Курсовая работа: Расчет и проектирование привода
Название: Расчет и проектирование привода Раздел: Промышленность, производство Тип: курсовая работа | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ЗАДАНИЕ Спроектировать привод. В состав привода входят следующие передачи: 1 - ременная передача с клиновым ремнём; 2 - закрытая зубчатая цилиндрическая передача. Мощность на выходном валу Р = 8 кВт. Частота вращения выходного вала n = 80 об./мин. Содержание Введение....................................................................................................... 1. Выбор электродвигателя и кинематический расчёт 2. Расчёт 1-й клиноременной передачи 3. Расчёт 2-й зубчатой цилиндрической передачи 3.1 Проектный расчёт 3.2 Проверочный расчёт по контактным напряжениям 3.3 Проверка зубьев передачи на изгиб 4. Предварительный расчёт валов 4.1 Ведущий вал. 4.2 Выходной вал. 5. Конструктивные размеры шестерен и колёс 5.1 Ведущий шкив 1-й ременной передачи 5.2 Ведомый шкив 1-й ременной передачи 5.3 Цилиндрическая шестерня 2-й передачи 5.4 Цилиндрическое колесо 2-й передачи 6. Выбор муфты на выходном валу привода 7. Проверка прочности шпоночных соединений 7.1 Ведущий шкив 1-й клиноременной передачи 7.2 Ведомый шкив 1-й клиноременной передачи 7.3 Шестерня 2-й зубчатой цилиндрической передачи 7.4 Колесо 2-й зубчатой цилиндрической передачи 8. Конструктивные размеры корпуса редуктора 9. Расчёт реакций в опорах 9.1 1-й вал 9.2 2-й вал 10. Построение эпюр моментов валов 10.1 Расчёт моментов 1-го вала 10.2 Эпюры моментов 1-го вала 10.3 Расчёт моментов 2-го вала 10.4 Эпюры моментов 2-го вала 11. Проверка долговечности подшипников 11.1 1-й вал 11 2-й вал 12. Уточненный расчёт валов 12.1 Расчёт 1-го вала 12.2 Расчёт 2-го вала 13. Тепловой расчёт редуктора 14. Выбор сорта масла 15. Выбор посадок 16. Технология сборки редуктора Заключение Список использованной литературы Введение Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов, базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т. д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам. При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы. Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт. К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями. Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения - свыше 30% объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев требуют повышенной защиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания. Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению. Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т. д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий. При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения - 85%, в дорожных машинах - 75%, в автомобилях - 10% и т. д. Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы. Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением. 1 Выбор электродвигателя и кинематический расчётПо табл. 1.1[1] примем следующие значения КПД: - для ременной передачи с клиновым ремнем: 1 = 0,96 - для закрытой зубчатой цилиндрической передачи: 2 = 0,975 Общий КПД привода будет: = 1x ... x nx подш.2x муфты = 0,96 x 0,975 x 0,992x 0,98 = 0,899 где подш. = 0,99 - КПД одного подшипника. муфты = 0,98 - КПД муфты. Угловая скорость на выходном валу будет: вых. = x nвых. / 30 = 3,142 x 80 / 30 = 8,378 рад/с Требуемая мощность двигателя будет: Pтреб. = Pвых. / = 8 / 0,899 = 8,899 кВт В таблице П.1[1](см. приложение) по требуемой мощности выбираем электродвигатель 160M8, с синхронной частотой вращения 750 об/мин, с параметрами: Pдвиг.=11 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения nдвиг. = 750-750x2,5/100=731,25 об/мин,угловая скорость двиг. = x nдвиг. / 30 = 3,14 x 731,25 / 30 = 76,576 рад/с. Oбщее передаточное отношение: U = вход. / вых. = 76,576 / 8,378 = 9,14 Для передач выбрали следующие передаточные числа: U1 = 1,6 U2 = 5,6 Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :
