Реферат: Задачі нелінійного програмування. Деякі основні методи їх розвязування та аналізу
Название: Задачі нелінійного програмування. Деякі основні методи їх розвязування та аналізу Раздел: Рефераты по информатике Тип: реферат |
Реферат на тему: Задачі нелінійного програмування. Деякі основні методи їх розв’язування та аналізу. План. 1. Метод Франка-Вулфа. 2. Приклади розв’язування задач. 3. Література Деякі з основних методів розв’язування задач НЛП. 1. Метод Франка –Вулфа . Нехай потрібно найти максимальне значення вогнутой функції (57) при умовах : (58) (59) Характерною особливістю цієї задачі являється то , що її система обмеження вміщує тільки лінійні нерівності . Ця особливість являє основний для заміни в межах досліджуваної точки нелінійної цільової функції лінійною , завдяки чому розв’язок даної задачі зводиться до послідовного розв’язку задач лінійного програмування. Процес найдення розв’язку задачі начинають з оприділення точки , принадлежавшої області допустимих розв’язків задачі. Нехай ця точка , тоді в цій точці вираховують градієнт функції (57) і будують лінійну функцію (60) Потім знаходять максимальне значення цієї функції при обмеженнях (58) і (59). Нехай рішення даної задачі визначається точкою . Тоді за новий допустимий розв’язок даної задачі приймають координати точки (61) де -- деяке число , називають кроком вирахуваним і закінченням між нулем і одиницею . Це число беруть довільно чи визначають таким способом , щоб значення функції в точці залежавши від , було максимальним . Для цього необхідно найти рішення рівності і вибрати його найменший корінь . Якщо його значення більше одиниці , то слідує покласти . Після визначення числа находять координати точки вираховують значення цільової функції в ній і виясняють необхідність переходу до нової точки . Якщо така необхідність має , то вираховують в точці градієнт цільової функції , переходять до даної задачі лінійного програмування і находять її розв’язок . Визначають координати точки і досліджують необхідність проведення подальших обчислень . Після кінцевого числа отримують з необхідною точністю розв’язок даної задачі . Отже, процес находження розв’язків задачі (57) – (59) методом Франка – Вулфа включає наступні етапи : 1. Визначають даний допустимий розв’язок задачі . 2. Находять градієнт функції (57) в точці допустимого розв’язку . 3. Будують функцію (60) і находять її максимальне значення при умовах (58) і (59) . 4. Визначають крок обчислень . 5. По формулам (61) находять компоненти нового допустимого розв’язку . 6. Провіряють необхідність переходу до наступного допустимого розв’язку . У випадку необхідності переходять до етапу 2 , в поганому випадку найдене прийняте розв’язок даної задачі . 3.27. Методом Франка – Вулфа найти розв’язок задачі 3.22. , забезпеченої в певному максимальному значенні функції (62) при умовах (63) (64) Розв’язок . Найдем градієнт функції
і в якості даного допустимого розв’язку задачі візьмемо точку а в якості критерія оцінки якості одержимо розв’язок – нерівності де . 1. Ітерація . В точці градієнт .Знаходимо максимальне значення функції (65) при умовах (63) і (64) (66) (67) Задача (65)—(67) має оптимальний план . Найдемо новий допустимий розв’язок даної задачі по формулі (61): , де . (68) Підставимо замість і їх значення , отримаємо (69) Знайдемо тепер число . Підкладемо в рівність (62) замість і із значення у відповідності з відношенням (69) , знайдемо подібну цій функції по і прирівняємо її нулю : .Розв’язуючи цю рівність , отримаємо . Оскільки найдене значення заключне між 0 і 1 , приймаючи його за величину кроку .Таким образом , . 2. Ітерація . Градієнт цільової функції даної задачі в точці є . Находимо максимальне значення функції при умовах (63) і (64) . Рішення являється . Оприділяєм тепер .Останню рівність перепишемо наступним образом :
Підкладемо тепер в функцію (62) замість і їх значення у відношенні з відношенням (70) , отримаємо звідки . Прирівняємо нулю і розв’язуючи отримаємо рівність , знаходимо . Таким образом ,
т.е. . 3. Ітерація . Градієнт функції f в точці є . Находимо максимальне значення функції при умовах (63) і (64). Розв’язком буде . Знайдемо . Маємо
Розв’язуючи рівність , находимо . Слідуючи , ,, . Таким образом , являється задовільним розв’язком даної задачі . Дана точка находиться достатньо близько до точки максимального значення цільової функції , найденої при розв’язку цієї задачі в п. 3.3. Задав меншу величину , можна було , зробивши доповнюючи приближення , ще ближче підійти до точки максимального значення цільової функції. Література. 1. Наконечний С.І., Савіна С.С. Математичне програмування: Навч. посіб. – К.:КНЕУ, 2003.- 452 с. 2. Барвінський А.Ф та ін. Математичне програмування: Навчальний посібник / А.Ф. Барвінський, І.Я. Олексів, З.І. Крупка, І.О. Бобик, І.І. Демків, Р.І. Квіт, В.В. Кісілевич – Львів: Національний університет “Львівська політехніка” (Інформаційно-видавничий центр “Інтелект+” Інститут післядипломної освіти) “Інтелект - Захід”, 2004. – 448 с. 3. Акулич М.Л. Математичиское програмирование в примерах и задачах: Учебное пособие для студентов экономических специальних вузов. – Вища школа, 1985-319с.,ст.270-274. 4. Вітлінський В.В., Наконечний С.І., Терещенко Т.О. Математичне програмування: Навч. – метод. посібник для самост. вивч. дисц. – К.: КНЕУ, 2001. – 248 с. 5. Математичне програмування (методичний посібник для студентів економічних спеціальностей)/Укладачі: Лавренчук В.П., Веренич І.І., Готинчан Т.І., Дронь В.С., Кондур О.С., - Чернівці: „Рута”, 1998.-168 с. |