий опыт исторического развития материи. Эта закономерность характерна не только для биологической формы движения, но и для всей эволюции материи. Принцип глобального эволюционизма требует не просто знания временного порядка образования уровней материи, а глубокого понимания внутренней логики развития космического порядка вещей, логики развития Вселенной как целого. На этом пути очень важную роль играет так называемый антропный принцип. Содержание этого принципа в том, что возникновение человечества, познающего субъекта (а значит, и предваряющего социальную форму движения материи органического мира) было возможным в силу того, что крупномасштабные свойства нашей Вселенной (ее глубинная структура) именно таковы, какими они являются; если бы они были иными. Вселенную просто некому было бы познавать. Данный принцип указывает на глубокое внутреннее единство закономерностей исторической эволюции Вселенной, Универсума и предпосылок возникновения и эволюции органического мира вплоть до антропосоциогенеза. Согласно этому принципу существует некоторый тип универсальных системных связей, определяющих целостный характер существования и развития нашей Вселенной, нашего мира как определенного системно организованного фрагмента бесконечно многообразной материальной природы. Понимание содержания таких универсальных связей, глубинного внутреннего единства структуры нашего мира (Вселенной) дает ключ к теоретическому и мировоззренческому обоснованию программ и проектов будущей космической деятельности человеческой цивилизации. В настоящее время идея глобального эволюционизма — это не только констатирующее положение, но и регулятивный принцип. С одной стороны, он дает представление о мире как о целостности, позволяет мыслить общие законы бытия в их единстве, а с другой — ориентирует современное естествознание на выявление конкретных закономерностей глобальной эволюции материи на всех ее структурных уровнях, на всех этапах ее самоорганизации. 17. НА ПУТИ К ПОСТНЕКЛАССИЧЕСКОЙ НАУКЕ XXI в. На пороге XXI в. естествознание, по-видимому, вступает в новую историческую фазу своего развития — на уровень постнеклассической науки *. * См.:Cтепин B.C. Философская антропология и философия науки. М., 1992. Для постнеклассической науки характерно выдвижение на первый план междисциплинарных, комплексных и проблемно ориентированных форм исследований. В определении познавательных целей науки все чаще начинают играть решающую роль не внутринаучные цели, а внешние для науки цели — цели экономического, социального, политического, культурного характера. Объектами современных междисциплинарных исследований становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Исторически развивающиеся системы представляют собой более сложный тип объекта даже по сравнению с саморегулирующимися системами, так как с течением времени они формируют новые уровни своей организации, изменяют свою структуру, характеризуются принципиальной необратимостью процессов и т.п. Среди таких систем особое место занимают природные комплексы, в которые включен человек (объекты экологии, медико-биологические объекты, объекты биотехнологии, системы человек — машина и др.) Становление постнеклассической науки связано с изменением методологических установок естественно-научного познания: · формируются особые способы описания и предсказания возможных состояний развивающегося объекта — построение сценариев возможных линий развития системы (в том числе и в точках бифуркации); · идеал построения теории как аксиоматическо-дедуктивной системы все чаще сочетается с созданием конкурирующих теоретических описаний, основанных на методах аппроксимации, компьютерных программах и т.д.; · все чаще применяются методы исторической реконструкции объекта, сложившиеся в гуманитарном знании; · исследование развивающихся объектов требует изменения стратегии эксперимента: результаты экспериментов с объектом, находящимся на разных этапах развития, могут быть согласованы только с учетом вероятностных линий эволюции системы; в первую очередь это относится к системам, существующим лишь в одном экземпляре, — они требуют особой стратегии экспериментального исследования, поскольку нет возможности воспроизводить первоначальные состояния такого объекта; · нет свободы выбора эксперимента с системами, в которые непосредственно включен человек; · изменяются представления классического и неклассического естествознания о ценностно нейтральном характере научного исследования — современные способы описания объектов (особенно таких, в которые непосредственно включен человек) не только допускают, но даже предполагают введение аксиологических факторов в содержание и структуру способа описания (этика науки, социальная экспертиза программ и др.). Есть основания считать, что по мере развития науки все эти современные особенности естественно-научного познания будут проявлять себя в еще более контрастных и очевидных формах. Естествознание как революционизирующая сила цивилизации Естествознание — и продукт цивилизации, и условие ее развития. С помощью науки человек развивает материальное производство, совершенствует общественные отношения, воспитывает и обучает новые поколения людей, лечит свое тело. Прогресс естествознания и техники значительно изменяет образ жизни и благосостояние человека, совершенствует условия быта людей. Благодаря знанию законов природы человек может изменить и приспособить природные вещи и процессы так, чтобы они удовлетворяли его потребностям. Естествознание — один из важнейших двигателей общественного прогресса. Будучи основным фактором материального производства, естествознание выступает мощной революционизирующей силой. Великие научные открытия (и тесно связанные с ними технические изобретения) всегда оказывали колоссальное (и подчас совершенно неожиданное) воздействие на судьбы человеческой истории. Такими открытиями были, например, открытия в XVII в. законов механики, позволившие создать всю машинную технологию цивилизации; открытие в XIX в. электромагнитного поля и создание электротехники, радиотехники, а затем и радиоэлектроники; создание в XX в. теории атомного ядра, а вслед за ним открытие средств высвобождения ядерной энергии; раскрытие в середине XX в. молекулярной биологией природы наследственности (структуры ДНК) и появившиеся благодаря этому возможности генной инженерии по управлению наследственностью; и др. Большая часть современной материальной цивилизации была бы невозможна без участия в ее создании научных теорий, научно-конструкторских разработок, предсказанных наукой технологий и др. Однако у современных людей наука вызывает не только восхищение и преклонение, но и опасения. Часто можно услышать, что наука приносит человеку не только блага, но и величайшие несчастья. Загрязнение атмосферы, катастрофы на атомных электростанциях, повышение радиоактивного фона в результате испытаний ядерного оружия, «озонная дыра» над планетой, исчезновение многих видов растений и животных — все эти и другие экологические проблемы люди склонны объяснять самим фактом существования науки. Но дело не в науке, а в том, в чьих руках она находится, какие социальные интересы за ней стоят, какие общественные и государственные структуры направляют ее развитие. Нарастание глобальных проблем человечества повышает ответственность ученых за судьбы человечества. Вопрос об исторических судьбах и роли науки в ее отношении к человеку, перспективах его развития никогда так остро не обсуждался, как в настоящее время, в условиях нарастания глобального кризиса цивилизации. Старая проблема гуманистического содержания познавательной деятельности («проблема Руссо») приобрела новое конкретно-историческое выражение: может ли человек (и если может, то в какой степени) рассчитывать на науку в решении глобальных проблем современности? Способна ли наука помочь человечеству избавиться от того зла, которое несет в себе современная цивилизация, технологизируя образ жизни людей? Наука — это социальный институт, и он теснейшим образом связан с развитием всего общества. Сложность, противоречивость современной ситуации в том, что наука безусловно причастна к порождению глобальных, прежде всего экологических, проблем цивилизации (не сама по себе, а как зависимая от других структур часть общества); в то же время без науки, без дальнейшего ее развития решение всех этих проблем в принципе невозможно. Это значит, что роль науки в истории человечества постоянно возрастает, поэтому умаление роли науки, естествознания в настоящее время чрезвычайно опасно — оно обезоруживает человечество перед нарастанием глобальных проблем современности. К сожалению, такое умаление подчас имеет место, оно представлено определенными умонастроениями, тенденциями в системе духовной культуры. О некоторых из них надо сказать особо. Наука и квазинаучные формы духовной культуры Наука — компонент духовной культуры, поэтому процессы, которые происходят во всей системе культуры в той или иной форме отражаются и на науке. Так, всплеск в конце XX в. очередной исторической волны ремифологизации духовной культуры, обусловивший ограничение рациональной составляющей культуры в пользу иррациональных ее моментов, сказался и на современной науке. Это проявилось, в частности, в существовании постоянно усиливающейся в системе духовной культуры тенденции к образованию синкретических ментальных структур, в которых причудливо сочетаются элементы, принадлежащие, казалось бы, к совершенно различным, разделенным громадной исторической дистанцией и потому в принципе несовместимым, чуждым друг другу формам сознания — науке и мифологии. В пластах обыденного, массового и околонаучного сознания все большее место занимают паракультурные образования, некие духовные кентавры, в которых соседствуют и, более того, в чем-то дополняют друг друга научное и мифопоэтическое, логико-доказательное и мифологическое, рационально-теоретическое и иррационально-мистическое, предметно-практическое и суеверно-магическое. Эта тенденция приобретает черты масштабного культурного феномена, и есть несомненные основания утверждать, что в системе духовной культуры рельефно очерчиваются границы целостного корпуса квазинаучной мифологии как особого способа духовного освоения мира. «Классическая» квазинаучная мифологическая триада (невероятные появления лохнесского чудовища, поиски «снежного человека» и таинственные происшествия в Бермудском треугольнике) многократно расширилась и впитала в себя новые мифологемы — поиски НЛО, полтергейст, левитация, идеи реинкарнации («жизни после жизни», точнее говоря, после смерти) и др. Особенно многочисленны мифологемы в том, что касается истоков и судеб человеческой цивилизации, организации и населенности Вселенной, взаимодействий человеческой цивилизации с «над(вне)человеческими разумами» во Вселенной и др. И все это соседствует с бурным расцветом старых, традиционных форм оккультизма — магии, астрологии, спиритизма и др. Всплеск интереса к мистицизму, расцвет квазинаучного миротворчества, паракультурных форм сознания — не исключительно отечественное явление, а скорее явление мирового, общецивилизационного уровня. Бегство от материализма к мистике стало модой и для отечественного, и для зарубежного безбрежного скептицизма. Новые формообразования человеческого духа, демонстрирующие его неисчерпаемые творческие возможности, в любом их содержании можно было бы только приветствовать, если бы не одно обстоятельство. «Первопроходцы» квазинаучного мифотворчества пытаются выдать свою деятельность за особую, высшую форму познания, которая в ближайшее время будто бы заменит собой науку как систему экспериментального и теоретического исследовательского поиска; они все чаще подчеркивают, что такая наука «отжила свой век». Это определенный вызов науке, который она принимает с достоинством и ответственностью, хотя, к сожалению, не всегда достаточно активно. Научно-рациональный анализ квазинаучного мифотворчества показывает, что его возникновение обусловлено рядом определенных социокультурных корней. Укажем на два из них. Во-первых, любая культура множественна и целостна одновременно. В любой культуре, в том числе современной, существуют разные качественно своеобразные уровни, слои, пласты. Разумеется, исторические типы культуры различаются содержанием, структурой и др. Но в любую эпоху все индивиды, вовлеченные в систему воспроизводства и развития культурных ценностей, в своем сознании содержат компоненты всех имеющихся в данной культуре уровней, слоев и пластов. В полной мере это относится и к фольклору, народным верованиям, мифопоэтическим образам, предрассудкам и др. Пласты мифопоэтического сознания не чужды и образованным слоям общества, в частности ученым, прошедшим выучку, тренинг в системе научно-рационального, познавательного освоения мира. Такие вненаучные факторы накладывают свой отпечаток на толкование отдельными учеными некоторых проблем современной науки. Во-вторых, наука обязана сделать все, что в ее силах, для проверки и рациональной интерпретации паранормальных явлений и внести таким образом свой вклад в информированность и образованность широких кругов населения, в «окультуривание» массового сознания. Конечно, ученые не могут «выдворять» из сферы научного познания те или иные аномальные объекты. В истории науки множество примеров радикальных качественных сдвигов в способах познания при попытках осмысления и объяснения именно аномальных явлений. Ученый всегда должен быть открыт новым нетрадиционным, нестандартным поворотам мысли и объектам познания. Но он обязан оставаться при этом на платформе рационально-доказательного, обоснованного знания, научного (эмпирического и теоретического) исследования аномалий. Научный конструктивный скептицизм не должен перерастать в свою противоположность — в мифотворчество, облаченное в одежды науки. В мире еще много непознанного. Многие явления природы и самого человека, его биологической и духовный составляющих пока не получили убедительного научного объяснения и потому носят загадочный, таинственный характер. Так, не исследованы в достаточной мере физические и оптические явления в атмосфере, законы макроэволюции, общественного развития, энергетика человеческого организма, возможности и пороги ощущений и восприятий, сфера эмоциональных переживаний личности, формы общения, коммуникации, глубинные архетипическис структуры духовности и многое другое. Но наука не может сразу и немедленно решить все проблемы познания, немедленно объяснить все непонятное и загадочное. Наука — это не волшебный ключик, которым в одно мгновение можно раскрыть все тайны и загадки природы. Научное познание - это историческая деятельность , которая развивается по мере совершенствования не только целей, но и средств познания. Многие явления научно не объяснены и остаются загадочными не потому, что они в принципы непознаваемы, а потому, что пока не сформировались средства и методы, способы их познания. Однако можно быть уверенным в одном — все, что не познано сегодня, рано или поздно будет исследовано и объяснено в будущем, когда для этого сложатся соответствующие средства, способы познания. Основания этой уверенности — в истории естествознания, истории цивилизации, которые убедительно демонстрируют мощь и торжество человеческого мышления, научно-рационалистического (а не мистико-иррационалистического) отношения к миру. 1. Наука в системе культуры. Классификация наук. 2. Естествознание как отрасль научного познания. Уровни естественно-научного познания. 3. Проблема двух культур в науке: от конфронтации к сотрудничеству. 4. Методы естественно-научного познания. 5. Эволюционные и революционные периоды развития естествознания. 6. Накопление рациональных знаний в системе первобытного сознания. 7. Наука в цивилизациях древности. 8. Развитие естествознания в эпоху классической античности. 9. Естествознание эллинистически-римского периода. 10. Геоцентрическая система мира К. Птолемея. 11. Познание природы в эпоху Средневековья. 12. Мировоззренческая революция эпохи Ренессанса. 13. Коперниканская революция, ее мировоззренческое и методологическое значение. 14. Создание классической механики — первой естественно-научной фундаментальной теории. 