Мощности на валах: P1 = Pтреб.x 1x подш. = 8899 x 0,96 x 0,99 = 8457,61 Вт P2 = P1x 2x подш. = 8457,61 x 0,975 x 0,99 = 8163,708 Вт Вращающие моменты на валах: T1 = P1 / 1 = (8457,61 x 103) / 47,86 = 176715,629 Нxмм T2 = P2 / 2 = (8163,708 x 103) / 8,546 = 955266,557 Нxмм По таблице П.1(см. приложение учебника Чернавского) выбран электродвигатель 160M8, с синхронной частотой вращения 750 об/мин, с мощностью Pдвиг.=11 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения с учётом скольжения nдвиг. = 731,25 об/мин. Передаточные числа и КПД передач
Рассчитанные частоты, угловые скорости вращения валов и моменты на валах
2. Расчёт 1-й клиноременной передачи1. Вращающий момент на меньшем ведущем шкиве: T(ведущий шкив) = 116211,346 Нxмм. 2. По номограмме на рис. 7.3[1] в зависимости от частоты вращения меньшего ведущего шкива n(ведущий шкив) (в нашем случае n(ведущий шкив)=731,247 об/мин) и передаваемой мощности: P = T(ведущий шкив)x (ведущий шкив) = 116211,346 x 10-6x 76,576 = 8,899 кВт принимаем сечение клинового ремня А. 3. Диаметр меньшего шкива по формуле 7.25[1]: d1 = (3...4) x T(ведущий шкив)1/3 = (3...4) x 116211,3461/3 = 146,399...195,198 мм. Согласно табл. 7.8[1] принимаем d1 = 160 мм. 4. Диаметр большого шкива (см. формулу 7.3[1]): d2 = U x d1x (1 - ) = 1,6 x 160 x (1 - 0,015) = 252,16 мм. где = 0,015 - относительное скольжение ремня. Принимаем d2 = 250 мм. 5. Уточняем передаточное отношение: Uр = d2 / (d1x (1 - )) = 250 / (160 x (1 - 0,015)) = 1,586 При этом угловая скорость ведомого шкива будет: (ведомый шкив) = (ведущий шкив) / Uр = 76,576 / 1,586 = 48,282 рад/с. Расхождение с требуемым (47,86-48,282)/47,86=-0,882%, что менее допускаемого: 3%. Следовательно, окончательно принимаем диаметры шкивов: d1 = 160 мм; d2 = 250 мм. 6. Межосевое расстояние Ap следует принять в интервале (см. формулу 7.26[1]): amin = 0.55 x (d1 + d2) + T0 = 0.55 x (160 + 250) + 6 = 231,5 мм; amax = d1 + d2 = 160 + 250 = 410 мм. где T0 = 6 мм (высота сечения ремня). Принимаем предварительно значение a = 797 мм. 7. Расчетная длина ремня по формуле 7.7[1]: L = 2 x a + 0.5 xx (d1 + d2) + (d2 - d1)2 / (4 x a) = 2 x 797 + 0.5 x 3,142 x (160 + 250) + (250 - 160)2 / (4 x 797) = 2240,567 мм. Выбираем значение по стандарту (см. табл. 7.7[1]) 2240 мм. 8. Уточнённое значение межосевого расстояния aр с учетом стандартной длины ремня L (см. формулу 7.27[1]): aр = 0.25 x ((L - w) + ((L - w)2 - 2 x y)1/2) где w = 0.5 x x (d1 + d2) = 0.5 x 3,142 x (160 + 250) = 644,026 мм; y = (d2 - d1)2 = (250 - 160)2 = 8100 мм. Тогда: aр = 0.25 x ((2240 - 644,026) +EQ \R(;(2240 - 644,026)2 - 2 x 8100) ) = 796,716 мм, При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 x L = 22,4 мм для облегчения надевания ремней на шкивы и возможность увеличения его на 0,025 x L = 56 мм для увеличения натяжения ремней. 9. Угол обхвата меньшего шкива по формуле 7.28[1]: 1 = 180o - 57 x (d2 - d1) / aр = 180o - 57 x (250 - 160) / aр = 173,561o 10. Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7.10[1]: Cp = 1,1. 11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9[1]: CL = 1,06. 12. Коэффициент, учитывающий влияние угла обхвата (см. пояснения к формуле 7.29[1]): C = 0,984. 13. Коэффициент, учитывающий число ремней в передаче (см. пояснения к формуле 7.29[1]): предполагая, что ремней в передаче будет от 4 до 6, примем коэффициент Сz = 0,85. 14. Число ремней в передаче: z = P x Cp / (PoCLx Cx Cz) = 8899 x 1,1 / (1870 x 1,06 x 0,984 x 0,85 = 5,904, где Рo = 1,87 кВт - мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8[1]). Принимаем z = 6. 15. Скорость: V = 0.5 x (ведущего шкива)x d1 = 0.5 x 76,576 x 0,16 = 6,126 м/c. 16. Нажатие ветви клинового ремня по формуле 7.30[1]: F0 = 850 x P x Cрx CL / (z x V x C) + x V2 = 850 x 8,899 x 1,1 x 1,06 / (6 x 6,126 x 0,984) + 0,1 x 6,1262 = 247,61 H. где = 0,1 Hxc2/м2 - коэффициент, учитывающий влияние центробежных сил (см. пояснения к формуле 7.30[1]). 17. Давление на валы находим по формуле 7.31[1]: Fв = 2 x F0x sin(/2) = 2 x 247,61 x 6 x sin(173,561o/2) = 2966,63 H. 18. Ширина шкивов Вш (см. табл. 7.12[1]): Вш = (z - 1) x e + 2 x f = (6 - 1) x 15 + 2 x 10 = 95 мм. Параметры клиноременной передачи, мм
