Контрольная работа: Основы геодезии
Название: Основы геодезии Раздел: Рефераты по геологии Тип: контрольная работа | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тульский государственный университет» Кафедра Геоинженерии и Кадастра КОНТРОЛЬНАЯ РАБОТА ОСНОВЫ ГЕОДЕЗИИ Содержание Задание 1. Определить среднюю квадратическую ошибку угла, измеренного одним полным приемом при помощи теодолита Т-30, учитывая ошибку mо отсчета по микроскопу при двух наведениях t, визирования mv и за внецентренность теодолит mc и вех, если mc = mr =15// +i// , v=20х . Принять i равным номеру по журналу. Задание 2. Оценить точность определения коэффициента дальномера зрительной трубы С, если измерено горизонтальное расстояние от оси вращения трубы до рейки s±ms и определен отрезок l рейки между дальномерными нитями сетки с ошибкой ml . Ошибкой в определении слагаемого дальномера можно пренебречь. Принять s=147,83 м±i (см),ms =± 0,070 м ±(0,000 + i)(м) ;l=1.48м, ml =±0,0050м. Принять i равным номеру по журналу. Задание 3. По результатам измерения угла найти вероятнейшее значение угла, средние квадратические ошибки одного измерения и арифметической средины, вероятную ошибку, среднюю ошибку, предельную. Изменить третью, пятую, десятую ошибку по правилу m±0,i// (табл 1). Таблица 1.
Задание 4. Уравновесить по способу косвенных измерений результаты нивелирования системы ходов (рис). Вычислить среднюю квадратическую ошибку нивелирования на 1 км хода и произвести оценку точности определения отметок узловых реперов и разности уравновешенных отметок НЕ -НС методом весовых коэффициентов по Ганзену. Исходные отметки изменить по правилу Н±0.00(i/3)м.
Рис. Схема нивелирных ходов
Задача 1 Определить среднюю квадратическую ошибку угла, измеренного одним полным приемом при помощи теодолита Т-30, учитывая ошибку mо отсчета по микроскопу при двух наведениях t, визирования mv и за внецентренность теодолит mc и вес, если mc = mr =20// , v=20х . Решение: Найдем ошибки от отдельных источников ошибок. Средняя квадратическая ошибка среднего из отсчетов по двум верньерам . Средняя квадратическая ошибка визирования трубой теодолита . Суммарная ошибка измеренного одним полуприемом направления найдется по формуле , И . Угол есть разность двух направлений, следовательно, , Для среднего значения угла, полученного из двух полуприемов, . Задача 2 Оценить точность определения коэффициента дальномера зрительной трубы С, если измерено горизонтальное расстояние от оси вращения трубы до рейки s±ms и определен отрезок l рейки между дальномерными нитями сетки с ошибкой ml . Ошибкой в определении слагаемого дальномера можно пренебречь. Принять s=147,88 м, ms =± 0,075 м; l=1.48м, ml =±0,0050м. Решение Логарифмируя функцию , получаем Коэффициент дальномера С будет получен с некоторой ошибкой, вследствии ошибок измерений величин s и l. Эти ошибки вызовут соответствующие ошибки в логарифмах величин s, l, и С, которые обозначим mlgs , mlgl , и mlgC . . Значение mlgs , и mlgl найдем по табличным разностям логарифмов Табличная разность равна 3. При изменении s на 0,01 м логарифм s изменяется на 3 единицы последнего знака. При изменении же s на величину логарифм s изменится на величину, приблизительно в 8 раз большую, то есть единицам 5-го знака логарифма Аналогично находим Табличная разность равна 30. Здесь при изменении l на 0,01 м логарифм l изменяется на 30 единиц пятого знака, а так как , то единице 5-го знака логарифма. Далее . , . При изменении С на 0,1 логарифм его изменяется на 44 единицы 5-го знака логарифма. Составит пропорцию , откуда . Эти вычисления записываем в таблицу:
единицы 5-го знака логарифма; , откуда . Ответ: . Задача 3 По результатам измерения угла найти вероятнейшее значение угла, средние квадратические ошибки одного измерения и арифметической средины, вероятную ошибку, среднюю ошибку, предельную. Таблица 1.
Решение: Решение задачи выполняется в двух вариантах. Первый вариант:
; ; ; ; ; . Как видим, вследствие ошибок округления контроль сходится весьма приближенно. Можно показать, что этот контроль уточняется следующим образом: . В данном случае . Полученное расхождение с на 0,01 объясняется приближенностью контрольной формулы. Второй вариант:
; ; ; ; ; . Средняя ошибка:
Вероятная ошибка: . Предельная ошибка: . Ответ: . Задача 4 Уравновесить по способу косвенных измерений результаты нивелирования системы ходов (рис). Вычислить среднюю квадратическую ошибку нивелирования на 1 км хода и произвести оценку точности определения отметок узловых реперов и разности уравновешенных отметок НЕ -НС методом весовых коэффициентов по Ганзену. А=134,838 м, В=142,514 м.
Решение: I. Установим в качестве независимых неизвестных отметки узловых реперов С, в и Е и выразим все превышения в функции этих неизвестных. Обозначим вероятнейшие значения отметок HC , HD и HE соответственно через x, y, я и положим , , . Вычислим приближенные значения неизвестных: II. Составим уравнения ошибок в общем виде:
III. Подставив вместо неизвестных их приближенные значения плюс поправки, получим уравнения ошибок с поправками к приближенным значения неизвестных. Свободные члены в этих уравнениях выражаем в сантиметрах:
IV. Составим таблицу коэффициентов уравнений ошибок.
Весовая функция по условию задачи имеет вид для которой f1 =-1, f2 =0, f3 =+1. V. Составим таблицу коэффициентов нормальных уравнений (таблица 1). VI. Выпишем нормальныеуравнения
Контроль 0.068-0.033-0.398+0.499=0 Этот контроль произведем после решения нормальных уравнений, подставив найденные поправки неизвестных в суммарное уравнение. VII. Решим нормальные уравнения (таблица 2). VIII. Вычислим уравновешенные значения превышений.
IX. Выполним окончательный контроль всех вычислений
X. Произведем оценку точности. 1) Средняя квадратическая ошибка единицы веса (превышения по ходу 1 км) ; Ошибка самой ошибки единицы веса . 2) Средние квадратические ошибки высот определяемых реперов
3) Среднюю квадратическую ошибку функции найдем по формуле
; и . Таблица 1
Таблица 2
|