15. Развитие естествознания в XVIII в. 16. Важнейшие открытия в естествознании первой половины XIX в. 17. Методологические установки классической физики. 18. Методологические установки классической астрономии. 19. Методологические установки классической биологии. 20. Теория электромагнитного поля. Вещество и поле. 21. Революция в естествознании на рубеже XIX—XX вв. 22. Основные идеи, понятия и принципы специальной теории относительности. 23. Основные идеи, понятия и принципы общей теории относительности. 24. Основные идеи, понятия и принципы квантовой механики. 25. Фундаментальные физические взаимодействия. 26. Мир элементарных частиц. Классификация элементарных частиц. 27. Теории элементарных частиц (квантовая электродинамика, теория кварков, теория электрослабого взаимодействия, квантовая хромодинамика). 28. Проблема единства физики. На пути к Великому объединению. 29. Методологические установки неклассической физики. 30. Солнечная система и ее происхождение. 31. Звезды и их эволюция. 32. Общее представление о галактиках и их изучении. Понятие Метагалактики. 33. Формирование релятивистской космологии; ее основные понятия и принципы. 34. Эволюция Вселенной. Модель «горячей Вселенной». 35. Жизнь и разум во Вселенной: проблема внеземных цивилизаций. 36. Антропный принцип в космологии. 37. Методологические установки неклассической астрономии XX в. 38. Основные особенности биологии XX в. 39. Основные понятия и представления генетики. 40. Создание синтетической теории эволюции. Основные идеи, понятия и принципы синтетической теории эволюции. 41. Революция в молекулярной биологии. Достижения молекулярной биологии и генетики в XX в. 42. Методологические установки неклассической биологии. 43. Особенности живых систем. 44. Основные уровни организации живого (общая характеристика). 45. Молекулярно-генетический уровень организации живого. 46. Онтогенетический уровень организации живого. 47. Популяционно-видовой уровень организации живого. 48. Биоценотический уровень организации живого. 49. Возникновение жизни на Земле. Мировоззренческое значение проблемы происхождения жизни. 50. Развитие органического мира (начальные этапы эволюции жизни). 51. Развитие органического мира (основные пути эволюции растений и животных). 52. Современный экологический кризис и пути его преодоления. 53. Проблема происхождения человека и общества, ее мировоззренческое значение. 54. Предпосылки (биотические и абиотические) возникновения человека и общества. 55. Возникновение труда и социальных отношений. 56. Генезис сознания и языка. 57. Проблема самоорганизации систем живой и неживой природы. 58. Понятия и принципы синергетики. 59. Характеристики самоорганизующихся систем (открытость, нелинейность, диссипативносгь). 60. Синергетика о закономерностях системной самоорганизации. 61. Принцип глобального эволюционизма. 62. Формирование постнеклассической науки XXI в. 63. Наука и квазинаучные формы духовной культуры. Азимов А. Краткая история химии. Развитие идей и представлений в химии. М.,1983. Астрономия. Методология. Мировоззрение. М., 1979. Баженов Л.Б. Строение и функции естественно-научной теории. М., 1978. Барашенков В. С. Существуют ли границы науки. М., 1982. Биология и современное научное познание. Ч. 1, 2. М., 1975. Биология в познании человека. М., 1989. Биоэтика: проблемы и перспективы. М., 1992. Бор Н. Атомная физика и человеческое познание. М., 1961. Борн М. Эйнштейновская теория относительности. М., 1964. Браун М.А; Яппа Ю.А., Козырев А.Н. и др. Физика на пороге новых открытий. М.,1990. Вайнберг С. Первые три минуты. М., 1981. Вернадский В.И. Химическое строение биосферы Земли и ее окружения. М., 1965. Взаимодействие методов естественных наук в познании жизни. М., 1976. Гайденко П.П. Эволюция понятия науки. М., 1980. Гинзбург В.Л. О теории относительности. М., 1979. Глобальный эволюционизм. М., 1994. Гудолл Дж. Шимпанзе в природе: поведение. М., 1992. Данин Д.С. Вероятностный мир. М., 1981. Джуа М. История химии. М., 1966. Дорфман Я.Г. Всемирная история физики с начала XIX века до середины XX века. М., 1979. Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. М., 1975. История биологии. С древнейших времен до начала XX века. М.. 1972. История биологии. С начала XX века до наших дней. М., 1976. Капра Ф. Дао физики. СПб., 1994. Карпинская Р.С. Человек и его жизнедеятельность. (Философско-публицистические очерки). М., 1988. Кедров Б.М. Классификация наук. Т. 1, 2. М., 1989. Кемп П., Армс К. Введение в биологию. М., 1986. Кемпфер Ф. Путь в современную физику. М., 1972. Клейн М. В поисках истины. М., 1987. Князева Е.Н., Курдюмов С. П. Законы эволюции и самоорганизации сложных систем. М., 1994. Концепции самоорганизации: становление нового образа научного мышления. М.,1994. Лауэ фон М. История физики. М., 1956. Либберт Э. Общая биология. М., 1978. Лъоцци М. История физики. М., 1972. Майр Э. Популяции, виды и эволюция. М., 1974. Мак-Фарленд Д. Поведение животных. Психобиология, этология и эволюция. М.,1988. Мандельштам Л.И . Лекции по оптике, теории относительности и квантовой механике. М.,1972. Медников Б.М. Аксиомы биологии. М., 1986. Методологический анализ теоретических и экспериментальных оснований физики гравитации. Киев, 1973. Моисеев Н.Н. Человек и биосфера. М., 1990. Мэрион Дж.Б. Физика и физический мир. М., 1975. Наумов А.И. Физика атомного ядра и элементарных частиц. М., 1984. Найдыш В.М. Научная революция и биологическое познание. М., 1987. Небел Б. Наука об окружающей среде. Как устроен мир. М., 1993. Николис Г., Пригожин И. Познание сложного. М., 1990. Новиков И. Д. Эволюция Вселенной. М., 1979. О специфике биологического познания. М., 1987. Поведение приматов и проблемы антропогенеза. М., 1991. Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986. Пригожин И., Стенгерс И. Время, Хаос и Квант. М., 1994. Пригожин И. От существующего к возникающему. М.; 1985. Проблема поиска жизни во Вселенной. М., 1986. Пути интеграции биологического и социогуманитарного знания. М., 1984. Развитие концепции структурных уровней в биологии. М., 1972. Реймерс Н.Ф. Надежды на выживание человечества. Концептуальная экология. М., 1992. Розенталь И.Л. Элементарные частицы и структура Вселенной. М., 1984. Рузавин Г.И. Методы научного исследования. М., 1975. Самоорганизация в науке: опыт философского осмысления. М., 1994. Силк Дж. Большой Взрыв. М., 1982. Соловьев Ю.И. История химии. М., 1983. Степин В.С. Философская антропология и философия науки. М., 1992. Спасский Б.И. Физика для философов. М., 1989. Тимофеев-Ресовский Н.В., Воронцов Н.Н., Яблоков А.В. Краткий очерк теории эволюции. М., 1977. Тинберген Н. Социальное поведение животных. М., 1993. Фейнберг Дж. Из чего сделан мир? М., 1981. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М., 1965. Фейнман Р. Характер физических законов. М., 1987. Философские проблемы астрономии XX века. М., 1976. Философские аспекты глобальной экологии. М., 1989. Фридман А.А. Мир как пространство и время. М., 1965. Фролов И.Т. Перспективы человека. М., 1983. Фундаментальная структура материи. М., 1984. Хакен Г. Синергетика. М., 1980. Хокинг С. От Большого Взрыва до черных дыр. Краткая история времени. М., 1990. Ценности познания и гуманизация науки. М., 1992. Человек, космос, эволюция. М., 1992. Чижевский А.Л. Земное эхо солнечных бурь. М., 1976. Швейцер А. Благоговение перед жизнью. М., 1992. Шкловский И.С. Вселенная, жизнь, разум. М., 1974. Шмутцер Э. Теория относительности - современное представление. Путь к единству физики. М., 1981. Штрубе В. Пути развития химии. Т. 1, 2. М., 1984. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965. Эйнштейн А. Физика и реальность. М., 1965. Энгелъгардт В.А. Познание явлений жизни. М., 1984. Эстетика природы. М., 1994. Аберрация : 1) оптических систем — погрешности изображений, даваемых оптическими системами. Проявляется в том, что оптические изображения в ряде случаев не вполне отчетливы, не точно соответствуют объекту или оказываются окрашенными; 2) света (в астрономии) — изменение направления светового луча, идущего от небесного светила, вследствие конечности скорости света и движения наблюдателя относительно светила. Аберрация света вызывает смещение видимого положения светила на небесной сфере. Абиотические факторы среды — совокупности условий неорганической среды, влияющих на организмы. Они делятся на химические, физические, космические, геолого-географические, климатические и др. Абиогенез — теории возникновения живых существ из веществ неорганической природы. Абсолютно черное тело — тело, полностью поглощающее все падающее на него излучение. Это понятие играет фундаментальную роль в теории излучения. Интенсивность излучения единицы его поверхности является универсальной функцией частоты света и температуры тела; в частности, она не зависит от формы тела и направления излучения. Автогенез — учение, стремящееся объяснить эволюцию организмов действием только внутренних факторов. Автотрофы (аутотрофы) —организмы, синтезирующие из неорганического вещества необходимые для жизни органические вещества. К автотрофам относятся высшие растения (кроме паразитных и сапрофитных), водоросли и некоторые бактерии; синтез органических соединений из неорганических может осуществляться за счет солнечной энергии (фотосинтез) и за счет энергии некоторых химических реакций (хемосинтез). Агностицизм — учение, отрицающее возможность объективного познания мира, достижения объективной истины. Адаптация — процесс приспособления строения и функций организмов (особей, популяций, видов) и их органов к условиям среды. Аддитивность — свойство величин, состоящее в том, что значение величины, соответствующее целому объекту (системе), равно сумме значений величин, соответствующих его частям, при любом разбиении объекта на части. Адроны — общее название семейства элементарных частиц, обладающих сильным взаимодействием. Семейство адронов включает в себя барионы и мезоны (мезонные резонансы и соответствующие античастицы). Аккреция — падение вещества на космическое тело (звезду, галактику и др.) из окружающего пространства. Аксиология — теория ценностей. Анизотропия — зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления. В противоположность изотропии . Аннигиляция — превращение частицы и античастицы при столкновении в другие частицы. Антропоцентризм — воззрение, согласно которому человек есть центр и высшая цель мироздания. Аридный климат — засушливый климат, климат пустынь и полупустынь. Ароморфоз (арогенез) — морфо-физиологический прогресс, одно из главных направлений биологического прогресса живых существ, при котором в ходе эволюции усложняется их организация; качественный скачок в развитии живых существ, повышающий как уровень организации, так и приспособленность вида к новым условиям, что способствует расширению его ареала (например, переход от рептилиеподобных к млекопитающим). После изменений по типу ароморфоза наступает период образования частных приспособительных изменений — идиоадаптаций. Астрономическая единица длины — мера расстояний до космических объектов, равная среднему расстоянию от Земли до Солнца. Ауторепродукция — самовоспроизведение. Барионы — общее название адронов с полуцелым спином. К барионам относятся нуклоны, гипероны, барионные резонансы. Барионы состоят из 3 кварков, связь между которыми осуществляется глюонным полем. Барстеры — вспыхивающие рентгеновские источники с периодом повторения вспышек от нескольких часов до нескольких дней. Обнаружены в 1975 г. Биогенез: 1) процесс возникновения, зарождения живого; 2) теории, отрицающие появление жизни на Земле в результате возникновения живых существ из неживой материи (в противоположность абиогенезу ). Биогенетический закон — закономерность живой природы, состоящая в том, что индивидуальное развитие особи (онтогенез ) является коротким и быстрым повторением важнейших этапов эволюции вида (филогенез ). Биогеоценоз — взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом вещества и энергии; одна из наиболее сложных природных систем. Биология развития (онтогенетика) — раздел биологии, изучающий процессы и движущие силы индивидуального (или онтогенетического) развития организма. Бионт — отдельно взятый организм, приспособившийся в ходе эволюции к обитанию в определенной среде (биотопе). Биосфера — оболочка Земли, состав, структура и энергетика которой обусловлены прошлой или современной деятельностью живых организмов. Биосфера охватывает часть атмосферы, гидросферу и верхнюю часть литосферы, которые связаны сложными биохимическими циклами миграции вещества и энергии. В пределах биосферы везде встречается либо живое вещество, либо следы его биохимической активности. Биотические факторы среды — совокупность влияний, оказываемых на организмы жизнедеятельностью других организмов. Биоценоз — совокупность растений, животных, микроорганизмов, населяющих часть суши или водоема и характеризующихся определенными отношениями как между собой, так и абиотическими факторами. Валентность — способность атома к образованию химических связей. Вегетативный — растительный. Термин, имеющий ряд значений в морфологии и физиологии растений и животных (вегетативные функции — питание, рост и др.; вегетативные органы — корень, стебель, лист и др.). Вектор — направленный отрезок, т.е. отрезок, у которого указаны начало (точка приложения вектора) и конец. Векторное поле — область, в каждой точке Р которой задан вектор а(Р). Виртуальные частицы — частицы, существующие в промежуточных, имеющих малую длительность состояниях, для которых не выполняется обычные соотношения между энергией, импульсом и массой. Другие характеристики виртуальных частиц (электрический заряд, спин, барионный заряд и др.) такие же, как у соответствующих реальных частиц. Витализм — идеалистическое течение в биологии, допускающее наличие в организмах нематериальной жизненной силы. Внеатмосферная астрономия — раздел астрономии, использующий для исследований астрономические инструменты, поднимаемые за пределы плотной атмосферы. Волновая функция — в квантовой механике величина, полностью описывающая состояние микрообъекта (например, электрона, протона, атома, молекул) и вообще любой квантовой системы (например, кристалла). Волны — изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. В виде волн осуществляется перенос энергии без переноса вещества. Волны могут различаться по тому, как возмущение ориентировано относительно направления их распространения. Продольными называются волны, у которых направление возмущения среды совпадает с направлением распространения волны (например, звуковые волны). Поперечными называются волны, у которых направление возмущения среды перпендикулярно направлению распространения волны. Гаметы — половые, или репродуктивные, клетки животных и растений, обеспечивающие при слиянии развитие новой особи и передачу наследственных признаков от родителей потомкам. Гаплоидный — одинарный набор хромосом половых клеток, составляющий половину диплоидного набора соматических клеток. Гелиоцентризм — учение, согласно которому Земля и другие планеты обращаются вокруг Солнца и, кроме того, Земля вращается вокруг своей оси. Генезис — происхождение, возникновение. Генотип — совокупность всех генов, локализованных в хромосомах данного организма; совокупность всех наследственных факторов организма; генотип определяет фенотип. Генофонд — качественный состав и относительная численность разных форм (аллелей) различных генов в популяциях того или иного вида организмов. Геоцентризм — воззрение, согласно которому Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг нее. Гетерозис — ускорение роста и увеличение размеров, повышение жизнестойкости и плодовитости гибридов первого поколения при различных скрещиваниях как животных, так и растений. Во втором и последующих поколениях гетерозис обычно затухает. Гетеротрофные организмы (гетеротрофы) — организмы, использующие для своего питания готовые органические соединения (в отличие от автотрофов). К гетеротрофам относятся все животные и человек, а также некоторые растения (грибы, паразиты и др.) и микроорганизмы. Гносеология — теория познания. Гоминиды — семейство отряда приматов. Включает современного человека и ископаемых людей (хабилисов, питекантропов, синантропов, неандертальцев). Гомология — сходство организмов, построенных по одному плану и развивающихся из одинаковых зачатков у разных животных и растений; такие гомологичные органы могут быть неодинаковы по внешнему виду и выполнять различные функции. Гравитационное излучение — излучение гравитационных волн неравномерно движущимися массами (телами). Пока экспериментально не обнаружено. Гравитационный коллапс — катастрофически быстрое сжатие звезды под действием собственных сил тяготения. Градация — принцип совершенствования, ступенчатости развития от простого к сложному в биологическом мире. Градиент — вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой. Группа — одно из основных понятий современной математики. Теория групп изучает свойства (математических, геометрических) действий (умножение чисел, сложение векторов, последовательное выполнение преобразований и др.) в их чистом виде, отвлекаясь как от природы элементов, над которыми выполняются действия, так и от природы самого действия. Теория групп распадается на ряд разделов — теория конечных групп, теория Абелевых групп, групп преобразований, топологических групп и др. Деизм — воззрение, согласно которому Бог, сотворив мир, не принимает в нем какого-либо участия и не вмешивается в закономерное течение его событий. Деферент — вспомогательная окружность в геоцентрической системе мира К. Птолемея, введенная для объяснения сложных движений планет. Предполагается, что по деференту, в центре которого находилась Земля, обращается не планета, а центр другой вспомогательной окружности — эпицикл ; планета же движется по эпициклу. Дивергенция — расхождение признаков организмов в ходе эволюции. Дисперсия света — зависимость показания преломления вещества от частоты (длины волны) света. Следствие дисперсии — разложение в спектр белого света при прохождении сквозь призму. Диссипация — рассеивание атмосферы планет вследствие улетучивания составляющих их газов в космическое пространство. Дифракция волн — явление, наблюдаемое при похождении волн мимо края препятствия, связанное с отклонением волн от прямолинейного распространения при взаимодействии с препятствием. Из-за дифракции волны огибают препятствие, проникая в область геометрической тени. Диплоидный — двойной набор хромосом соматических клеток; в отличие от одинарного, гаплоидного набора половых клеток. Дипольное излучение — излучение электромагнитных волн, обусловленное изменением во времени электрического дипольного момента. Дипольный момент — физическая величина, характеризующая электрические свойства системы заряженных частиц. Допплера эффект — изменение частоты колебаний или длины волн, воспринимаемых наблюдателем (приемником колебаний), вследствие движения источника волн и наблюдателя относительно друг друга. Дуализм — философское учение, исходящее из признания равноправными, не сводимыми друг к другу двух начал—духа и материи, идеального и материального. Дуальная организация — сочетание двух экзогамных родов в постоянное взаимнобрачное объединение. Жгутиковые — одноклеточные и колониальные организмы, имеющие жгутики в качестве органов движения. Некоторые группы жгутиковых ботаники относят к растениям, а зоологи — к животным. Звездные скопления — гравитационно связанные группы звезд, имеющих общее происхождение; движутся в поле тяготения галактики как единое целое. Зороастризм — религия, распространенная в древности и средневековье на Ближнем и Среднем Востоке, а в настоящее время у некоторых народов Ирана и Индии. Названа по имени пророка Зороастра (VI в. до н.э.). Священный канон зороастризма — «Авеста». Идеоадаптация — одно из главных направлений эволюции, при котором возникают частные изменения строения и функций органов при сохранении в целом уровня организации предковых форм. Изотопы — разновидности одного и того же элемента, отличающиеся массой ядер при одинаковом атомном номере (заряде ядра). Изотропия — одинаковость физических свойств среды по всем направлениям (в противоположность анизотропии ). Инадаптапия — совокупность несовершенных приспособлений, возникающая у отдельных групп животных в ходе эволюции и обусловливающая впоследствии вымирание этих групп. Интерференция волн — сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны. Инцухт — близкородственное скрещивание организмов. То же, что инбридинг . Конвергенция (в биологии) — схождение признаков в процессе эволюции неблизкородственных групп организмов, приобретение ими сходного строения в результате существования в сходных условиях и одинаково направленного естественного отбора. Координаты астрономические . Подавляющее большинство координатных систем в астрономии основываются на понятии небесной сферы. Прямая, проходящая через центр сферы параллельно оси вращения Земли, называется осью мира и пересекает сферу в полюсах мира. Большой круг небесной сферы, плоскость которого перпендикулярна оси мира, называется небесным экватором. Плоскость, параллельная плоскости орбиты Земли, называется эклиптикой. Эклиптика пересекается с небесным экватором в точках весеннего и осеннего равноденствия. Космогония — наука о происхождении и развитии космических тел и их систем (звезд, звездных скоплений, галактик, туманностей, Солнечной системы и всех входящих в нее тел). Космология — наука о Вселенной как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной как части целого. Красное смещение — увеличение длин волн линий в спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Креационизм — религиозная концепция, трактующая многообразие форм органического мира как результат творения их Богом. Кроссинговер — взаимный обмен участками парных хромосом, происходящий в результате разрыва и соединения в новом порядке их нитей; приводит к перераспределению (рекомбинации) сцепленных генов; механизм, обеспечивающий комбинаторную изменчивость, а следовательно, — один из главных факторов эволюции. Латеральный — боковой; расположение какой-либо части целого в стороне от его срединной плоскости. Лептоны — общее название класса элементарных частиц, не обладающих сильным взаимодействием, т.е. участвующих лишь в электромагнитном, слабом и гравитационном взаимодействиях. Мазер — квантовые генераторы и усилители радиодиапазона (усиление радиоволн с помощью индуцированного излучения). Математическая модель — описание какого-либо класса явлений, выраженное с помощью математической символики; мощный метод познания. Математическая физика — теория математических моделей физических явлений. Мейоз — способ деления клеток, в результате которого происходит уменьшение числа хромосом в два раза и одна диплоидная клетка (содержащая два набора хромосом) после двух быстро следующих друг за другом делений дает начало четырем гаплоидным (содержащим по одному набору хромосом) клеткам. Межзвездная пыль — мелкие твердые частицы, рассеянные в межзвездном пространстве. Мезоны — нестабильные сильно взаимодействующие частицы (адроны ) с нулевым барионным зарядом; состоят из кварка и антикварка. Мергель — осадочная горная порода, состоящая из кальцита или доломита и глинистых минералов. Метрика пространства-времени — геометрические свойства четырехмерного пространства-времени (объединяющего физическое трехмерное пространство и время) в теории относительности. В соответствии с общей теорией относительности метрика пространства-времени зависит от находящейся в нем материи. Механицизм — односторонний метод познания и миропонимания, основывающийся на представлении о том, что все многообразные формы движения материи могут быть сведены к закономерностям одной механической формы движения. Митоз — наиболее распространенный способ воспроизведения клеток, обеспечивающий тождественное распределение генетического материала между дочерными клетками и преемственность хромосом в ряду клеточных поколений. В митозе хромосомы удваиваются путем продольного расщепления их и равномерного распределения между дочерними клетками. Модификации (в биологии ) — ненаследственное изменение признаков организма, возникающее под влиянием изменившихся условий внешней среды. Морфогенез — возникновение и развитие органов, систем и частей тела организмов как в индивидуальном, так и в историческом развитии. Мутагенез — процесс возникновения наследственных изменений — мутаций, появляющихся спонтанно или вызываемых различными физическими и химическими факторами — мутагенами. Мутации — стойкие изменения наследственных структур живой материи, ответственных за хранение и передачу генетической информации. Натурфилософия — умозрительное истолкование природы, рассматриваемой в ее целостности. Небесная механика — раздел астрономии, изучающий движения тел Солнечной системы в гравитационном поле. Небесная сфера — воображаемая вспомогательная сфера произвольного радиуса, на которую проектируются небесные светила; служит для решения различных астрономических задач. Небесные координаты — числа, с помощью которых определяют положение светил и вспомогательных точек на небесной сфере . См. координаты астрономические . Нейтринная астрономия — астрономические методы регистрации космических нейтрино. Нестационарные звезды — характеризуются заметными изменениями физического состояния внешних слоев в сравнительно короткие интервалы времени, что проявляется в изменении их спектров. Нуклеотиды — молекулы, состоящие из пяти азотистых оснований (цитозин, урацил, тимин, аденин и гуанин), рибозы (или дезоксирибозы) и остатка фосфорной кислоты. Нуклеотиды могут соединяться между собой, образуя полинуклеотиды (нуклеиновые кислоты ). Нуклеиновые кислоты — важнейшие биологически активные биополимеры, имеющие универсальное распространение в живой природе. Различают два типа нуклеиновых кислот: • дезоксирибонуклеиновая кислота (ДНК), содержащаяся преимущественно в ядрах клеток; ДНК является тем генетическим материалом, в последовательности структуры которой записана наследственная информация всех живых организмов; • рибонуклеиновая кислота (РНК), находящаяся главным образом в цитоплазме. Нуклоны — общее название для протонов и нейтронов — частиц, образующих атомные ядра. Обобщение — форма приращения знания путем мысленного перехода от частного к общему, который обычно сопровождается и переходом на более высокую ступень абстракции. Оккультизм — общее название учений, признающих существование скрытых сил в человеке и космосе, недоступных для обычного человеческого опыта, но доступных для «посвященных», прошедших особую психическую тренировку, инициацию. Онтогенез — индивидуальное развитие организма; последовательность морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. Онтология — раздел философии, изучающий всеобщие основы, принципы бытия в целом, его структуру и закономерности. Оператор — математическое понятие, означающее соответствие между элементами двух множеств Х и У, относящее каждому элементу х из Х некоторый элемент у из У. Органицизм (организмизм) — методологический принцип, одна из форм целостного подхода к изучению объектов органической природы. В основе органицизма — идея о том, что организм обладает специфическими свойствами, обеспечивающими его целостность, и особыми законами организации, которые могут быть выявлены лишь на уровне целого. Осадочные горные породы — горные породы, возникающие путем осаждения вещества в водной среде, реже из воздуха, и в результате деятельности ледников на поверхности суши, в морских и океанических бассейнах. Осадочные горные породы разделяются на обломочные, химические и биогенные. Осциллятор — физическая система, совершающая колебания. Палеоботаника — отрасль биологии, изучающая ископаемые растения. Палеоантропология — раздел антропологии, изучающий физический тип и эволюцию ископаемых людей. Палеолит — древний каменный век. Начало палеолита —около 2 млн лет назад. Конец палеолита датируется 12—10 тыс. лет назад. Палеонтология — наука об организмах минувших геологических периодов, сохранившихся в виде ископаемых остатков, следов их жизнедеятельности и др. Панспермия — гипотеза занесения живых существ на Землю из Космоса. Пантеизм — философское учение, отождествляющее Бога и мир. Параллакс (в астрономии) — видимое перемещение светил на небесной сфере, обусловленное перемещением наблюдателя в пространстве вследствие вращения Земли (суточный параллакс), обращения Земли вокруг Солнца (годичный параллакс) и движения Солнечной системы в Галактике (вековой параллакс). Парсек (пк) — применяемая в астрономии единица длины. Звезда, расположенная на расстоянии 1 пк, имеет годичный параллакс, равный одной угловой секунде. (1 пк = 3,26 световых лет ). Применяются и более крупные единицы: килопарсек (кпк), равный 1000 пк, и мегапарсек (Мпк), равный 1 млн пк. Пептиды — органические вещества, состоящие из остатков одинаковых или различных аминокислот, соединенных пептидной связью. По типу аминокислотных остатков различают ди, -три, -тетрапептиды, а также полипептиды. Молекула пептидов представляет собой линейную или развлетвленную цепь с аминогруппой на одном конце и карбоксильной группой (—СООН) на другом конце цепи. К пептидам относятся многие природные биологически активные вещества, а также некоторые гармоны (инсулин и др.), антибиотики и др. Переменные звезды — звезды, у которых наблюдаются колебания блеска. Перигелий — ближайшая к Солнцу точка орбиты небесного тела, движущегося вокруг Солнца. Вследствие действия возмущающих сил планет происходит изменение положения перигелия в пространстве (прецессия). Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Планетарные туманности — система из звезды, называемой ядром туманности, и симметрично окружающей ее светящейся газовой оболочки. Позитивизм — философское направление, исходящее из тезиса о том, что все подлинное «положительное» (позитивное) знание может быть получено лишь как результат отдельных специальных наук или их синтетического объединения и что философия как особая наука, претендующая на самостоятельное исследование реальности, не имеет права на существование. Поляризация света — одно из фундаментальных свойств света, состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). Популяция — совокупность особей одного вида, более или менее длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений; особи одной популяции имеют большую вероятность скрещиваться друг с другом, чем с особями других популяций. Популяционная генетика — раздел генетики, изучающий генетическое строение и динамику генетического состава популяций. Преформизм — учение о наличии в половых клетках организмов материальных структур, предопределяющих развитие зародыша и признаки образующегося из него организма. Пролиферация — разрастание системы путем новообразований ее элементов и их размножения. Профанный — мирской, несвященный, противоположный сакральному. Пульсары — источники космического радиоизлучения с очень большой стабильностью периода. Радиоастрономия — раздел астрономии, изучающий различные космические объекты методом исследования их электромагнитного излучения в диапазоне радиоволн (от миллиметровых до километровых). Радиогалактики — галактики, являющиеся источниками мощного электромагнитного излучения в радиодиапазоне. Редупликация конвариантная — самовоспроизведение с изменениями, осуществляемое на основе матричного принципа синтеза макромолекул (ДНК, РНК). Рекомбинация (в газе, плазме) — процесс, обратный ионизации, состоит в захвате ионом свободного электрона; приводит к уменьшению заряда иона или превращению иона в нейтральный атом (или молекулу). Релятивный — относительный. Рентгеновская астрономия — раздел астрономии, исследующий космические объекты по их рентгеновскому излучению в диапазоне длин электромагнитных волн от 100 до 0,1 ангстрем. Рибосомы — немембранные клеточные органоиды; являются обязательными структурными компонентами цитоплазмы клеток растений и животных; осуществляют функцию синтеза белковых молекул из аминокислот. Сакральный — священный; противоположный профанному. Сальтация — скачок, спонтанное качественное изменение системы (например, генов). Светимость в астрономии — полная энергия, излучаемая источником в единицу времени. Световой год — единица расстояния, равная пути, проходимому светом за один год. Световой год равен 0,3 пк. Сингулярность — начальное сверхплотное состояние Вселенной. Синкретизм — нерасчлененность, характеризующая неразвитое состояние какой-либо системы. Спектр в физике — совокупность различных значений, которые может принимать данная физическая величина. Спектр может быть прерывным и непрерывным (дискретным). Наиболее часто понятие спектра применяется к колебательным процессам (спектр колебаний, спектр звука, спектры оптические и т.