Контрольная работа: Метод скінчених різниць в обчислювальній математиці
Название: Метод скінчених різниць в обчислювальній математиці Раздел: Рефераты по математике Тип: контрольная работа | |
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ кафедра інформатики КОНТРОЛЬНА Р О БОТА ПО КУРСУ: Чисельні методи на тему: «Метод скінчених різниць в обчислювальній математиці» Зміст Постановка задачі Вступ 1 Теоретична частина 2 Програмна реалізація Список використаної літератури Постановка задачі Використовуючи метод кінцевих різниць , розв’язати крайову задачу для звичайного диференціального рівняння Вступ Нехай потрібно чисельно розв’язати задачу Коші для звича-йного диференціального рівняння першого порядку, тобто знайти наближений розв’язок диференціального рівняння y=F(x,y), що задовольняє початковій умові y(x)=y.Чисельне розв’язання задачі полягає в побудові таблиці наближених значень y,y,y,...,y-розв’язку рівняння y=(x ) у точках x,x,x,...,x - вузлах сітки . y yn * y3 * y2 * y1 * y0 * O x0 x1 x2 x3 xn x На рисунку * позначені точки, що відповідають наближено-му розв’язку задачі Коші. Треба зазначити, що частіше використо-вують систему рівновіддалених вузлів x =x + ih (i=1,2,..,n) , де h - крок сітки ( h > 0 ) . 1 Теоретич н а част ина Методи Рунге-Кутта Різні представники цієї категорії методів потребують більшого чи меншого об’єму обчислень і відповідно забезпечують більшу чи меншу точність. При розв’язанні конкретної задачі виникають питання, якою із формул Рунге-Кутта доцільно скористатися і як вибрати крок сітки. Якщо неперервна й обмежена разом із своїми четвертими похідними, то гарні результати дає метод четвертого порядку. Він описується системою наступних п'яти співвідношень: 1 2 3 (); 4 5 Якщо функція не має зазначених похідних, порядок точності вищенаведеного методу не може бути реалізований. Тоді необхідно користуватися методами меншого порядку точності, що відповідає порядку наявних похідних. Одним з найбільш простих і досить ефективних методів оцінки похибки й уточнення отриманих результатів є правило Рунге. Для оцінки похибки за правилом Рунге порівнюють наближені розв’язки, отримані при різних кроках сітки. При цьому використовується наступне припущення: глобальна похибка методу порядку p у точці хi подається у вигляді . За формулою Рунге
Таким чином, із точністю до (величина більш високого порядку малості) при h→0 похибка методу має вигляд:
де yi – наближене значення, отримане в точці з кроком h; y2i – із кроком h/2; p - порядок методу; y(x2i ) - точний розв’язок задачі. Метод прогнозу і корекц ії Підправивши схему Эйлера , одержимо схему прогнозу , де наближене значення . Цю формулу використовувати не можна ,оскільки схема прогнозу нестійка . Тому використовує-мо схему корекції
Оцінюючи похибки прогнозу і корекції, одержимо - похибка корекції, - похибка прогнозу . Істинне значення лежить між прогнозом і корекцією .На будь-якому кроці можна оцінити точність рішення . При заданому =0,0000001, наприклад, . Віднімаючи з співвідношення , маємо . Уточнюємо розв’язання, виходячи з формули :
Ця формула завершає схеми прогнозу і корекції . Метод кінцевих різниць для розв ’ яза ння лінійних крайових задач Маємо відрізок [a,b]. Потрібно знайти розв’язок лінійного диференціального рівняння другого порядку , що задовольняє такі крайові умови:
Виберемо рівномірну сітку: x = a + ih, i = 0,1,2,…,n... Нехай Апроксимуємо і у кожному внутрішньому вузлі (i = 1, 2, …, n-1) центральними різницями , і на кінцях відрізка – односторонніми скінченнорізницевими апроксимаціями , . Використовуючи ці формули, одержуємо різницеву апроксимацію вихідного крайового завдання:
Коефіцієнти різницевих рівнянь залежать від кроку сітки. Введемо позначення:
Перепишемо систему з урахуванням введених позначень:
Маємо різницеву схему крайового завдання. Запишемо систему рівнянь у розгорнутій матричній формі: Таким чином, завдання зводиться до розв’язання системи лінійних алгебраїчних рівнянь, що можна записати у вигляді Ay=d. 2 Програмна реалізація Реалізація пакетом Maple > ss:=diff(diff(y(x),x),x)+diff(y(x),x)/x+2*y(x)-x; - dsolve[interactive]( ss ); Список використаної літератури 1. Б. П. Демидович и И. А. Марон. “Основы вычислительной математики”, Москва, 1963г. 2. Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. “Численные методы”, Москва, 1987г. 3. Мусіяка В. Г. Основи чисельних методів механіки: підручник. – К.: Вища освіта, 2004. – 240 с.: іл. 4. Л. Д. Назаренко Чисельні методи. Дистанційний курс. |