Реферат: Теореми Ролля Лагранжа Коші Правило Лопіталя Формула Тейлора для функції однієї та двох змін
Название: Теореми Ролля Лагранжа Коші Правило Лопіталя Формула Тейлора для функції однієї та двох змін Раздел: Рефераты по математике Тип: реферат |
Пошукова робота на тему: Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних. П лан
6.12. Основні теореми диференціального числення У курсі математичного аналізу одне з центральних місць займають так звані теореми про середнє значення, до яких належать теореми Ролля, Лагранжа і Коші. В цих теоремах йдеться про те, що коли функція та її похідна першого порядку задовольняють певним умовам, то всередині інтервалу знайдеться точка, в якій функція має певні властивості (про ці властивості йдеться в теоремі). Тому й самі теореми називають теоремами про середнє. 6.12. 1. Теорема Ролля Теорема. Нехай функція задовольняє умовам: 1) визначена і неперервна на відрізку : 2) диференційована в інтервалі ; 3) на кінцях відрізка набуває однакових значень: . Тоді всередині інтервалу знайдеться хоча б одна точка в якій . Д о в е д е н н я. Випадок 1. Функція на відрізку є сталою: . Тоді , тобто в кожній точці похідна дорівнює нулю, а тому за точку можна взяти будь-яку точку інтервалу і для цієї точки теорема буде справедлива. Випадок 2. Функція не є тотожною сталою на відрізку . Оскільки за умовою теореми не є неперервною, то вона на відрізку набуває найбільшого і найменшого значень. Позначимо найбільше значення через , а найменше – через . Зрозуміло, що в розглянутому випадку . Через те, що , то хоча б одне з чисел або досягається функцією всередині інтервалу . Нехай, наприклад, число досягається функцією всередині інтервалу , тобто існує хоча б одна точка, позначимо її , в якій . Покажемо, що . Справді, оскільки є найменше значення функції на відрізку , то це число буде найменшим і серед значень функції, які вона набуває для всіх з деякого досить малого околу точки . Позначимо цей окіл через . Тоді для всіх справджуватимуться нерівності при , при . Розглянемо відношення , для якого справедливі нерівності при , при , причому . Перейдемо в цих нерівностях до границі, коли . Тоді границя відношення, яке стоїть в лівій частині нерівностей, існує і дорівнює похідній , тому , . Звідси випливає, що . Теорему доведено З’ясуємо геометричний зміст теореми Ролля (рис.6.9): 1) графік функції є суцільна лінія ( - неперервна на відрізку); 2) крива, що є графіком функції, є гладкою кривою (крива називається гладкою, якщо в кожній її точці можна провести дотичну); 3) крайні точки графіка знаходяться на однаковій висоті від . 6.12. 2. Теорема Лагранжа Теорема. Якщо функція : 1) задана і неперервна на відрізку ; 2) диференційована в інтервалі , то тоді всередині інтервалу знайдеться хоча б одна точка , в якій справджуються рівність . (6.73) Д о в е д е н н я. Розглянемо функцію , що задовольняє всім умовам теореми Ролля. Справді, на відрізку є неперервною (як різниця двох неперервних функцій), а всередині інтервалу має похідну ; . Отже, існує точка в якій або, що саме,
звідси
Теорему доведено. Геометрична інтерпретація теореми Лагранжа. Нехай графік функції зображено на рис. 6.10. Відношення є кутовий коефіцієнт січної , а - кутовий коефіцієнт дотичної, проведеної до графіка функції в точці з абсцисою . Обидва кутові коефіцієнти однакові. Отже, дотична і січна паралельні. Тому висновок теореми Лагранжа можна сформулювати так: на дузі знайдеться хоча б одна точка, в якій дотична до кривої паралельна хорді . Оскільки , то можемо записати: . Рис.6.19 Рис.6.10 Отже, рівність (6.73) можна записати в такому вигляді: , або . Зокрема, покладемо , одержимо рівність . Вираз, який стоїть у лівій частині останньої рівності, є не що інше, як приріст функції в точці . Отже, дістаємо формулу . (6.74) Формула (6.74) виражає точне значення приросту функції в точці за будь-якого скінченого значення приросту аргументу і має назву формули скінчених приростів. Наслідок 1. Якщо функція на проміжку має похідні і за будь-якого , то на даному проміжку є сталою. Д о в е д е н н я. Візьмемо в проміжку дві довільні точки Тоді функція на відрізку задовольняє умовам теореми Лагранжа і справедливою є рівність . Проте при будь-якому , зокрема і при , дорівнює нулю. Тоді з попередньої нерівності випливає: , або . Оскільки і - довільні точки проміжку і функція у цих точках набуває однакових значень, то є сталою. Тепер ми можемо сформулювати такий критерій сталості диференційованої функції на заданому проміжку: для того, щоб диференційована на проміжку функція була сталою, необхідно і достатньо, щоб в кожній точці цього проміжку дорівнювала нулю. Наслідок 2. Якщо функції і на проміжку мають похідні , і за будь-якого , то різниця між цими функціями є величина стала. Д о в е д е н н я. Позначимо різницю через : . Тоді функція на проміжку має похідну : . Проте , тому . Звідси випливає, що або, що те саме, . 6.12.3. Теорема Коші Теорема. Нехай: 1) функції і задані і неперервні на відрізку ; 2) диференційовані в інтервалі ; 3) похідна всередині інтервалу не дорівнює нулю. Тоді всередині інтегралу знайдеться така точка , що має місце рівність . (6.75) 6.13. Розкриття невизначеностей. Правило Лопіталя Розглянемо невизначеність виду . Теорема 1. Нехай для функцій і виконуються умови: 1) функції визначені на півінтервалі і ; 2) в інтервалі диференційовані, причому для всіх ; 3) існує (скінчена або нескінченна ) границя . Тоді існує границя відношення при і ця границя дорівнює теж числу , тобто . Висновок цієї теореми читають ще так: границя відношення функції дорівнює границі відношення похідних від цих функцій. Наведену теорему називають першим правилом Лопіталя. Зауваження 1 . Може статися, що поряд з рівностями виконуються рівності