д.). Спектральные классы звезд - классы звезд, установленные по особенностям их спектров. Спектральные линии — узкие участки в спектрах, на которых интенсивность излучения усилена либо ослаблена по сравнению с непрерывным спектром. Стратиграфия — раздел геологии, изучающий последовательность формирования геологических тел и их первоначальные пространственные взаимоотношения. Таксон — подразделение биологической систематики. Телеология (в биологии) — идеалистическое учение, согласно которому живые организмы целесообразно сотворены высшей силой, Богом. Тензор — математическая величина, преобразующаяся по особому закону; является развитием и обобщением понятий скаляра и вектора . Тензор задается несколькими числами (компонентами тензора). Законы преобразования этих чисел более сложные, чем для вектора, и определяются в тензорных исчислениях. Теология — богословие, совокупность религиозных доктрин о сущности и действии Бога, построенная в формах умозрения на основе текстов, принимаемых как божественное откровение. Универсум — вся объективная реальность, во времени и пространстве; в зависимости от трактовок реальности может не совпадать с понятиями «мир» и «Вселенная». Фаги (бактериофаги, бактериальные вирусы) — доклеточные формы живого; прокариоты (доядерные). Фенотип — совокупность всех признаков организма, обусловленные его генотипом . Филогенез — процесс исторического формирования некоторой систематической группы организмов (таксона ). Флаттер — процесс спонтанного разрушения конструкций (например, самолетов) в экстремальных условиях. Флуктуация — случайное отклонение системы от ее закономерного состояния. Фотоэффект — освобождение электронов вещества при поглощении веществом электромагнитного излучения (фотонов). Холизм : 1) принцип целостности; 2) идеалистическая концепция, согласно которой миром управляет процесс творческой эволюции, созидающий новые целостности. Хромосомы — элементы ядра клетки, содержащие гены (молекулы ДНК); ДНК хромосом содержит информацию о наследственности и отвечает за передачу ее вновь образованным клеткам. Цитология — раздел биологии, изучающий клетки живых организмов. Цитоплазма — одна из основных частей клетки; живая коллоидальная система с упорядоченной субмикроскопической структурой; содержит все органоиды и обусловливает жизнедеятельность клетки в целом. В%2Эквант (в геоцентрической системе Птолемея) —точка, из которой обращение центра эпицикла кажется равномерным. Эклектика — соединение разнородных взглядов, идей, принципов или теорий. Эклиптика — большой круг небесной сферы, по которому проходит видимое годичное движение центра Солнца. Плоскость эклиптики образует с плоскостью небесного экватора угол 23°27'. Эмбриогенез — возникновение и развитие зародыша организма. Эпигенез — учение о зарождении организмов, противоположное преформизму; согласно эпигенезу, качественная структура нового организма не предопределена в зародыше, а постепенно формируется по мере его роста, в эмбрионе происходит постепенное формирование «гетерогенного из гомогенного». Эпицикл — вспомогательная окружность в геоцентрической системе мира К. Птолемея, введенная для объяснения сложных движений планет. Предполагалось, что планета двигалась не непосредственно вокруг Земли, а эпициклу. В свою очередь центр эпицикла двигался по второй вспомогательной окружности — деференту, центр которого либо совпадал с центром Земли, либо был близок к нему. Экстраполяция — перенесение характеристик (в том числе и количественных) некоторой системы за ее границы, на другие системы и явления. Ядерная астрофизика — изучает роль процессов микромира в космических явлениях (ядерные процессы в звездах и других космических объектах, приводящие к выделению энергии и образованию химических элементов). Ядерные силы — силы, действующие между нуклонами , представляют собой проявление сильного взаимодействия — одного из фундаментальных физических взаимодействий. Ядро (в биологии) — самый заметный и самый большой органоид клетки, обеспечивающий важнейшие метаболические и генетические ее функции. Августин Блаженный (354—430) — христианский теолог, представитель западной патристики 141 Авенариус Рихард (1843-1896) -швейцарский естествоиспытатель и философ-идеалист 240 Aвeppoэc , см. Ибн Рушд Авиценна, см.Ибн Сина Авогадро Амедео (1776-1856) -итальянский физик и химик 207, 231 Агассис Жан Луи Родалъф (1807-1873) — швейцарский естествоиспытатель 215, 244 Агрикола Георгий (1494-1555) -немецкий врач, металлург, химик, филолог 204 Адамс Джон Кауч (1819-1892) -английский астроном 242 Адансон Мишель (1727-1806) — французский ботаник 209 Азархиель , см. аз-Зеркали Азелли Гаспере (1581-1626) - итальянский анатом, физиолог и хирург 145 Александр Македонский (356—323 до н,э.) — один из величайших полководцев и государственных деятелей древнего мира 96, 10, 101 Алкмеон Кротонский (VI в. до н.э.) — древнегреческий врач и натурфилософ 115 Альберт Великий (1193-1280) - схоласт, епископ, учитель Фомы Аквинского 137 Альдрованди Улиссе (1522-1605) -итальянский натуралист 145 Альфонсо Х Мудрый (1221-1284) -король Кастилии и Леона 147 Ампер Андре Мари (1775-1836) -французский физик и математик 235, 236 Анаксимандр (ок. 610—546 до н.э.) — древнегреческий философ 83, 84, 111 Анаксимен (ок. 585 — ок. 525 до н.э.) — древнегреческий философ 83, 84 Аполлоний Пергский (ок. 260—170 до н.э.) — древнегреческий математик 103, 108 Араго Доминик Франсуа (1776-1853) — французский астроном, физик и политический деятель 182, 183 Аристарх Самосский (ок. 320 — ок. 250 до н.э.) - древнегреческий астроном 89, 108. 110, 149, 157 Аристилл (IV—III вв. до н.э.) — древнегреческий астроном 108 Аристотель (384—322 до н.э.) -древнегреческий философ и ученый 99-99,104,107, 113-115, 118,126, 128 131, 135 Арнальдо да Вилланова (1250— 1313) — итальянский врач, алхимик 137 Ароматари Джузеппе (1586— 1660) — итальянский ботаник 146 Аррениус Сванте Август (1859— 1927) - шведский физико-химик 373 Архимед (ок. 287-221 до н.э.) -древнегреческий математик и механик 103-105, 131 Архит Тарентский (ок. 428—365 до н.э.) - древнегреческий математик, астроном, государственный деятель 102 Асклепий (у римлян Эскулап ) — в древнегреческрой мифологии бог врачевания 116 аль-Багдади Авхад аз-Заман Абу-л-Баракат (ум. ок. 1164) — арабский философ и ученый 131 Баугин Каспар (1560-1624) -швейцарский ботаник, анатом и систематик растений 144 аль-Баттани Абу Абдаллах Мухаммед бен Джабир (858-929) - арабский астроном-наблюдатель 130 Беккерель Антуан Анри (1852— 1908) — французский физик 238 Белон Пьер (1517-1564) - французский натуралист и путешественник 145 Белозерский Андрей Николаевич (1905-1972) - русский биохимик 359 Бельтрами Евгений (1835-1900) -итальянский математик 190 Беляев Владимир Иванович (1855— 1911) — русский ботаник-морфолог 249 Бенеден ван Эдуард (1846-1910) -бельгийский биолог, гистолог и эмбриолог 249 Бернал Джон Десмонд (1901-1971) — английский биохимик 375 Бернар Клод (1813-1878) - французский физиолог и патолог 249 Бертло Пьер Эжен Марселен (1827-1907) — французский химик и общественный деятель 249 Бертолле Клод Луи (1748-1822) -французский химик 206 Берцелиус Йенс Якоб ( 1779-1848) -шведский химик 207 Бехер Иоганн Иоахим (1635— 1682) — немецкий химик и врач 205 Био Жан Батист (1774-1862) -французский физик, геодезист и астроном 182 аль-Бируни Абу Рейхан Мухаммед ибн Ахмед (973—1048) — среднеазиатский ученый-энциклопедист 131 аль-Битруджи Hyp ад-Дин аль-Ишбили (Алпетрагий) (вторая половина ХII в.) — арабский математик и астроном 131, 132 Бовери Теодор (1862-1915) - немецкий цитолог и эмбриолог 249 Бойль Роберт (1627-1691) - английский физик и химик 205 Бок Иероним (1498-1554) - немецкий ботаник 144 Больцман Людвиг (1844-1906) -австрийский физик 231, 268 Больяй Янош (1802-1860) - венгерский математик 189 Бонавентура (1221-1274) -монах-францисканец, алхимик 137 Бонне Шарль (1720-1793) - швейцарский естествоиспытатель и философ 209, 211 Бор Нильс (1885-1962) - датский физик 270-272, 275 Борелли Джованни Альфонсо (1608—1879) — итальянский натуралист, астроном, биолог 146, 154, 165 Борисковский Павел Иосифович (р. 1911) — русский археолог, специалист по археологии палеолита и первобытной истории 408 Борн Макс (1882-1970) - немецкий физик 275 Браге Тихо (1546-1601) - датский астроном 132, 154, 157-160 Брадлей Джеймс (1693-1762) -английский астроном 174, 253 Бройль Луи де (1892- 1987) -французский физик-теоретик 272 Бруно Джордано (1548-1600) -итальянский философ, космолог, поэт 154, 155, 201 Брунфельс Отто (1488-1534) - немецкий ботаник 144 Буйо (Буллиальд) Исмаэлъ (1605— 1694) — французский астроном, математик 165 Букланд Уильям (1784-1856) -английский геолог 215 Бунзен Роберт Вильгельм (1811— 1899) — немецкий химик 243 Буридан Жан (ок. 1300 - ок. 1358) — французский философ-схоласт 135 Буркхардт Якоб (1818-1897) -швейцарский историк культуры 144 Бутлеров Александр Михайлович (1828—1886) — русский химик, общественный деятель 207, 375 Буше де Кравкер де Перт (1788-1868) — французский археолог, историк первобытного общества 393 Бэкон Роджер (ок. 1214 - ок. 1292) — английский мыслитель, предвестник опытной науки Нового времени 127 Бэкон Фрэнсис (1561-1626) - английский философ 17, 125, 142 Бэр Карл Максимович (1792— 1876) — русский естествоиспытатель, эмбриолог 212, 249 Бэтсон Уильям (1861-1926) - английский генетик 357 Бюффон Жорж Луи Леклерк (1707— 1788) — французский естествоиспытатель 208, 211, 247, 393 Ваальс ван дер, Ян Дедерик (1837-1923) — голландский физик 230 Вавилов Николай Иванович (1887— 1943) — русский ботаник, генетик, географ, путешественник, общественный деятель 358 Вайнберг Стивен (р. 1933) — американский физик-теоретик 296, 298, 299 Валентин Габриэль Густав (1810— 1883) — немецкий биолог 248 Валлисниери Антонио (1661— 1730) — итальянский естествоиспытатель, врач 146 Вант-Гофф Якоб Хендрик (1852-1911) — голландский химик 207 Варден ван дер, Бертел Лендерт (р. 1903) — голландский математик, историк науки 72 Вебер Вильгельм (1804-1891) - немецкий физик 235 Вебер Эрнст Генрих (1795-1874) -немецкий физиолог, психолог 30 Везалий Андреас (1514—1564) — основоположник научной анатомии 145 Вейль Герман (1885-1955) - немецкий математик 266 Вейсман Август (1834—1914) — немецкий зоолог, теоретик эволюционного учения 357 Велер Фридрих (1800-1882) - немецкий химик и врач 249 Вернадский Владимир Иванович (1863—1945) — русский мыслитель и естествоиспытатель 371 Виганд Альберт (1821-1886) - немецкий ботаник 244 Вин Вильгельм (1864-1928) - немецкий физик 269 Вирхов Рудольф (1821-1902) - немецкий ученый и политический деятель, основатель патологической анатомии 249 Вольта Алессандро (1745-1827) -итальянский физик и физиолог 178 Вольтер (Мари Франсуа Аруэ) (1694-1778) - французский философ, писатель, историк 392 Вольф Каспар Фридрих (1734-1794) — немецкий естествоиспытатель, работал в России 210, 247 Галин Клавдий (129 - ок. 201) -римский врач и естествоиспытатель, классик античной медицины 117 Галилей Галилео (1564—1642) — итальянский физик, механик, астроном, поэт, филолог 135, 150, 154, 159-163, 193, 252, 256, 257, 261 Галле Иоганн Готфрид (1812-1910) — немецкий астроном-наблюдатель 158, 242 Галлей Эдмунд (1656-1742) - английский астроном и геофизик 168, 194 Галлер Альбрехт (1708-1777) -швейцарский естествоиспытатель, поэт 209 Гамов Георгий Антонович (1904— 1968) — американский физик и космолог 334 Гарвей Уильям (1578-1657) - английский врач, физиолог и эмбриолог 145, 146, 210 Гартсекер Николаус (1656—1725) — голландский биолог-микроскопист, физик и математик 146 Гассенди Пьер (1592-1655) -французский философ и ученый 204, 205 Гаусс Карл Фридрих (1777-1855) -немецкий математик, геодезист и астроном 189, 190 Гейзенберг Вернер (1901-1975) -немецкий физик 272-275 Гей-Люссак Жозеф Луи (1778-1850) — французский физик и химик 182, 207 Геккелъ Эрнст (1834-1919) - немецкий биолог 222, 245, 399 Гелл-Манн Марри (р. 1929) — американский физик-теоретик 293 Гельмгольц Герман Людвиг Фердинанд (1821-1894) - немецкий физик, математик, физиолог и психолог 187, 243, 249, 373 Гельмонт Ян Баптист ван (1577— 1644) — голландский естествоиспытатель, основоположник физиологии растений 145 Гераклид Понтийский (IV в. до н.э.) — древнегреческий философ 108, 149 Гераклит Эфесский (ок. 540 — ок. 470 до н .э.) — древнегреческий философ 84, 85, 196 Геринг Эвальд (1834-1918) - немецкий физиолог 214 Геродот (ок. 484 — ок. 425 до н.э.) — древнегреческий историк 55, 56 Гермес Трисмегист (Триждывеличайший) — легендарный египетский мудрец 126 Герон Александрийский (11—1 вв. до н.э.) — древнегреческий ученый, работал в Александрии 105 Герофил из Халкидона (IV—III вв. до н.э.) —древнегреческий врач 116 Гертвиг Оскар (1849-1922) - немецкий биолог 214, 249 Гертнер Иосиф (1732-1791) - немецкий ботаник 209 Герц Генрих Рудольф (1857-1894) - немецкий физик 236, 239 Гершель Вильям (Фридрих - Вильгельм) — английский астроном и оптик 158, 194, 195, 202, 321 Гершель Джон (1792-1871) - английский астроном, сын В. Гершеля 200, 203, 321 Гесиод (VIII-VII вв. до н.э.) -древнегреческий поэт и мыслитель 81, 117, 118 Геснер Конрад (1516-1565) -швейцарский естествоиспытатель 145 Гете Иоганн Вольфганг (1749— 1832) — немецкий поэт, мыслитель, естествоиспытатель 247 Геттон Джеймс (1726-1797) -шотландский натуралист, геолог 217, 218 Гиббс Джозайя Уиллард (1839-1903) — американский физик 231, 232 Гильберт Уильям (1544-1603) -английский физик и врач 160, 172 Гиппарх (ок. 180-125 до н.э.) -древнегреческий астроном 108-110, 132 Гиппократ (ок. 460 — ок. 377 до н.э.) — древнегреческий врач, реформатор античной медицины 115— 117 Глаубер Иоганн Рудольф (1604— 1670) — голландский химик 204 Глиссон Фрэнсис (1597-1677) -английский врач, анатом и физиолог 145 Глэшоу Шэлдон (р. 1932) — американский физик-теоретик 299 Гоголь Николай Васильевич (1809— 1952) — русский писатель 36 Гомер (IX—VIII вв. до н.э.) — легендарный эпический древнегреческий поэт 66, 76, 77, 117 Горгий (ок. 483 — ок. 375 до н.э.) — древнегреческий философ, софист, ритор 91 Гофф Карл Эрнст Адольф (1771— 1837) — немецкий геолог 217 Грааф де, Ренье (1641-1673) - голландский анатом и физиолог 145 Грей Стевин (ок. 1666—1736) — английский физик 177 Грю Неемия (1641-1712) - английский ботаник и врач 145 Гук Роберт (1635-1703) - английский естествоиспытатель 145, 165 Гюйгенс Христиан (1629-1695) -нидерландский механик, физик и математик 163, 169, 194 Дагер Луи Жак Манде (1787-1851) — французский изобретатель 180 Д'Аламбер Жан Лерон (1717-1783) — французский математик, механик, физик и философ 173 Дальтон Джон (1766—1844) — английский физик и химик 207 Дарвин Чарльз Роберт (1809-1882) — английский естествоиспытатель, основатель эволюционного учения 112, 220-226, 243, 244, 394, 399, 400 Дарий I (VI—V вв. до н.э.) — царь Древней Персии 55, 56 Декарт Рене (Картезий) (1596— 1650) — французский философ и ученый, математик 125, 135, 142, 146, 163-165, 169, 196, 197, 247 Демокрит (ок. 460 — ок. 370 до н.э,) — древнегреческий философ-материалист 91-94, 115, 118 Дженкин Ф. (XIX в.) — английский инженер, математик 249 Джермер Лестер Халберт (р. 1896) —американский физик 274 Джинс Джеймс Хопвуд (1877-1946) — английский физик и астроном 269 Джойс Джеймс (1882-1941) - ирландский писатель 293 Джоуль Джеймс Прескотт (1818— 1889) - английский физик 187 Дидро Дени (1713-1784) - французский философ, писатель, энциклопедист 247, 392 Диоклектиан Гай Аврелий Валерий (243—316) — римский император в 284-305 гг. 137 Дирак Поль Адриен Морис (1902-1984) — английский физик-теоретик 275 Долло Луи (1857-1931) - бельгийский палеонтолог 245 Дорн Антон (1840-1909) - немецкий зоолог 245 Допплер Кристиан (1803-1853) -австрийский физик и астроном 184 Дрейк Франк Дональд (р. 1930) -американский астроном 344 Дубинин Николай Петрович (1906—1998) — русский биолог, генетик 358 Дэви Гемфри (1778-1829) - английский химик и физик 185 Дэвиссон Клинтон Джозеф (1881— 1958) — американский физик 274 Дюбуа-Реймон Эмиль (1818— 1896) — немецкий физиолог и философ 249 Дютроше Анри Жоакен (1776— 1847) — французский биолог 248 Дюфе Шарль Франсуа (1698-1739) — французский физик 177 Евдокс Книдский (ок. 408 — ок. 355 до н.