Реферат: Определение момента инерции тела и проверка теоремы Штейнера методом крутильных колебаний
Название: Определение момента инерции тела и проверка теоремы Штейнера методом крутильных колебаний Раздел: Рефераты по физике Тип: реферат | ||||||||||||||||||||||||||||||||||||||||||
ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Цель работы: изучить метод крутильных колебаний (трифилярный подвес) и применить его для определения момента инерции тела и проверки теоремы Гюйгенса-Штейнера. Приборы и принадлежности: установка, секундомер, штангенциркуль, линейка, образцы для измерений. ТЕОРИЯ МЕТОДА И ОПИСАНИЕ УСТАНОВКИ. Установка для определения момента инерции тела, которая применяется в данной работе, называется трифилярным подвесом. Состоит она из диска (платформы) (рис.1), горизонтально подвешенной на трех симметрично расположенных нитях 2. Вверху нити прикреплены к основанию 3, имеющему три симметрично расположенных выступа. Основание с помощью болта 5 и упругой пластины 6 соединено с кронштейном 4. Платформа может совершать крутильные колебания вокруг вертикальной оси, проходящей через ее середину. При этом центр тяжести платформы перемещается вдоль оси вращения. Пусть масса платформы m 0 , вращаясь в некотором направлении, поднялась на высоту h от положения равновесия. Изменение ее потенциальной энергии при этом составит E 1 = m 0 gh (1) где g – ускорение силы тяжести. Возвратившись в положение равновесия, платформа будет иметь угловую скорость w 0 и кинетическая энергия ее будет E 2 = I (2) где I – момент инерции платформы относительно оси вращения. Пренебрегая работой сил трения, закон сохранения механической энергии запишется I = m 0 gh (3) При малой амплитуде колебания платформы будут гармоническими, т.е. зависимость углового смещения b от времени t имеют вид b = a sin (4) где a - амплитуда; Т – период колебаний. В свою очередь угловая скорость w = или w = . Максимальное изменение угловой скорости w 0 , соответствующее моменту времени, когда платформа проходит через положение равновесия w = (5) Из (3) и (5) имеем mgh = I ( ) ² (6) Найдем h . Пусть l – длина нитей подвеса (рис.2), R – расстояние от центра платформы до точек крепления нитей на ней, r – радиус окружности, на которой лежат точки крепления нитей к основанию. Из рис.2 видим, что h = OO 1 = BC - BC 1 = В свою очередь Поэтому При малых углах смещения ; ( BC + BC 1 )=2 l учитывая это, будем иметь (7) тогда из (6) и (7) находим (8) ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ. Упражнение 1. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА. 1. Убедиться в том, что платформа расположена горизонтально. 2. Определить R,r,l (масса платформы m 0 =(1.025±0.0005)кг.), R и r удобно определить из известной геометрической формулы, измерив предварительно с помощью линейки расстояние между точками подвеса двух нитей вверху и внизу. 3. Путем несильного нажатия на край основания 3 (рис.1) сообщить платформе вращательный импульс и при помощи секундомера измерить время 50-70 полных ее колебаний. Опыт повторить 3-5 раз. 4. Найти период Т 0 из этих этих колебаний по формуле (8) определить I 0 – момент инерции платформы. Результаты занести в таблицу 1. 5. Платформу нагрузить исследуемым телом, предварительно определив его массу m . Определить период колебаний T 1 системы тело-платформа (масса системы – m+m 0 ) и момент инерции системы I 1 . Величина момента инерции тела найдется как разница I=I 1 -I 0 . Опыт повторить 3-5 раз. Результаты измерений занести в таблицу 2. 6. Найти ошибку определения I . 7. Сравнить полученное значение I и I 0 с теоретическим, вычисленным по формуле момента инерции для данного тела. Упражнение 2: ПРОВЕРКА ТЕОРЕМЫ ГЮЙГЕНСА- ШТЕЙНЕРА (ШТЕЙНЕРА-ЖУРАВСКОГО). 1. Взять два одинаковых тела и в соответствии с упражнением 1 определить их момент инерции 2I 2 . Для этого, положив тела одно на другое в центре платформы так, чтобы центры масс тел лежали на одной вертикали с центром масс платформы. Момент инерции одного тела относительно проходящей через центр масс оси будет равен I 2 . Опыт повторить 3-5 раз. Результаты занести в таблицу 3. 2. Расположить тела на некотором расстоянии друг от друга симметрично относительно центра платформы. 3. Определить расстояние a от центра масс из тел до оси вращения и его момент инерции I 3 . Из опыта найти момент инерции системы из двух тел 2I 3 . Опыт повторить 3-5 раз. Результаты измерений занести в таблицу 4. 4. Найти I 3 по теореме Штейнера (9) где m – масса тела, при этом для I 2 , m, a берут значения, полученные опытным путем. 5. Сравнить значения I 3 , полученные по формуле (9) и экспериментально. 6. Найти ошибки определения I 2 и I 3. Таблица 1.
Таблица 2.
Таблица 3.
Таблица 4.
Масса большого цилиндра m б =(842,5±0,5)г.Масса малого цилиндра m м =(303,15±0,5)г. |