3. Расчёт 2-й зубчатой цилиндрической передачи3.1 Проектный расчётТак как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. гл.3, табл. 3.3[1]): - для шестерни : сталь : 45 термическая обработка : улучшение твердость : HB 230 - для колеса : сталь : 45 термическая обработка : улучшение твердость : HB 200 Допустимые контактные напряжения (формула (3.9)[1]) , будут: [H] = H lim bx KHL / [SH] По таблице 3.2 гл. 3[1] имеем для сталей с твердостью поверхностей зубьев менее HB 350 : H lim b = 2 x HB + 70 . H lim b (шестерня) = 2 x 230 + 70 = 530 МПа; H lim b (колесо) = 2 x 200 + 70 = 470 МПа; KHL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора принимаем KHL = 1 ; коэффициент безопасности [Sh]=1,1. Допустимые контактные напряжения: для шестерни [ H1 ] = 530 x 1 / 1,1 = 481,818 МПа; для колеса [ H2 ] = 470 x 1 / 1,1 = 427,273 МПа. Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса. Тогда расчетное допускаемое контактное напряжение будет: [ H ] = [ H2 ] = 427,273 МПа. Принимаем коэффициент симметричности расположения колес относительно опор по таблице 3.5[1] : KHb = 1,15 . Коэффициент ширины венца по межосевому расстоянию принимаем: ba = b / aw = 0,2 , (см. стр.36[1]). Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев найдем по формуле 3.7 гл. 3[1]: aw = Kax (U + 1) x (T2x KHb / [ H ] 2x U2xba ) 1/3 = 49.5 x (5,6 + 1) x (955266,557 x 1,15 / 427,2732x 5,62x 0,2)1/3 = 322,219 мм. где для прямозубых колес Кa = 49.5, передаточное число передачи U = 5,6; T2 = Тколеса = 955266,557 Нxм - момент на колесе. Ближайшее значение межосевого расстояния по ГОСТ 2185-66 будет : aw = 315 мм . Нормальный модуль зацепления берем по следующей рекомендации: mn = (0.01...0.02) x aw мм, для нас: mn = 3,15 . . . 6,3 мм, принимаем: по ГОСТ 9563-60* (см. стр. 36[1]) mn = 3,5 мм. Задаемся суммой зубьев: Z = z1 + z2 = 2 x aw / mn = 2 x 315 / 3,5 = 180 Числа зубьев шестерни и колеса: z1 = Z / (U + 1) = 180 / (5,6 + 1) = 27,273 Принимаем: z1 = 27 z2 = Z - z1 = 180 - 27 = 153 Угол наклона зубьев = 0o . Основные размеры шестерни и колеса: диаметры делительные: d1 = mnx z1 / cos() = 3,5 x 27 / cos(0o) = 94,5 мм; d2 = mnx z2 / cos() = 3,5 x 153 / cos(0o) = 535,5 мм. Проверка: aw = (d1 + d2) / 2 = (94,5 + 535,5) / 2 = 315 мм. диаметры вершин зубьев: da1 = d1 + 2 x mn = 94,5 + 2 x 3,5 = 101,5 мм; da2 = d2 + 2 x mn = 535,5 + 2 x 3,5 = 542,5 мм. ширина колеса: b2 = bax aw = 0,2 x 315 = 63 мм; ширина шестерни: b1 = b2 + 5 = 63 + 5 = 68 мм; Определим коэффициент ширины шестерни по диаметру: bd = b1 / d1 = 68 / 94,5 = 0,72 Окружная скорость колес будет: V = 1x d1 / 2 = 47,86 x 94,5 x 10-3 / 2 = 2,261 м/c; При такой скорости следует принять для зубчатых колес 8-ю степень точности. Коэффициент нагрузки равен: KH = KHbx KHax KHv . Коэффициент KHb=1,026 выбираем по таблице 3.5[1], коэффициент KHa=1 выбираем по таблице 3.4[1], коэффициент KHv=1,05 выбираем по таблице 3.6[1], тогда: KH = 1,026 x 1 x 1,05 = 1,077 3.2 Проверочный расчёт по контактным напряжениямПроверку контактных напряжений проводим по формуле 3.6[1]: H = (310 / aw) x ((T2x KHx (U + 1)3) / (b2x U2))1/2 = (310 / 315) x ((955266,557 x 1,077 x (5,6 + 1)3;63 x 5,62)) = 380,784 МПа. [H] Силы действующие в зацеплении вычислим по формуле 8.3 и 8.4[1]: окружная : Ft = 2 x T1 / d1 = 2 x 176715,629 / 94,5 = 3740,013 Н; радиальная: Fr = Ftx tg() / cos() = 3740,013 x tg(20o) / cos(0o) = 1361,253 Н; осевая : Fa = F tx tg() = 3740,013 x tg(0o) = 0 Н. 3.3 Проверка зубьев передачи на изгибПроверим зубья на выносливость по напряжениям изгиба по формуле 3.25[1]: F = Ftx KFx YF / (b x mn) [F] Здесь коэффициент нагрузки KF = KFx KFv (см. стр. 42[1]). По таблице 3.7[1] выбираем коэффициент расположения колес KF = 1,068, по таблице 3.8[1] выбираем коэффициент KFv=1,25. Таким образом коэффициент KF = 1,068 x 1,25 = 1,335. YF - коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа Zv (см. гл.3, пояснения к формуле 3.25[1]): у шестерни : Zv1 = z1 / cos3() = 27 / cos3(0o) = 27 у колеса : Zv2 = z2 / cos3() = 153 / cos3(0o) = 153 Тогда : YF1 = 3,86 YF2 = 3,574 Допускаемые напряжения находим по формуле 3.24[1]: [F] = oF lim bx KFL / [Sf] . KFL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора принимаем KFL = 1 . Для шестерни: oF lim b = 414 МПа; Для колеса : oF lim b = 360 МПа. Коэффициент [Sf] безопасности находим по формуле 3.24[1]: [SF] = [SF]' x [SF]". где для шестерни [SF]' = 1,75 ; [SF]' = 1 ; [SF(шест.)] = 1,75 x 1 = 1,75 для колеса [SF]' = 1,75 ; [SF]" = 1 . [SF(кол.)] = 1,75 x 1 = 1,75 Допускаемые напряжения: для шестерни: [F1] = 414 x 1 / 1,75 = 236,571 МПа; для колеса : [F2] = 360 x 1 / 1,75 = 205,714 МПа; Находим отношения [F] / YF : для шестерни: [F1] / YF1 = 236,571 / 3,86 = 61,288 для колеса : [F2] / YF2 = 205,714 / 3,574 = 57,558 Дальнейший расчет будем вести для колеса, для которого найденное отношение меньше. Проверяем прочность зуба колеса по формуле 3.25[1]: F2 = (Ftx KFx YF1) / (b2x mn) = (3740,013 x 1,335 xx 3,574) / (63 x 3,5) = 80,928 МПа F2 = 80,928 МПа< [f] = 205,714 МПа. Условие прочности выполнено. Механические характеристики материалов зубчатой передачи
Параметры зубчатой цилиндрической передачи, мм
4. Предварительный расчёт валовПредварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям. Диаметр вала при допускаемом напряжении [к] = 20 МПа вычисляем по формуле 8.16[1]: dв (16 x Tк / ( x [к]))1/3 4.1 Ведущий валdв (16 x 176715,629 / (3,142 x 20))1/3 = 35,569 мм. Под 1-й элемент (ведомый) выбираем диаметр вала: 40 мм. Под 2-й элемент (подшипник) выбираем диаметр вала: 45 мм. Под 3-й элемент (ведущий) выбираем диаметр вала: 50 мм. Под 4-й элемент (подшипник) выбираем диаметр вала: 45 мм. 4.2 Выходной валdв (16 x 955266,557 / (3,142 x 20))1/3 = 62,424 мм. Под свободный (присоединительный) конец вала выбираем диаметр вала: 65 мм. Под 2-й элемент (подшипник) выбираем диаметр вала: 70 мм. Под 3-й элемент (ведомый) выбираем диаметр вала: 75 мм. Под 4-й элемент (подшипник) выбираем диаметр вала: 70 мм. Диаметры участков валов назначаем исходя из конструктивных соображений. Диаметры валов, мм
Длины участков валов, мм
5. Конструктивные размеры шестерен и колёс5.1 Ведущий шкив 1-й ременной передачиДиаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 48 = 72 мм. Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 48 = 57,6 мм = 95 мм. Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10 мм. где h = 8,7 мм - глубина канавки под ремень от делительного диаметра. Внутренний диаметр обода: Dобода = d1 - 2 x (o + h) = 160 - 2 x (10 + 8,7) = 122,6 мм Диаметр центровой окружности: DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (122,6 + 72) = 97,3 мм = 97 мм где Doбода = 122,6 мм - внутренний диаметр обода. Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (122,6 + 72) / 4 = 12,65 мм = 13 мм. 5.2 Ведомый шкив 1-й ременной передачиДиаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 40 = 60 мм. Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 40 = 48 мм = 95 мм. Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10 мм. где h = 8,7 мм - глубина канавки под ремень от делительного диаметра. Внутренний диаметр обода: Dобода = d2 - 2 x (o + h) = 250 - 2 x (10 + 8,7) = 212,6 мм Диаметр центровой окружности: DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (212,6 + 60) = 136,3 мм = 136 мм где Doбода = 212,6 мм - внутренний диаметр обода. Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (212,6 + 60) / 4 = 38,15 мм = 38 мм. 5.3 Цилиндрическая шестерня 2-й передачиДиаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50 = 75 мм. Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50 = 40 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 68 мм. Фаска: n = 0,5 x mn = 0,5 x 3,5 = 1,75 мм Округляем по номинальному ряду размеров: n = 2 мм. 5.4 Цилиндрическое колесо 2-й передачиДиаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 75 = 112,5 мм. = 112 мм. Длина ступицы: Lступ = (0,8...1,5) x dвала = 1 x 75 = 75 мм Толщина обода: о = (2,5...4) x mn = 2,5 x 3,5 = 8,75 мм. = 9 мм. где mn = 3,5 мм - модуль нормальный. Толщина диска: С = (0,2...0,3) x b2 = 0,2 x 63 = 12,6 мм = 13 мм. где b2 = 63 мм - ширина зубчатого венца. Толщина рёбер: s = 0,8 x C = 0,8 x 13 = 10,4 мм = 10 мм. Внутренний диаметр обода: Dобода = Da2 - 2 x (2 x mn + o) = 542,5 - 2 x (2 x 3,5 + 9) = 510,5 мм = 510 мм. Диаметр центровой окружности: DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (510 + 112) = 311 мм = 312 мм где Doбода = 510 мм - внутренний диаметр обода. Диаметр отверстий: Dотв. = Doбода - dступ.) / 4 = (510 - 112) / 4 = 99,5 мм = 100 мм. Фаска: n = 0,5 x mn = 0,5 x 3,5 = 1,75 мм Округляем по номинальному ряду размеров: n = 2 мм. 6. Выбор муфты на выходном валу приводаВ виду того, что в данном соединении валов требуется невысокая компенсирующая способность муфт, то допустима установка муфты упругой втулочно-пальцевой. Достоинство данного типа муфт: относительная простота конструкции и удобство замены упругих элементов. Выбор муфты упругой втулочно-пальцевой производится в зависимости от диаметров соединяемых валов, расчётного передаваемого крутящего момента и максимально допустимой частоты вращения вала. Диаметры соединяемых валов: d(выход. вала) = 65 мм; d(вала потребит.) = 65 мм; Передаваемый крутящий момент через муфту: T = 955,267 Нxм Расчётный передаваемый крутящий момент через муфту: Tр = kрx T = 1,3 x 955,267 = 1241,847 Нxм здесь kр = 1,3 - коэффициент, учитывающий условия эксплуатации; значения его приведены в таблице 11.3[1]. Частота вращения муфты: n = 81,613 об./мин. Выбираем муфту упругую втулочно-пальцевую 2000-65-I.1-65-I.1-У2 ГОСТ 21424-93 (по табл. К21[3]). Упругие элементы муфты проверим на смятие в предположении равномерного распределения нагрузки между пальцами. см. = 2 x 103x Tр / (zcx Do x dпx lвт) = 2 x 103x 1241,847 / (10 x 181 x 24 x 44) = 1,299 МПа [см] = 1,8МПа, здесь zc=10 - число пальцев; Do=181 мм - диаметр окружности расположения пальцев; dп=24 мм - диаметр пальца; lвт=44 мм - длина упругого элемента. Рассчитаем на изгиб пальцы муфты, изготовленные из стали 45: и = 2 x 103x Tрx (0,5 x lвт + с) / (zcx Do x 0,1 x dп3) = 2 x 103x 1241,847 x (0,5 x 44 + 4) / (10 x 181 x 0,1 x 243) = 25,808 МПа [и] = 80МПа, здесь c=4 мм - зазор между полумуфтами. Условие прочности выполняется. Муфты
7. Проверка прочности шпоночных соединений7.1 Ведущий шкив 1-й клиноременной передачиДля данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]). Материал шпонки - сталь 45 нормализованная. Напряжение смятия и условие прочности проверяем по формуле 8.22[1]. см = 2 x Т / (dвалаx (l - b) x (h - t1)) = 2 x 116211,346 / (48 x (90 - 14) x (9 - 5,5)) = 18,204 МПа [см] где Т = 116211,346 Нxмм - момент на валу; dвала = 48 мм - диаметр вала; h = 9 мм - высота шпонки; b = 14 мм - ширина шпонки; l = 90 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75 МПа. Проверим шпонку на срез по формуле 8.24[1]. ср = 2 x Т / (dвалаx (l - b) x b) = 2 x 116211,346 / (48 x (90 - 14) x 14) = 4,551 МПа [ср] Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75 = 45 МПа. Все условия прочности выполнены. 7.2 Ведомый шкив 1-й клиноременной передачиДля данного элемента подбираем шпонку призматическую со скруглёнными торцами 12x8. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]). Материал шпонки - сталь 45 нормализованная. Напряжение смятия и условие прочности проверяем по формуле 8.22[1]. см = 2 x Т / (dвалаx (l - b) x (h - t1)) = 2 x 176715,629 / (40 x (90 - 12) x (8 - 5)) = 37,76 МПа [см] где Т = 176715,629 Нxмм - момент на валу; dвала = 40 мм - диаметр вала; h = 8 мм - высота шпонки; b = 12 мм - ширина шпонки; l = 90 мм - длина шпонки; t1 = 5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75 МПа. Проверим шпонку на срез по формуле 8.24[1]. ср = 2 x Т / (dвалаx (l - b) x b) = 2 x 176715,629 / (40 x (90 - 12) x 12) = 9,44 МПа [ср] Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75 = 45 МПа. Все условия прочности выполнены. 