э.) — древнегреческий математик и астроном 70, 102, 107 Евклид (конец IV — пер. пол. III в. до н.э.) — древнегреческий математик 102, 103, 189 Евстахий (Евстахио) Бартоломео (ок. 1510—1574) — итальянский врач и анатом 145 Жоффруа Сент-Илер, Этъенн (1772—1844) — французский зоолог 208, 247 Жюсье Бернар (1669-1777) -французский ботаник 209 Зельдович Яков Борисович (р. 1944) — русский физик-теоретик 319 Зенон Элейский (ок. 490 — ок. 430 гг. до н.э.) — древнегреческий философ 90 аз-Зеркали Абу Исхак Ибрагим Ибн Яхья ан-Наккаш (ок. 1030 — ок. 1090) — арабский математик и астроном 131 Зюсс Эдуард (1831-1914) - австрийский геолог и палеонтолог 244 Ибн Баджжи (Авемпас) (ок. 1070— 1139) — арабский математик и астроном 132 Ибн Корра Абу-л-Хасан Сабитт ас-Саби аль-Харрани (836-901) - арабский математик 131 Ибн Рушд (Аверроэс) (1126-1198) -арабский философ 128, 132 Ибн Сина (Авиценна) (980-1037) — среднеазиатский ученый, философ, врач 131 Ибн аль-Хайсам (Альгазен) (965 — ок. 1039)— арабский ученый математик, физик, оптик, философ 131 Ивановский Дмитрий Иосифович (1864—1920) — русский физиолог и микробиолог, основоположник вирусологии 362 Инфельд Леопольд (1898-1968) -польский физик-теоретик 261, 262, 264 Иоанн XXII — Папа Римский (1316-1334, Авиньон) 137 Иогансен Вильгельм Людвиг (1857— 1927) —датский биолог, генетик 357 Кавендиш Генри (1731-1810) -английский физик и химик 175, 178 Калипп (TVв. до н.э.) — древнегреческий астроном 107 Калуца Теодор (1885-1954) -французский математик, физик 266 Камерариус Рудольф Якоб (1665— 1721) — немецкий ботаник 145 Кампер Петер (1722-1789) - голландский анатом и натуралист 393 Кант Иммануил (1724-1804) -немецкий философ и ученый 171, 189, 195, 197-202, 328 Карно Никола Леонард Сади (1796-1832) - французский физик, инженер 229 Карпентер Стефен Хаскинс (1831— 1878) — английский биолог 244 Картан Эли Жозеф (1869-1951) -французский математик и физик-теоретик 266 Кассиодор (ок. 487 - ок. 578) - писатель и государственный деятель остготского госудрства 123 Катрфаж де Брео Жан Луи Арман (1810—1892) — французский зоолог и антрополог 244 аль-Каши Гийас ад-Дин Джемшид (ум. ок. 1530) — арабский математик и астроном 129 Келликер Рудольф Альберт (1817— 1905) — немецкий гистолог и эмбриолог 244 Кельвин (см. У. Томсон) Кеплер Иоганн (1571-1630) - немецкий астроном и математик 154, 157-161, 165, 171, 194 Кельрейтер Иозеф Готлиб (1733-1806) — немецкий ботаник 246 Киккули (из Метаннии) (XIV в. до н.э.) — хеттский селекционер 65 Кирхгоф Густав (1824-1887) - немецкий физик 243, 265 Клаузиус Рудольф Юлиус Эмануэль (1822-1888) - немецкий физик 229, 230 Клейн Феликс (1849-1925) - немецкий математик 190 Клейненберг Николас (1842— 1897) — немецкий зоолог и гистолог 245 Клиффорд Вильям (1845-1879) -английский математик 234 Клузиус Карл (1526-1609) - французский натуралист и врач 144 Ковалевский Александр Онуфриевич (1840-1901) - русский биолог 245 Ковалевский Владимир Онуфриевич (1842—1883) — русский палеонтолог, брат А.О. Ковалевского 245 Койтер Волхер (1534-1576) - голландский анатом и врач 145 Колумб Христофор (1451-1506) -мореплаватель 772 Кольцов Николай Константинович (1872-1940) - русский биолог 359 Кондорсе Мари Жан Антуан Никола (1743—1794) — французский философ, математик, политический деятель 392 Конт Огюст (1798-1857) - французский философ-позитивист, социолог 243 Коп Эдуард Дринкер (1840-1897) -американский палеонтолог 245 Коперник Николай (1473-1543) -польский астроном 110,142,148-155, 157, 159, 161, 162, 200, 233, 332 Коржинский Сергей Иванович (1861-1900) - русский ботаник 244 Корренс Карл Эрих (1864-1933) -немецкий ботаник 356 Крик Фрэнсис Харри Комптон (р. 1916) — английский физик, специалист по молекулярной биологии 359 Ксенофан Колофонский (ок. 565 — ок. 473 до н.э.) — древнегреческий философ 90 Ктесибий (II—I вв. до н.э.) — древнегреческий механик, изобретать из Александрии 105 Кулон Шарль Огюстен (1736— 1806) — французский физик 178, 235, 236 Кун Томас Сэмюэль (р. 1922) —американский историк и философ науки 148 Кювье Жорж (1769-1832) - французский палеонтолог 139, 215-217 Кюри Пьер (1859-1906) - французский физик 235 Лавуазье Антуан Лоран (1743— 1794) - французский химик 205, 206 Лагранж Жозеф Луи (1736-1813) — французский математик и механик 173 Лайель Чарльз (1797-1875) - английский естествоиспытатель, геолог 217-219 Ламарк Жан Батист Пьер (1744— 1829) — французский биолог 212-215, 220, 221, 394 Ламберт Иоганн Генрих (1728-1777) — немецкий математик, астроном, философ 194, 195 Ламетри Жульен Офре де (1709— 1751) — французский философ, врач 247 Ландау Лев Давыдович (1908— 1968) — русский физик-теоретик 293 Лаплас Пьер Симон (1749-1827) -французский астроном, математик, физик 182, 197, 199, 200, 202, 203 Лафито Жозеф Франсуа (1670— 1740) — французский миссионер, этнограф 392 Левенгук Антони ван (1632— 1723) — голландский натуралист 145, 146 Леверье Урбен Жан Жозеф (1811-1877) — французский астроном 158, 242 Леви-Строс Клод (р. 1908) —французский этнолог, социолог, философ 24, 26 Лейбниц Готфрид Вильгельм (1646—1716) — немецкий философ, ученый 146, 168, 188, 247 Ленин Владимир Ильич (1870— 1924) — русский социолог, экономист, политический деятель 241 Либеркюн Иоганн Натанаэль (1711—1756) — немецкий анатом-микроскопист 146 Либих Юстус (1803-1873) - немецкий химик 249 Лики Луис Сеймур Бозетт (1903— 1972) — английский археолог и антрополог 405 Линней Карл (1707-1778) - шведский натуралист 208, 209, 277, 393 Лобачевский Николай Иванович (1792—1856) — русский математик 189-191 Лобеллий Маттиас (1538—1616) -голландский ботаник 144 Ломоносов Михаил Васильевич (1711—1765) — русский ученый, поэт, художник, поборник отечественного просвещения 178, 217, 312 Лоренц Хендрик Антон (1853— 1928) — нидерландский физик 255-257, 297 Лосев Алексей Федорович (1893— 1989) — русский философ, филолог 140 Лошмидт Йозеф (1821-1895) -австрийский физик и химик 231 Луиджи Лиллио (1510-1576) -итальянский врач и астроном 150 Лукреций Кар Тит (ок. 99 - 55 до н.э.) — древнеримский философ, поэт, ученый 118, 119, 171 Людовик XV (1710-1774) - король Франции (из династии Бурбонов) 177 Майер Юлиус Роберт (1814-1878) - немецкий врач и физик 187, 243 Майкельсон Альберт Абрахам (1852-1931) — американский физик 255-257 Майов (Мейоу) Джон (1643— 1679) — английский химик и врач 146 Максвелл Джеймс Клерк (1831— 1879) - английский физик 184, 186, 230, 235-237, 282, 284, 286, 297 Мальбранш Никола (1638-1715) -французский философ, объективный идеалист 146 Мальпиги Марчелло (1628-1694) -итальянский биолог и врач 145 Мальтус Томас Роберт (1766-1834) — английский экономист 221 аль-Мамун — багдадский халиф (813—833) из династии Аббасидов, покровитель науки 128 Марат Жан Поль (1743-1793) -врач, физик, философ, политический деятель 177 Маскелайн Невил (1732-1811) -английский астроном, пятый директор Гринвичской обсерватории 175 Max Эрнст (1838-1916) - австрийский физик и философ 233, 234, 240, 261 Меллер Герман Джозеф (1890-1967) — американский генетик 357 Менандр (ок. 342- ок. 292 до н.э.) — древнегреческий комедиограф 101 Менделеев Дмитрий Иванович (1834—1907) — русский химик, общественный деятель 205, 239, 270, 272, 314 Мендель Грегор Иоганн (1822-1884) — австрийский биолог, генетик 247, 249, 250, 356, 357 Менерт Эрнст (вт. пол. XIX — начало XX в.) — немецкий морфолог, эмбриолог 245 Меррей Георг Роберт Мильн (1858-1911) — английский ботаник 244 Метон (ок. 460 - год смерти неизвестен) — древнегреческий астроном и математик 68 Мечников Илья Ильич (1845— 1916) — русский биолог, иммунолог, микробиолог 245 Микеланджело Буонаротти (1475— 1564) — итальянский поэт, скульптор, художник, архитектор 160 Миклухо-Маклай Николай Иванович (1846-1888) - русский этнограф, общественный деятель 71 Мильн-Эдвардс Анри (1800-1885) —французский зоолог 215, 244 Михаил II Травл - византийский император (820-829) 128 Моль Гуго (1805-1872) - немецкий биолог, цитолог 249 Монтескье Шарль Луи (1689— 1755) — французский философ, правовед, писатель 392 Морган Луис Генри (1818-1881) -американский этнограф, историк первобытного общества 64 Морган Томас Хант (1866-1945) -американский биолог, генетик 357 Моррисон Роберт (1620-1683) -английский ботаник-систематик 145 Моуфет Томас (1553-1599) -лондонский врач, энтомолог 145 Мурчисон Родерик Импи (1792-1871) — английский геолог 215 Мюллер Фриц (1821-1897) - немецкий зоолог 245 Найт Томас Эндрью (1759-1838)—английский растениевод 247 Наполеон I , Бонапарт (1769— 1821) — французский государственный деятель, полководец, император Франции (1804-1815) 179, 197 Насирэддин Туси Абу Джафар Мухаммед ибн Хасан абу Бакр (1201-1274) - азербайджанский ученый 130-132 Негели Карл Вильгельм (1817— 1891) — немецкий ботаник 244 Николай Кузанский (1401—1464) — философ, теолог, церковно-политический деятель 142, 154 Никомед (III—II вв. до н.э.) — древнегреческий математик 103 Нодэн Шарль (1815-1899) - французский ботаник 249 Ньютон Исаак (1643-1727) - английский физик и математик 135, 165-170, 173-175 Oкен Лоренц (1779-1851) - немецкий натурфилософ 247 Опарин Александр Иванович (1894-1980) - русский биохимик 377 Осборн Генри Фэрфилд (1857-1935) — американский палеонтолог 400 Оуэн Ричард (1804-1892) - английский зоолог, палеонтолог 215, 244 Палисси Бернар (1499-1589) -химик (и алхимик), внесший большой вклад в совершенствование керамического производства 204 Парацельс (Филипп Ауреол Теофраст Бомбаст фон Гогенгейм) (1493— 1541) — врач, химик, мистик 143, 372 Парменид из Элеи (ок. 540 - ок. 480 до н.э.) —древнегреческий философ 90, 91 Пастер Луи (1822-1895) - французский химик, микробиолог 372 Паули Вольфганг (1900-1958) -швейцарский физик-теоретик 272, 283 Паулътон Е. — английский зоолог-дарвинист 246 Петрарка Франческо (1304— 1374) — итальянский поэт, философ-моралист, родоначальник европейского гуманизма 140 Пифагор Самосский (ок. 570 — ок. 500 до н.э.) —древнегреческий философ, религиозной и общественный деятель 85-87, 89 Пилигрим Пьер (из Мерикура) (XIII в.) — французский естествоиспытатель 171 Планк Макс Карл Эрнст Людвиг (1858—1947) — немецкий физик-теоретик 269, 270 Платон (ок. 428 - ок. 348) - древнегреческий философ 91, 92, 94-96, 101, 106, 107 Плутарх (ок. 46 — ок. 127) — древнегреческий писатель, историк, мыслитель 104 Покэ Жан (1622-1674) - французский врач и анатом 145 Полибий (ок. 201 - ок. 120 до н.э.) —древнегреческий историк 104 Попов Александр Степанович (1859-1906) - русский физик, электротехник 239 Праксагор (конец IV в. до н.э.) — древнегреческий врач 116 Праут Уильям (1785-1850) - английский врач и химик 208 Пригожин Илья Романович (р. 1917) — бельгийский физико-химик 422 Прево Пьер (1751-1839) - швейцарский физик, литератор 268 Пристли Джозеф (1733-1804) -аглийский химик, философ 206 Пруст Жозеф Луи (1754-1826) -французский химик 207 Птолемей Клавдий (ок. 100 — ок. 165) — древнегреческий астроном, ученый 70, 703, 104, 109, 110, 128, 130-132, 147, 149-153, 233 Пуанкаре Жюль Анри (1854— 1912) — французский математик, физик, философ 240, 270, 297 Пуркине Ян Эвангелиста (1787— 1869) — чешский биолог и общественный деятель 248 Пуассон Симеон Дени (1781— 1840) — французский физик, математик 182 Раймунд Луллий (1236-1315)- испанский теолог, грамматик, алхимик 137 Райт Сьюалл (1889-1988) - американский генетик 358 Райт Томас (1711-1786) - английский астроном 195 Региомонтан (Иоганн Мюллер) (1436—1476) — немецкий астроном и математик 148 Реди Франческо (1626-1698) - итальянский естествоиспытатель и врач 372 Резерфорд Эрнест (1871-1937) -английский физик 238, 270, 271 Ремер Оле Кристенсен (1644— 1710) - датский астроном 170, 174, 194 Рентген Вильгельм Конрад (1845— 1923) - немецкий физик 237, 238 Риман Георг Фридрих Бернхард (1826—1866) - немецкий математик 190 Рихман Георг Вильгельм (1711— 1753) - русский физик 178 Рихтер Г. (XIX в.) — немецкий врач,биолог 373 Роберт Гроссетест (ок. 1175 — ок. 1253) — английский естествоиспытатель 127 Рондель Гийом (1507-1566) -французский врач и натуралист 145 Руссо Жан Жак (1712-1778) -французский философ, писатель 392, 433 Румфорд фон, граф (Бенджамен Томпсон) (1753—1814) - американский физик 176 Руффини Паоло (1765-1822) -итальянский математик 129 Pэй Джон (1628-1705) - английский естествоиспытатель 145 Рэлей Джон Уильям (1842-1919) -английский физик 269 Сажрэ Огюстен (1763-1851) -французский растениевод, ботаник 247-249 Салом Абдус (р. 1926) — пакистанский физик-теоретик 296, 298, 299 Capс Самуил (ум. 1450) — средневековый мыслитель 139 Сахаров Андрей Дмитриевич (1921-1989) - русский физик-теоретик, общественный деятель 338 Сваммердам Ян (1637-1680) - голландский натуралист 146 Сведенборг Эмануэль (1688-1772) — шведский ученый и теософ-мистик 195 Северцов Алексей Николаевич (1866-1936) - русский биолог, специалист по эволюционной морфологии 358 Седжвик Адам (1785-1873) - английский геолог, естествоиспытатель 215, 244 Сервет Мигель (1509-1553) - испанский мыслитель, врач 145 Склодовская-Кюри Мария (1867— 1934) — французский физик, химик 238 Слайфер Весто Мельвин (1875— 1969) — американский астроном 322 Смолуховский Мариан (1872— 1917) — польский физик-теоретик 231 Снеллиус Виллеброрд (1580-1626) — голландский астроном и математик 169 Сноу Чарльз Пирс (р. 1905) - английский писатель 14, 15 Стелутти Франческо (1577— 1651) — итальянский ученый, врач, анатом 145 Стертевант Алфред Генри (1891— 1970) — американский генетик 357 Стефенсон Джордж (1781-1848) -английский изобретатель 179 Стокс Джордж Габриель (1819— 1903) — английский физик 253 Столетов Александр Григорьевич (1839-1896) - русский физик 239 Страбон (ок. 64 — ок. 24 до н.э.) — древнегреческий географ и историк 107 Страсбургер Эдвард (1844-1912) -немецкий ботаник 249 Сукачев Владимир Николаевич (1880-1967) - русский биолог, эколог, географ 371 Таннери Поль (1843-1904) -французский историк науки 143 Тейяр де Шарден Пьер (1881-1955) — французский ученый, философ, теолог 407 Теофраст (Феофраст) (327-287) -древнегреческий философ и естествоиспытатель 115 Тимирязев Климент Аркадьевич (1843-1920) - русский биолог, ботаник 370 Тимохарис (III в. до н.э.) —древнегреческий астроном 108 Тинберген Николас (1907-1988) -нидерландский зоолог и этолог 410 Томсон Джозеф Джон (1856— 1940) — английский физик 238 Томсон Уильям (лорд Кельвин ) (1824-1907) - английский физик 229, 235, 243, 373 Тревиранус Готфрид Рейнхольд (1776—1837) — немецкий естествоиспытатель 212 Турнефор Жозеф Питтон де (1656— 1708) — французский ботаник и путешественник 144 Тюрпен Пьер Жан Франсуа (1775— 1840) — французский ботаник 248 Уилкинс Морис (р. 1916)—английский биофизик 359 Улугбек Мирза Мухаммед ибн Шахрух ибн Тимур (1411—1449) — среднеазиатский астроном 132 Уотсон Джеймс Дьюи (р. 1928) — американский биохимик 359 Уэлдон Вальтер Франк Рафаэль (1860—1906) — английский зоолог 246 Фабриций (из Аквапенденте) Джероламо (1533—1616) — итальянский анатом и хирург 145 Фалес Милетский (ок. 625 — ок. 547 до н.э.) —древнегреческий философ 69 Фаллопий Габриеле (1523-1562) -итальянский врач и анатом, ученик А. Везалия 145 Фарадей Майкл (1791-1867) -английский физик и химик 184-186, 235, 236 Фейнман Ричард Филлипс (1918— 1988) — американский физик-теоретик 292, 293 Феокрит (первая половина III в. до н.э) — древнегреческий поэт, создатель идиллической поэзии 101 Ферми Энрико (1901-1954) - итальянский физик 284 Ферчайльд Томас (конец XVII — первая половина XVIII вв.) — английский садовод 145 Фехнер Густав Теодор (1801-1887)— немецкий физик, психолог, философ 30 Филолай из Кротона (род. ок. 470 до н.