Реферат: Измерение коэффициента самодиффузии методом Хана с постоянным градиентом магнитного поля
Название: Измерение коэффициента самодиффузии методом Хана с постоянным градиентом магнитного поля Раздел: Рефераты по науке и технике Тип: реферат | ||||
ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА САМОДИФФУЗИИ МЕТОДОМ ХАНА С ПОСТОЯННЫМ ГРАДИЕНТОМ МАГНИТНОГО ПОЛЯ В настоящее время наиболее уникальным и информативным методом изучения структуры и свойств веществ является метод ядерного магнитного резонанса (ЯМР).Суть метода основана на явлении резонансного поглощения ядрами со спином 1/2, находящихся в магнитном поле Но (спиновой системой), энергии радиочастотного поля Н1 , с последующим высвобождением этой энергии после прекращения действия поля Н1 . Находясь в поле Но спиновая система создает макроскопическую намагниченность М направленную вдоль этого поля. Если воздействовав на такую систему внешним переменным магнитным полем Н1 , перпендикулярным полю Но , то макроскопическая намагниченность будет поворачиваться вокруг поля Н1 .Если за время действия поля Н1 М поворачивается на 90 градусов,то такой импульс называется 90 градусным,если поворот осуществляется на 180 градусов- это 180 градусный импульс.После прекращения действия поля Н1 спиновая система оказывается в неравновесном состоянии.Восстановление к равновесному состоянию характеризуются процессами релаксации, с характеристическими временами Т1 -временем спин-решеточной (продольной) релаксации, Т2 -временем спин-спиновой (поперечной) релаксации. Построение спектрометров ЯМР таково, что в них регистрируется сигнал наведенный в приемо-передающей катушке, ось которой перпендикулярна полю Но ,компонентой макроскопической намагниченности Мху , лежащей в плоскости ху, перпендикулярной полю Но .Интенсивность А этого сигнала пропорциональна величине Мху .После 90 градусного импульса величина А,в процессе релаксации, изменяется от максимального значения до нуля. Это изменение называется спадом свободной индукции (ССИ) . Для измерения времени спин-спиновой релаксации Хан предложил на спиновую систему воздействовать импульсной последовательностью 90-t-180 (последовательность Хана).В момент времени 2t после начала 90 градусного импульса формируется, так называемое, спиновое эхо (рис.1). Рисунок 1. Зависимость амплитуды спинового эхо от интервала t в последовательности Хана описывается выражением: А(t)=Aо exp(-2t/T2 ) (1) Aо - начальная амплитуда ССИ; А(t) амплитуда спинового эхо, t- интервал времени между 90-гр. и 180-гр. импульсами. Метод Хана позволяет определить значение Т2 только в том случае, когда за время 2t молекулы не перемещаются. Однако, как известно, молекулы в жидкости находятся в состоянии непрерывного теплового движения. Такое движение молекул называется самодиффузией и характеризуется коэффициентом самодиффузии D, который численно равен среднеквадратичному смещению <r2 > которое испытывает молекула за время диффузии td : D=<r2 >/6td (2) Поэтому, реально с учетом релаксационного и диффузионного вкладов, амплитуда эхо будет описываться выражением: А(t)=Ao exp(-2t/T2 ) exp[-(2/3)g2 g2 t3 D] (3) где: g - гиромагнитное отношение; g - градиент внешнего магнитного поля; Для уменьшения влияния самодиффузии Карр и Парселл модифицировали последовательность Хана в многоимпульсную последовательность 90-t-180-2t-180-2t-180-..., (последовательность Карра-Парселла). Эта последовательность позволяет получить серию эхо, которые формируются в промежутках между 180 градусными импульсами. Огибающая эхо в последовательности Карра-Парселла представляет собой релаксационное затухание и описывается выражением: А(t)=Ao exp(-t/T2 ) exp[-(2/3)g2 g2 t2 Dt] (4) где А(t) -амплитуда эхо в момент времени t. Из выражения (4) видно, что выбирая t достаточно малымэкспоненциальным множителем, учитывающим влияние самодиффузии,можно пренебречь. В этом случае огибающая эхо будет определяться тольколишь процессами спин-спиновой релаксации и описываться выражением: А(t)/Ао =ехр(-t/Т2 ) (5) Логарифмируя последнее выражение получим: ln[A(t)/Ао ]= - t/Т2 (6). Если Ао /А(t)=е- основанию натурального логарифма, то ln(Ао /А(t))=1. Тогда по наклону зависимости ln(А(t)/Ао )=f(t) легко определить время Т2 ,поскольку, в этом случае, tе =Т2 , где tе - время, в течении которого амплитуда эхо уменьшается в е раз (рис.2а). Как было отмечено выше, амплитуда спинового эхо в методе Хана определяется как временем спин-спиновой релаксации Т2 , так и коэффициентом самодиффузии D. Поэтому этот метод может быть использован для измерения коэффициента самодиффузии. Из выражения (3) видим, что амплитуда эхо зависит от градиента внешнего магнитного поля g и от времени t между 90 и 180 градусными импульсами. Экспериментальное измерение коэффициента самодиффузии заключается в получении диффузионного затухания спинового эхо. Для этого зафиксировав наиболее удобный интервал t, и оставляя его постоянным, получают затухание спинового эхо в зависимости от величины градиента магнитного поля g. Согласно выражению (3) отношения амплитуд спинового эхо при различных градиентах магнитного поля определится: А(g)/A(gо ) =ехр [-2/3 g2 (g2 -gо 2 ) t3 D] (7) где А(g) - амплитуда эхо при градиенте g, А(gо ) - амплитуда эхо при естественном градиенте gо . Логарифмируя выражение (7), и полагая величину естественного градиента go <<g, получим: ln[A(g)/А(go )]= -(2/3) g2 g2 t3 D (8) Если A(gо )/А(g)=е, то согласно (8) имеем: D=3/2g2 t3 ge 2 (9) где gе - величина градиента, при котором амплитуда спинового эхо уменьшается в е раз. Экспериментально для определения коэффициента самодиффузии строят зависимость ln[А(g)/А(gо ) =f(g).Найдя затухание амплитудыэхо в е раз, и определив gе , по выражению (9) вычисляют коэффициент самодиффузии в (рис. 2б).
Список литературы 1. Фаррар Т., Беккер Э. Импульсная и Фурье спектроскопия ЯМР.- М. :Мир, 1973. 2. Вашман А.А.,Пронин И.С. Ядерная магнитная релаксация и ее применение в химической физике. - М. :Наука, 1979. 3. Маклаковский А.И., Скирда В.Д., Фаткулин Н.Ф. Самодиффузия в растворах и расплавах полимеров. - Казань. :Изд-во Казанского университета, 1987. 4. Курс лекций по спецкурсу ЯМР. |