7.3 Шестерня 2-й зубчатой цилиндрической передачиДля данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]). Материал шпонки - сталь 45 нормализованная. Напряжение смятия и условие прочности проверяем по формуле 8.22[1]. см = 2 x Т / (dвалаx (l - b) x (h - t1)) = 2 x 176715,629 / (50 x (63 - 14) x (9 - 5,5)) = 41,216 МПа [см] где Т = 176715,629 Нxмм - момент на валу; dвала = 50 мм - диаметр вала; h = 9 мм - высота шпонки; b = 14 мм - ширина шпонки; l = 63 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75 МПа. Проверим шпонку на срез по формуле 8.24[1]. ср = 2 x Т / (dвалаx (l - b) x b) = 2 x 176715,629 / (50 x (63 - 14) x 14) = 10,304 МПа [ср] Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75 = 45 МПа. Все условия прочности выполнены. 7.4 Колесо 2-й зубчатой цилиндрической передачиДля данного элемента подбираем две шпонки, расположенные под углом 180o друг к другу.Шпонки призматические со скруглёнными торцами 20x12. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]). Материал шпонки - сталь 45 нормализованная. Напряжение смятия и условие прочности проверяем по формуле 8.22[1]. см = Т / (dвалаx (l - b) x (h - t1)) = 955266,557 / (75 x (70 - 20) x (12 - 7,5)) = 56,608 МПа [см] где Т = 955266,557 Нxмм - момент на валу; dвала = 75 мм - диаметр вала; h = 12 мм - высота шпонки; b = 20 мм - ширина шпонки; l = 70 мм - длина шпонки; t1 = 7,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75 МПа. Проверим шпонку на срез по формуле 8.24[1]. ср = Т / (dвалаx (l - b) x b) = 955266,557 / (75 x (70 - 20) x 20) = 12,737 МПа [ср] Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75 = 45 МПа. Все условия прочности выполнены. Соединения элементов передач с валами
8. Конструктивные размеры корпуса редуктораТолщина стенки корпуса и крышки одноступенчатого цилиндрического редуктора: = 0.025 x aw + 1 = 0.025 x 315 + 1 = 8,875 мм Округляя в большую сторону, получим = 9 мм. 1 = 0.02 x aw + 1 = 0.02 x 315 + 1 = 7,3 мм Так как должно быть 1 8.0 мм, принимаем 1 = 8.0 мм. Толщина верхнего пояса (фланца) корпуса: b = 1.5 x = 1.5 x 9 = 13,5 мм. Округляя в большую сторону, получим b = 14 мм. Толщина нижнего пояса (фланца) крышки корпуса: b1 = 1.5 x 1 = 1.5 x 8 = 12 мм. Толщина нижнего пояса корпуса: без бобышки: p = 2.35 x = 2.35 x 9 = 21,15 мм. Округляя в большую сторону, получим p = 22 мм. при наличии бобышки: p1 = 1.5 x = 1.5 x 9 = 13,5 мм. Округляя в большую сторону, получим p1 = 14 мм. p2 = (2,25...2,75) x = 2.65 x 9 = 23,85 мм. Округляя в большую сторону, получим p2 = 24 мм. Толщина рёбер основания корпуса: m = (0,85...1) x = 0.9 x 9 = 8,1 мм. Округляя в большую сторону, получим m = 9 мм. Толщина рёбер крышки: m1 = (0,85...1) x 1 = 0.9 x 8 = 7,2 мм. Округляя в большую сторону, получим m1 = 8 мм. Диаметр фундаментных болтов (их число 4): d1 = (0,03...0,036) x aw (тихоходная ступень) + 12 = (0,03...0,036) x 315 + 12 = 21,45...23,34 мм. Принимаем d1 = 24 мм. Диаметр болтов: у подшипников: d2 = (0,7...0,75) x d1 = (0,7...0,75) x 24 = 16,8...18 мм. Принимаем d2 = 16 мм. соединяющих основание корпуса с крышкой: d3 = (0,5...0,6) x d1 = (0,5...0,6) x 24 = 12...14,4 мм. Принимаем d3 = 16 мм. Размеры, определяющие положение болтов d2 (см. рис. 10.18[1]): e (1...1,2) x d2 = (1...1.2) x 16 = 16...19,2 = 17 мм; q 0,5 x d2 + d4 = 0,5 x 16 + 5 = 13 мм; где крепление крышки подшипника d4 = 5 мм. Высоту бобышки hб под болт d2 выбирают конструктивно так, чтобы образовалась опорная поверхность под головку болта и гайку. Желательно у всех бобышек иметь одинаковую высоту hб. 9. Расчёт реакций в опорах9.1 1-й валСилы, действующие на вал и углы контактов элементов передач: Fx1 = -2966,63 H Fx3 = -1361,253 H Fy3 = 3740,013 H Из условия равенства суммы моментов сил относительно 1-й опоры: Rx2 = ((-Fx1 * (L1 + L2 + L3)) - Fx2 * L3) / (L2 + L3) = ((-(-2966,63) * (105 + 80 + 80)) - (-1361,253) * 