э.) — древнегреческий философ, астроном 105, 106, 149 Филопон Иоанн (VI в.) — христианский мыслитель, философ 104 Фитцджеральд Джордж Фрэнсис (1815—1901) — ирландский физик 255 Фишер Рональд Эйлмер (1890— 1962) — английский математик и генетик 358 Флемминг Вальтер (1843-1905) -немецкий биолог 249 Фоль Герман (1845-1893) - швейцарский зоолог, эмбриолог 249 Фома Аквинский (1225—1274) — средневековый философ и теолог 125, 137 Форстер Иоганн Георг Адам (1754— 1794) — немецкий просветитель 392 Франклин Бенджамин (1706— 1790) — американский просветитель, естествоиспытатель 178 Френель Огюстен Жан (1788— 1827) —французский физик 182-184, 253 Фридман Александр Александрович (1888-1925) - русский физик, космолог 330, 331, 333 Фриз де Хуго (1848-1935) - нидерландский ботаник 356 Фуко Жан Бернар Леон (1819-1868) — французский физик 182 Фултон Роберт (1765—1815)—американский изобретатель 179 Хаббл Эдвин Пауэлл (1889-1953) -американский астроном 322-324, 333 аль-Хазини Абу-л-Фатх Абдар-Рахман аль-Мансур (первая пол. XII в.) — арабский физик, математик, астроном 131 Хайам Омар (ок. 1048 - ок. 1122) — персидский поэт и ученый 130, 131 Хакен Герман (р. 1927) — немецкий математик 422 Хаксли Томас (1825-1895) - английский естествоиспытатель, биолог 399 Харди Годфри Харольд (1877-1947) — английский математик 358 Хейердал Тур (1914) - норвежский ученый, путешественник и писатель 348 Хиггс Петер (р. 1929) — английский физик-теоретик 298 Хокинг Стивен (р. 1942) — английский физик-теоретик 319 Халдейн Джон Бердон Сандерсон (1892—1964) — английский биолог, генетик, общественный деятель 358 алъ-Хорезми Абу Абдаллах Махаммед ибн Муса алъ-Хуваризми алъ-Маджуси (ок. 787 - ок. 850) - среднеазиатский математик и астроном 129 Цвейг Джордж (р. 1937) — американский физик-теоретик 293 Цезальпино Андреа (1519-1603) -итальянский медик, естествоиспытатель 144 Чаргафф Эрвин (р. 1905) — американский биофизик 359 Чермак Эрих (1871-1962) - австрийский биолог, генетик 356 Четвериков Сергей Сергеевич (1880— 1959) — русский генетик 358 Чистяков Иван Дорофеевич (1843— 1877) - русский ботаник 249 аш-Шатир Абу Хасан алъ-Ансари (1304—1375) —арабский математик и астроном 132 Шванн Теодор (1810-1882) - немецкий физиолог и гистолог 220, 248, 249 Швингер Джулиус (р. 1918) — американский физик-теоретик 293 Шееле Карл Вильгельм (1742— 1786) — шведский химик 206 Шекспир Вильям (1564-1616) -английский драматург 160, 372 Шиллинг Павел Львович (1786— 1837) — русский ученый-электротехник, востоковед 179 аш-Ширази Кутб ад-Дин Мухаммед ибн Масуд (1236-1311) - арабский астроном и математик 132 Шлейден Маттиас Якоб (1804— 1881) - немецкий ботаник 220, 248, 249 Шмальгаузен Иван Иванович (1884-1963) - русский биолог 358 Шредингер Эрвин (1887-1961) -австрийский физик-теоретик 272, 274, 275 Шталь Георг Эрнст (1659-1734) -немецкий врач и химик 205 Эвери О. (1877-1955) -американский биохимик 359 Эддингтон Артур Стэнли (1882— 1944) — английский астроном 265 Эйлер Леонард (1707-1783) - немецкий математик, механик, физик 173 Эйнштейн Альберт (1879-1955) -физик-теоретик 234, 252, 257-267, 269, 275, 286, 330, 331 Экфант Сиракузский (IV в. до н.э) —древнегреческий философ 149 Эмпедокл из Агригента (ок. 490 — ок. 430 гг. до н.э.) — древнегреческий философ, врач 111-113 Энгельс Фридрих (1820-1895) -философ, социолог, общественно-политический деятель 395 Эратосфен (ок. 276 — ок. 194 до н.э.) — древнегреческий ученый из Александрии 102 Эрстед Ханс Кристиан (1777-1851) -датский физик 179, 185 Этвеш Лоранд (1848-1919) - венгерский физик 261 Юнг Иоахим (1578-1657) - немецкий естествоиспытатель, математик и ботаник 144 Юнг Томас (1773-1829) - английский физик 181, 182, 253 Якоби Борис Семенович (1801— 1874) — русский физик, изобретатель 180 ОСНОВНЫЕ СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ а. е. — астрономическая единица , расстояние от Земли до Солнца Световой год — расстояние, которое проходит луч света за один год °,', " — градус, минута, секунда дуги °С, К — градус температурных шкал Цельсия и Кельвина Дж — джоуль пк — парсек как — килопарсек Мпк — мегапарсек эВ — электрон-Вольт 1 эВ = 1,6 • 10-19 Дж = 1,6 • 10-12 эрг МэВ — мегаэлектрон-Вольт (106 эВ.) ГэВ — гигаэлектрон-Вольт (10 эВ) с— секунда Е — энергия физической системы. F—сила m —масса t —время Т — температура V — скорость с — скорость света Z — красное смещение λ — длина волны ν —частота е— электрон n —нейтрон р— протон γ — фотон ≈ —приближенноравно ≥ (≤) — больше (меньше) или равно h —постоянная Планка G— гравитационная постоянная k — постоянная Болъцмана СООТНОШЕНИЯ МЕЖДУ НЕКОТОРЫМИ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ 1 а. е. =149 600 000 км Световой год равен 9,46 • 1015 м = 0,3 пк, или около 10. 000 млрд км Парсек (пк) - единица для выражения межзвездных расстояний, равная пути, который бы прошел свет (с = 300 000 км/с) за 3, 26 года 1 пк = 3,08 • 1016 м = 206 265 а. е. Килопарсек (Кпк) равен 1000 пк Мегапарсек (Мпк) равен 1 000 000 пк 1 ангстрем = 10-10 м h = 6,6 • 10-27 эрг• с = 6,6 • 10-34 Дж ћ = h/(2π) = 1,054 • 10-27 эрг • с G=6,6•10-11 Н• м2 /кг2 К =1,3 • 10-23 Дж • К-1 СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ...................................................................................................................................................................................................... 2 ВВЕДЕНИЕ. Естествознание как отрасль научного познания.............................................................................. 4 B.I. Понятие культуры...................................................................................................................................................................................... 4 В.2. Материальная и духовная культура................................................................................................................................................ 5 В.З. Наука как компонент духовной культуры................................................................................................................................... 6 В.4. Проблема культур в науке: от конфронтации к сотрудничеству....................................................................................... 7 В.5. Структура естественно-научного познания............................................................................................................................... 9 Часть первая Основные исторические периоды развития естествознания 1. НАКОПЛЕНИЕ РАЦИОНАЛЬНЫХ ЗНАНИЙ В СИСТЕМЕ ПЕРВОБЫТНОГО СОЗНАНИЯ.......................................... 12 1.1. Повседневное, стихийно-эмпирическое знание...................................................................................................................... 12 1.2. Зарождение счета.................................................................................................................................................................................... 13 1.3. Мифология.................................................................................................................................................................................................. 16 2. НАУКА В ЦИВИЛИЗАЦИЯХ ДРЕВНОСТИ........................................................................................................................................... 20 2.1. Становление цивилизации................................................................................................................................................................. 20 2.1.1. Неолитическая революция................................................................................................................................................................ 20 2.1.2. Рационализация форм деятельности и общения....................................................................................................................... 24 2.1.3. Разделение труда и развитие духовной культуры.................................................................................................................... 26 2.1.4. Возникновение письменности........................................................................................................................................................... 28 2.1.5. «Культурное пространство» древневосточных цивилизаций.............................................................................................. 30 2.2. Развитие рациональных знаний в эпоху классообразования цивилизаций Древнего Востока....................... 32 2.2.1. От Мифа к Логосу (Науке)................................................................................................................................................................ 32 2.2.2. Географические знания...................................................................................................................................................................... 33 2.2.3. Биологические, медицинские и химические знания..................................................................................................................... 34 2.2.4. Астрономические знания................................................................................................................................................................... 35 2.2.5. Математические знания................................................................................................................................................................... 37 3. СОЗДАНИЕ ПЕРВОЙ ЕСТЕСТВЕННО-НАУЧНОЙ КАРТИНЫ МИРА В ДРЕВНЕГРЕЧЕСКОЙ КУЛЬТУРЕ......... 39 3.1. Культурно-исторические особенности древнегреческой цивилизации........................................................................ 39 3.2. От Хаоса к Космосу............................................................................................................................................................................... 43 3.3. Категория субстанции.......................................................................................................................................................................... 44 3.4. Мир как число............................................................................................................................................................................................ 45 3.4.1. Пифагорейский союз.......................................................................................................................................................................... 45 3.4.2. Математические и естественно-научные достижения пифагореизма.............................................................................. 46 3.5. Формирование первых естественно-научных программ..................................................................................................... 47 3.5.1. Великое открытие элеатов............................................................................................................................................................. 48 3.5.2. Атомистическая программа............................................................................................................................................................ 49 3.5.3. Математическая программа........................................................................................................................................................... 50 3.6. Физика и космология Аристотеля................................................................................................................................................... 51 3.6.1. Учение Аристотеля о материи и форме...................................................................................................................................... 51 3.6.2. Космология Аристотеля................................................................................................................................................................... 52 3.6.3. Основные представления аристотелевской механики............................................................................................................. 53 3.7. Естествознание эллинистически-римского периода............................................................................................................. 53 3.7.1. Культура эллинизма........................................................................................................................................................................... 53 3.7.2. Александрийская математическая школа................................................................................................................................... 54 3.7.3. Развитие теоретической и прикладной механики.................................................................................................................... 55 3.8. Развитие древнегреческой астрономии........................................................................................................................................ 56 3. 8.1. Становление математической астрономии.............................................................................................................................. 56 3.8.2. Геоцентрическая система Птолемея............................................................................................................................................ 58 3.9. Античные воззрения на органический мир................................................................................................................................. 59 3. 9.1. Античные толкования проблемы происхождения и развития живого.............................................................................. 59 3.9. 2. Биологические воззрения Аристотеля......................................................................................................................................... 60 3. 9.3. Накопление рациональных биологических знаний в античности......................................................................................... 62 3.9.4. Античные представления о происхождении человека............................................................................................................. 63 3.10. Упадок античной науки.................................................................................................................................................................... 64 4. ЕСТЕСТВОЗНАНИЕ В ЭПОХУ СРЕДНЕВЕКОВЬЯ.......................................................................................................................... 64 4.1. Особенности средневековой духовной культуры................................................................................................................... 65 4.1.1. Доминирование ценностного над познавательным................................................................................................................... 65 4. 1.2. Отношение к познанию природы................................................................................................................................................... 66 4.1.3. Особенности познавательной деятельности............................................................................................................................. 66 4.2. Естественно-научные достижения средневековой арабской культуры....................................................................... 68 4.2.1. Математические достижения....................................................................................................................................................... 69 4.2.2. Физика и астрономия......................................................................................................................................................................... 70 4.3. Становление науки в средневековой Европе............................................................................................................................. 71 4.4. Физические идеи средневековья...................................................................................................................................................... 71 4.5. Алхимия как феномен средневековой культуры...................................................................................................................... 73 4.6. Религиозная трактовка происхождения человека.................................................................................................................. 