Нехай
тоді, застосовуючи двічі доведену теорему, дістаємо таку рівність:
Взагалі цей спосіб можна застосовувати доти, поки не прийдемо до відношення яке має при певну границю. Тоді
У цьому випадку кажуть, що правило Лопіталя використовується разів. Зауваження 2. Теорема 1 при виконанні її умов справджується і тоді, коли точка є невласною, тобто . У цьому випадку
Справді, застосувавши підстановку , маємо
Сформулюємо другу теорему Лопіталя, яка стосується розкриття невизначеності виду Теорема 2. Нехай для функцій і виконуються умови: 1) функції визначені на півінтервалі і при цьому
2) функції диференційовані в інтервалі причому
3) існує ( скінчена або нескінченна) границя
Тоді . Зауваження 3. Крім невизначеностей є ще й інші невизначеності: Проте всі вони зводяться до невизначеності або Справді, нехай, наприклад, маємо невизначеність Інакше кажучи, нехай маємо функції і такі, що Тоді добуток можна зобразити у вигляді частки: Отже, у правій частині ми маємо невизначеність виду Якщо маємо невизначеність , тобто і то різницю можна записати:
отже, в правій частині маємо невизначеність виду Якщо маємо степінь і тобто невизначеність виду , то її розкривають так. Припускаючи, що , вираз має вигляд
У показнику при маємо невизначеність виду , яка (це було показано вище) зводиться до невизначеності . Аналогічно невизначеності розкриваються невизначеності , . Приклади. Користуючись теоремами Лопіталя, знайти границі функцій: 1. 2. 3. 4. 5. 6. 7. 8. Р о з в ’ я з о к. Перевіримо виконання умов теорем Лопіталя для першого прикладу. Для прикладів пропонуємо умови теорем перевірити самостійно. 1. Нехай . Розглядатимемо пів інтервал , де - довільне число. Тоді . Знаходимо похідні за будь-якого , а потім . Отже, виконуються всі три умови першої теореми Лопіталя. Тому . 2. Маємо невизначеність виду . Використавши першу теорему Лопіталя, одержимо . 3. Маємо невизначеність виду , тому використовуємо другу теорему Лопіталя: . 4. Маємо невизначеність виду . Зводимо її до невизначеності . Для цього запишемо у вигляді . Отже, дістали невизначеність . Тому . 5. Маємо невизначеність . Запишемо добуток так: . Дістали невизначеність . Тому
Під знаком границі в правій частині останньої рівності знову маємо випадок, коли чисельник і знаменник прямують до , тобто маємо ту саму невизначеність . Застосувавши раз друге правило Лопіталя, дістаємо
6. Маємо невизначеність . Тоді
Знайдемо границю показника:
тому
7.Маємо невизначеність виду . Запишемо даний вираз: . Дістали невизначеність . Отже, . 8. Маємо невизначеність виду . Запишемо даний вираз: . Знайдемо границю показника: . Отже,
6.14. Формула Тейлора 6.14.1. Формула Тейлора для многочлена Нехай задано многочлен
де - довільні дійсні числа, які називаються коефіцієнтами многочлена. Виразимо коефіцієнти даного многочлена через значення многочлена та його похідні. З цією метою будемо послідовно диференціювати многочлен. Матимемо
. . . . . . . . . . . . . . . . . . . .
Підставляючи в ці рівності , дістаємо
. . . . . . . . . .
Тоді многочлен набуде вигляду (6.76) Може трапитися, що многочлен буде записаний за степенями різниці , де - довільне дійсне число:
- дійсні числа. Тоді многочлен можна записати так: (6.77) Формулу (6.77) називають формулою Тейлора для многочлена. 6.14.2. Формула Тейлора для довільної функції Візьмемо довільну функцію , яка в околі деякої точки і в самій точці має похідні до -го порядку включно. Тоді для такої функції можна побудувати многочлен (6.78) Цей многочлен називається многочленом Тейлора для функції Розглянемо таку різницю:
Оскільки залежить від то й залежить від Тоді
або (6.79) Формула (6.79) називається формулою Тейлора для функції а функція - залишковим членом формули Тейлора. Отже, формула Тейлора (6.79) відрізняється від формули Тейлора (6.77) для многочлена тим, що вона містить залишковий член Виразимо через похідну -го порядку від функції Теорема. Якщо в деякому околі, наприклад, на відрізку точки має неперервні похідні до -го порядку включно, то залишковий член у формулі Тейлора можна записати у вигляді (6.80) де Формула (6.79) записується тепер у вигляді (6.81) і справедлива для будь-якого Формула (6.81) називається формулою Тейлора із залишковим членом виду Лагранжа. Якщо в цій формулі покласти , то матимемо так звану формулу Маклорена (6.82) Враховуючи вирази для диференціалів різних порядків функції можна записати формулу (6.81) в диференціальній формі: (6.83) 6.14.3. Формула Тейлора для функції двох змінних Нехай функція має в околі точки неперервні частинні похідні до -го порядку включно. Формулу Тейлора зручно записати в диференціальній формі: (6.84) де Аналогічний вигляд має формула Тейлора для функції більшого числа змінних. |