74 4.7. Историческое значение средневекового познания................................................................................................................ 74 5. ПОЗНАНИЕ ПРИРОДЫ В ЭПОХУ ВОЗРОЖДЕНИЯ........................................................................................................................ 75 5.1. Ренессанская мировоззренческая революция........................................................................................................................... 75 5.2. Зарождение научной биологии......................................................................................................................................................... 77 5.3. Коперниканская революция............................................................................................................................................................... 79 5.3.1. Гелиоцентрическая система мира................................................................................................................................................. 79 5.3.2. Дж. Бруно: мировоззренческие выводы из коперниканизма.................................................................................................... 83 6. НАУЧНАЯ РЕВОЛЮЦИЯ XVII в.: ВОЗНИКНОВЕНИЕ КЛАССИЧЕСКОЙ МЕХАНИКИ................................................ 84 6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит.............................................................. 84 6.2. Формирование непосредственных предпосылок классической механики как первой фундаментальной естественно-научной теории.................................................................................................................................................................... 86 6.2.1. Г. Галилей: разработка понятий и принципов «земной динамики»..................................................................................... 86 6.2.2. Картезианская физика...................................................................................................................................................................... 88 6.2.3. Новые идеи в динамике Солнечной системы............................................................................................................................... 89 6.3. Ньютонианская революция................................................................................................................................................................ 89 6.3.1. Создание теории тяготения............................................................................................................................................................ 90 6.3.2. Корпускулярная теория света........................................................................................................................................................ 91 6.3.3. Космология Ньютона......................................................................................................................................................................... 92 6.4. Изучение магнитных и электрических явлений в XVII в...................................................................................................... 92 7. ЕСТЕСТВОЗНАНИЕ XVIII -ПЕРВОЙ ПОЛОВИНЫ XIX в............................................................................................................ 93 7.1. Общая характеристика развития физики..................................................................................................................................... 93 7.1.1. Становление основных отраслей классической физики.......................................................................................................... 93 7.1.2. Принцип дальнодействия.................................................................................................................................................................. 94 7.1.3. Теория теплорода............................................................................................................................................................................... 95 7.1.4. Развитие учения об электричестве и магнетизме в XVIII в.................................................................................................... 95 7.1.5. Физика первой половины XIX в.: общая характеристика....................................................................................................... 96 7.1.6. Волновая теория света..................................................................................................................................................................... 97 7.1.7. Проблема эфира.................................................................................................................................................................................. 98 7.1.8. Возникновение полевой концепции................................................................................................................................................. 99 7.1.9. Закон сохранения и превращения энергии.................................................................................................................................. 101 7.1.10. Концепции пространства и времени........................................................................................................................................ 101 7.1.11. Методологические установки классической физики (конец XVII - начало XX вв.)....................................................... 103 7.2. Развитие астрономической картины мира............................................................................................................................... 104 7.2.1. Создание внегалактической астрономии.................................................................................................................................. 105 7.2.2. Формирование идеи развития природы..................................................................................................................................... 105 7.2.3. Идея развития в астрономии........................................................................................................................................................ 106 7.2.4. Космогония И. Канта....................................................................................................................................................................... 107 7.2.5. Методологические установки классической астрономии.................................................................................................... 108 7.3. Возникновение и развитие научной химии............................................................................................................................. 110 7.3.1. От алхимии к научной химии......................................................................................................................................................... 110 7. 3.2. Лавуазье: революция в химии....................................................................................................................................................... 111 7.3.3. Победа атомно-молекулярного учения........................................................................................................................................ 112 7.4. Биология.................................................................................................................................................................................................... 112 7.4.1. Образы, идеи, принципы и понятия биологии XVIII в............................................................................................................. 112 7.4.2. От концепций трансформации видов к идее эволюции......................................................................................................... 114 7.4.3. Ламаркизм........................................................................................................................................................................................... 115 7.4.4. Катастрофизм.................................................................................................................................................................................. 116 7.4.5. Униформизм. Актуалистический метод.................................................................................................................................... 118 7.4.6. Дарвиновская революция................................................................................................................................................................ 119 7.4.7. Методологические установки классической биологии.......................................................................................................... 121 8. ЕСТЕСТВОЗНАНИЕ ВТОРОЙ ПОЛОВИНЫ XIX в.: НА ПУТИ К НОВОЙ НАУЧНОЙ РЕВОЛЮЦИИ................... 123 8.1. Физика........................................................................................................................................................................................................ 123 8.1.1. Основные черты................................................................................................................................................................................ 123 8.1.2. От возникновения термодинамики к статистической физике: изучение необратимых систем.............................. 123 8.1.3. Развитие представлений о пространстве и времени............................................................................................................ 125 8.1.4. Теория электромагнитного поля.................................................................................................................................................. 127 8.1.5. Великие открытия............................................................................................................................................................................ 128 8.1.6. Кризис в физике на рубеже веков................................................................................................................................................. 129 8.2. Астрономия.............................................................................................................................................................................................. 130 8.2.1. Триумф ньютоновской астрономии и... первая брешь в ней................................................................................................. 130 8.2.2. Формирование астрофизики: проблема внутреннего строения звезд.............................................................................. 131 8.3. Биология.................................................................................................................................................................................................... 132 8. 3.1. Утверждение теории эволюции Ч. Дарвина........................................................................................................................... 132 8.3.2. Становление учения о наследственности (генетики)............................................................................................................. 133 Часть вторая ПРИРОДА В СОВРЕМЕННОЙ ЕСТЕСТВЕННО-НАУЧНОЙ КАРТИНЕ МИРА Современная физическая картина мира 9. НАУЧНАЯ РЕВОЛЮЦИЯ В ФИЗИКЕ НАЧАЛА XX в.: ВОЗНИКНОВЕНИЕ РЕЛЯТИВИСТСКОЙ И КВАНТОВОЙ ФИЗИКИ................................................................................................................................................................................................................. 135 9.1. Создание специальной теории относительности................................................................................................................. 135 9.1.1. Фундаментальные противоречия в основаниях классической механики.......................................................................... 135 9.1.2. Создание А. Эйнштейном специальной теории относительности................................................................................... 138 9.2. Создание и развитие общей теории относительности........................................................................................................ 140 9.2.1. Принципы и понятия эйнштейновской теории гравитации................................................................................................ 140 9.2.2. Экспериментальная проверка общей теории относительности....................................................................................... 142 9.2 3. Современное состояние теории гравитациии ее роль в физике......................................................................................... 143 9.3. Возникновение и развитие квантовой физики....................................................................................................................... 144 9.3.1. Гипотеза квантов............................................................................................................................................................................. 144 9.3.2. Теория атома И. Бора. Принцип соответствия...................................................................................................................... 145 9.3.3. Создание нерелятивистской квантовой механики................................................................................................................. 146 9.3.4. Проблема интерпретации квантовой механики. Принцип дополнительности............................................................. 148 9.4. Методологические установки неклассической физики.................................................................................................... 149 10. МИР ЭЛЕМЕНТАРНЫХ ЧАСТИЦ....................................................................................................................................................... 150 10.1. Фундаментальные физические взаимодействия................................................................................................................ 150 10.1.1. Гравитация...................................................................................................................................................................................... 151 10.1.2. Электромагнетизм......................................................................................................................................................................... 151 10.1.3. Слабое взаимодействие............................................................................................................................................................... 152 10.1.4. Сильное взаимодействие.............................................................................................................................................................. 153 10.1.5. Проблема единства физики......................................................................................................................................................... 153 10.2. Классификация элементарных частиц.................................................................................................................................... 154 10.2.1. Характеристики субатомных частиц..................................................................................................................................... 154 10.2.2. Лептоны............................................................................................................................................................................................ 155 l0.2.3. Адроны................................................................................................................................................................................................ 156 10.2.4. Частицы - переносчики взаимодействий................................................................................................................................ 156 70.3. Теории элементарных частиц....................................................................................................................................................... 157 10.3.1. Квантовая электродинамика...................................................................................................................................................... 157 10.3.2. Теория кварков................................................................................................................................................................................ 158 10.3.3. Теория электрослабого взаимодействия................................................................................................................................ 159 10.3.4. Квантовая хромодинамика.......................................................................................................................................................... 161 10.3.5. На пути к Великому объединению.............................................................................................................................................. 162 Современная астрономическая картина мира 11. ОСОБЕННОСТИ АСТРОНОМИИ XX в............................................................................................................................................. 164 11.1. Изменения способа познания в астрономии ХХ в.............................................................................................................. 164 11.2. Новая астрономическая революция.......................................................................................................................................... 164 11.3. Солнечная система............................................................................................................................................................................ 165 11.3.1. Планеты и их спутники................................................................................................................................................................. 165 11.3.2. Строение планет............................................................................................................................................................................ 165 11.3.3. Происхождение планет................................................................................................................................................................ 166 11.3.4. Химический состав вещества во Вселенной........................................................................................................................... 167 11.4. Звезды....................................................................................................................................................................................................... 168 11.4.1. Звезда - газовый шар...................................................................................................................................................................... 168 11.4.2. Эволюция звезд: звезды от их «рождения» до «смерти»................................................................................................... 169 11.5. Острова Вселенной: галактики.................................................................................................................................................... 173 11.5.1. Общее представление о галактиках и их изучении............................................................................................................... 173 11.5.2. Наша Галактика - звездный дом человечества...................................................................................................................... 175 11.5.3. Межзвездная среда........................................................................................................................................................................ 176 11.5.4. Понятие Метагалактики............................................................................................................................................................. 176 11.6. Вселенная в целом............................................................................................................................................................................. 177 11.6.1. Особенности современной космологии.................................................................................................................................... 177 11.7. Эволюция Вселенной........................................................................................................................................................................ 180 11.7.1. Модель горячей Вселенной........................................................................................................................................................... 180 11.7.2. Большой Взрыв: инфляционная модель..................................................................................................................................... 181 11.7.3. Первые секунды Вселенной........................................................................................................................................................... 182 11.7.4. От первых минут Вселенной до образования звезд и галактик........................................................................................ 183 11.7.5. Образование тяжелых химических элементов...................................................................................................................... 184 11.7.6. Сценарии будущего Вселенной.................................................................................................................................................... 184 11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций............................................................................. 185 11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности.................................................... 185 11.8.2. Типы контактов с внеземными цивилизациями..................................................................................................................... 186 11.8.3. Поиски внеземных цивилизаций.................................................................................................................................................. 187 11.9. Методологические остановки «неклассической» астрономии XX в......................................................................... 189 Современная биологическая картина мира 12. ОСОБЕННОСТИ БИОЛОГИИ XX в.................................................................................................................................................... 192 12.1. Век генетики.......................................................................................................................................................................................... 192 12.1.1. Хромосомная теория наследственности................................................................................................................................. 192 12.1.2. Создание синтетической теории эволюции........................................................................................................................... 192 12.1.3. Революция в молекулярной, биологии....................................................................................................................................... 193 12.1.4. Методологические установки современной биологии......................................................................................................... 194 13. МИР ЖИВОГО.............................................................................................................................................................................................. 195 13.1. Особенности живых систем.......................................................................................................................................................... 195 13.1.1. Существенные черты живых систем....................................................................................................................................... 195 13.1.2. Основные уровни организации живого..................................................................................................................................... 196 13.2. Возникновение жизни на Земле.................................................................................................................................................. 200 13.2.1. Развитие представлений о происхождении жизни............................................................................................................. 200 13.2.2. Возникновение жизни..................................................................................................................................................................... 201 13.3. Развитие органического мира...................................................................................................................................................... 205 13.3.1. Основные этапы геологической истории Земли.................................................................................................................... 205 13.3.2. Начальные этапы эволюции жизни........................................................................................................................................... 205 13.3.3. Образование царства растений и царства животных...................................................................................................... 206 13.3.4. Завоевание суши.............................................................................................................................................................................. 208 13.3.5. Основные пути эволюции наземных растений....................................................................................................................... 208 13.3.6. Пути эволюции животных.......................................................................................................................................................... 210 14. ВОЗНИКНОВЕНИЕ ЧЕЛОВЕКА И ОБЩЕСТВА (антропосоциогенез)................................................................... 210 14.1. Естествознание XVII— первой половины XIXв. о происхождении человека........................................................ 211 14.2. Предпосылки антропосоциогенеза............................................................................................................................................ 213 14.2.1. Абиотические предпосылки........................................................................................................................................................ 213 14.2.2. Биологические предпосылки........................................................................................................................................................ 215 14.3. Возникновение труда....................................................................................................................................................................... 218 14.3.1. «Человек умелый»........................................................................................................................................................................... 218 14.3.2. Развитие древнейшей техники человека................................................................................................................................. 219 14.4. Становление социальных отношений..................................................................................................................................... 220 14.4.1. Биологические предпосылки социальных отношений.......................................................................................................... 220 14.4.2. Возникновение разделения труда............................................................................................................................................... 221 14.5. Генезис сознания и языка.............................................................................................................................................................. 222 14.5.1. Раскрытие тайны происхождения сознания......................................................................................................................... 222 14.5.2. Генезис языка................................................................................................................................................................................... 224 часть третья естествознание на пороге XXI в. 15. ТЕОРИЯ САМООРГАНИЗАЦИИ (СИНЕРГЕТИКА)...................................................................................................................... 225 15.1. От моделирования простых систем к моделированию сложных............................................................................... 226 15.2. Характеристики самоорганизующихся систем.................................................................................................................. 226 15.2.1. Открытость.................................................................................................................................................................................... 227 15.2.2. Нелинейность................................................................................................................................................................................... 228 15.2.3. Диссипативность........................................................................................................................................................................... 228 15.3. Закономерности самоорганизации........................................................................................................................................... 228 16. ГЛОБАЛЬНЫЙ ЭВОЛЮЦИОНИЗМ................................................................................................................................................... 229 17. НА ПУТИ К ПОСТНЕКЛАССИЧЕСКОЙ НАУКЕ XXI в............................................................................................................. 230 ЗАКЛЮЧЕНИЕ. Наука и будущее человечества............................................................................................................... 231 Естествознание как революционизирующая сила цивилизации.......................................................................................... 231 Наука и квазинаучные формы духовной культуры..................................................................................................................... 232 КОНТРОЛЬНЫЕ ВОПРОСЫ........................................................................................................................................................................ 233 ЛИТЕРАТУРА...................................................................................................................................................................................................... 235 ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ....................................................................................................................................................... 236 ИМЕННОЙ УКАЗАТЕЛЬ................................................................................................................................................................................ 244 ОСНОВНЫЕ СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ................................................................................................................................ 253 СООТНОШЕНИЯ МЕЖДУ НЕКОТОРЫМИ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ.................................................................... 253 |