80) / (80 + 80) = 5594,107 H Ry2 = ((-Fy1 * (L1 + L2 + L3)) - Fy3 * L3) / (L2 + L3) = ((-0 * (105 + 80 + 80)) - 3740,013 * 80) / (80 + 80) = -1870,007 H Из условия равенства суммы сил относительно осей X и Y: Rx4 = (-Fx1) - Rx2 - Fx2 = (-(-2966,63)) - 5594,107 - (-1361,253) = -1266,224 H Ry4 = (-Fy1) - Rx2 - Fy3 = (-0) - (-1870,007) - 3740,013 = -1870,006 H Суммарные реакции опор: R1 = (Rx12 + Ry12)1/2 = (5594,1072 + -1870,0072)1/2 = 5898,386 H; R2 = (Rx22 + Ry22)1/2 = (-1266,2242 + -1870,0062)1/2 = 2258,373 H; 9.2 2-й валСилы, действующие на вал и углы контактов элементов передач: Fx3 = 1361,253 H Fy3 = -3740,013 H Из условия равенства суммы моментов сил относительно 1-й опоры: Rx2 = (-Fx2 * L3) / (L2 + L3) = (-1361,253 * 80) / (80 + 80) = -680,626 H Ry2 = (-Fy3 * L3) / (L2 + L3) = (-(-3740,013) * 80) / (80 + 80) = 1870,006 H Из условия равенства суммы сил относительно осей X и Y: Rx4 = (-Rx2) - Fx2 = (-(-680,626)) - 1361,253 = -680,626 H Ry4 = (-Rx2) - Fy3 = (-1870,006) - (-3740,013) = 1870,006 H Суммарные реакции опор: R1 = (Rx12 + Ry12)1/2 = (-680,6262 + 1870,0062)1/2 = 1990,019 H; R2 = (Rx22 + Ry22)1/2 = (-680,6262 + 1870,0062)1/2 = 1990,019 H; 10. Построение эпюр моментов валов10.1 Расчёт моментов 1-го вала1-е сечение Mx = 0 Н x мм My = 0 Н x мм M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм 2-е сечение Mx = 0 Н x мм My = Fx1 * L1 = (-2966,63) * 105 = -311496,15 H x мм M = (Mx12 + My12)1/2 = (02 + -311496,152)1/2 = 311496,15 H x мм 3-е сечение Mx = Fy1 * (L1 + L2) + Rx2 * L2 = 0 * (105 + 80) + (-1870,007) * 80 = -149600,52 H x мм My = Fx1 * (L1 + L2) + Rx2 * L2 = (-2966,63) * (105 + 80) + 5594,107 * 80 = -101297,955 H x мм M = (Mx12 + My12)1/2 = (-149600,522 + -101297,9552)1/2 = 180669,841 H x мм 4-е сечение Mx = 0 Н x мм My = 0 Н x мм M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм 10.2 Эпюры моментов 1-го вала
10.3 Расчёт моментов 2-го вала1 - е сечение Mx = 0 Н x мм My = 0 Н x мм M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм 2 - е сечение Mx = 0 Н x мм My = 0 Н x мм M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм 3 - е сечение Mx = Rx2 * L2 = 1870,006 * 80 = 149600,52 H x мм My = Rx2 * L2 = (-680,626) * 80 = -54450,12 H x мм M = (Mx12 + My12)1/2 = (149600,522 + -54450,122)1/2 = 159201,543 H x мм 4 - е сечение Mx = 0 Н x мм My = 0 Н x мм M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм 10.4 Эпюры моментов 2-го вала11. Проверка долговечности подшипников11.1 1-й валВыбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409 тяжелой серии со следующими параметрами: d = 45 мм - диаметр вала (внутренний посадочный диаметр подшипника); D = 120 мм - внешний диаметр подшипника; C = 76,1 кН - динамическая грузоподъёмность; Co = 45,5 кН - статическая грузоподъёмность. Радиальные нагрузки на опоры: Pr1 = 5898,386 H; Pr2 = 2258,373 H. Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1. Эквивалентная нагрузка вычисляется по формуле: Рэ = (Х x V x Pr1 + Y x Pa) x Кбx Кт, где - Pr1 = 5898,386 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,4 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]). Отношение Fa / Co = 0 / 45500 = 0; этой величине (по табл. 9.18[1]) соответствует e = 0. Отношение Fa / (Pr1x V) = 0 / (5898,386 x 1) = 0 e; тогда по табл. 9.18[1]: X = 1; Y = 0. Тогда: Pэ = (1 x 1 x 5898,386 + 0 x 0) x 1,4 x 1 = 8257,74 H. Расчётная долговечность, млн. об. (формула 9.1[1]): L = (C / Рэ)3 = (76100 / 8257,74)3 = 782,655 млн. об. Расчётная долговечность, ч.: Lh = L x 106 / (60 x n1) = 782,655 x 106 / (60 x 457,031) = 28541,281 ч, что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 457,031 об/мин - частота вращения вала. 11.2 2-й валВыбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314 средней серии со следующими параметрами: d = 70 мм - диаметр вала (внутренний посадочный диаметр подшипника); D = 150 мм - внешний диаметр подшипника; C = 104 кН - динамическая грузоподъёмность; Co = 63 кН - статическая грузоподъёмность. Радиальные нагрузки на опоры: Pr1 = 1990,019 H; Pr2 = 1990,019 H. Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2. Эквивалентная нагрузка вычисляется по формуле: Рэ = (Х x V x Pr2 + Y x Pa) x Кбx Кт, где - Pr2 = 1990,019 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,4 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]). Отношение Fa / Co = 0 / 63000 = 0; этой величине (по табл. 9.18[1]) соответствует e = 0. Отношение Fa / (Pr2x V) = 0 / (1990,019 x 1) = 0 e; тогда по табл. 9.18[1]: X = 1; Y = 0. Тогда: Pэ = (1 x 1 x 1990,019 + 0 x 0) x 1,4 x 1 = 2786,027 H. Расчётная долговечность, млн. об. (формула 9.1[1]): L = (C / Рэ)3 = (104000 / 2786,027)3 = 52016,851 млн. об. Расчётная долговечность, ч.: Lh = L x 106 / (60 x n2) = 52016,851 x 106 / (60 x 81,613) = 10622664,486 ч, что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 81,613 об/мин - частота вращения вала. Подшипники
12 Уточненный расчёт валов12.1 Расчёт 1-го валаКрутящий момент на валу Tкр. = 176715,629 Hxмм. Для данного вала выбран материал: сталь 45. Для этого материала: - предел прочности b = 780 МПа; - предел выносливости стали при симметричном цикле изгиба -1 = 0,43 x b = 0,43 x 780 = 335,4 МПа; - предел выносливости стали при симметричном цикле кручения -1 = 0,58 x -1 = 0,58 x 335,4 = 194,532 МПа. 2 - е сечение. Диаметр вала в данном сечении в = 45 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]). Коэффициент запаса прочности по нормальным напряжениям: S = -1 / ((k / (x )) x v + x m) , где: - амплитуда цикла нормальных напряжений: v = Mизг. / Wнетто = 311496,15 / 8946,176 = 34,819 МПа, здесь Wнетто = x D3 / 32 = 3,142 x 453 / 32 = 8946,176 мм3 - среднее напряжение цикла нормальных напряжений: m = Fa / ( x D2 / 4) = 0 / (3,142 x 452 / 4) = 0 МПа, Fa = 0 МПа - продольная сила, - = 0,2 - см. стр. 164[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]; - k/ = 3,102 - находим по таблице 8.7[1]; Тогда: S = 335,4 / ((3,102 / 0,97) x 34,819 + 0,2 x 0) = 3,012. Коэффициент запаса прочности по касательным напряжениям: S = -1 / ((k / (tx )) x v + tx m), где: - амплитуда и среднее напряжение отнулевого цикла: v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 176715,629 / 17892,352 = 4,938 МПа, здесь Wк нетто = x D3 / 16 = 3,142 x 453 / 16 = 17892,352 мм3 - t = 0.1 - см. стр. 166[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]. - k/ = 2,202 - находим по таблице 8.7[1]; Тогда: S = 194,532 / ((2,202 / 0,97) x 4,938 + 0,1 x 4,938) = 16,622. Результирующий коэффициент запаса прочности: S = Sx S / (S2 + S2)1/2 = 3,012 x 16,622 / (3,0122 + 16,6222)1/2 = 2,964 Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности. 3 - е сечение. Диаметр вала в данном сечении в = 50 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14 мм, глубина шпоночной канавки t1 = 5,5 мм. Коэффициент запаса прочности по нормальным напряжениям: S = -1 / ((k / (x )) x v + x m) , где: - амплитуда цикла нормальных напряжений: v = Mизг. / Wнетто = 180669,841 / 10747,054 = 16,811 МПа, здесь Wнетто = x D3 / 32 - b x t1x (D - t1)2/ (2 x D) = 3,142 x 503 / 32 - 14 x 5,5 x (50 - 5,5)2/ (2 x 50) = 10747,054 мм3, где b=14 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза; - среднее напряжение цикла нормальных напряжений: m = Fa / ( x D2 / 4) = 0 / (3,142 x 502 / 4) = 0 МПа, Fa = 0 МПа - продольная сила, - = 0,2 - см. стр. 164[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]; - k = 1,8 - находим по таблице 8.5[1]; - = 0,85 - находим по таблице 8.8[1]; Тогда: S = 335,4 / ((1,8 / (0,85 x 0,97)) x 16,811 + 0,2 x 0) = 9,139. Коэффициент запаса прочности по касательным напряжениям: S = -1 / ((k / (tx )) x v + tx m), где: - амплитуда и среднее напряжение отнулевого цикла: v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 176715,629 / 23018,9 = 3,838 МПа, здесь Wк нетто = x D3 / 16 - b x t1x (D - t1)2/ (2 x D) = 3,142 x 503 / 16 - 14 x 5,5 x (50 - 5,5)2/ (2 x 50) = 23018,9 мм3, где b=14 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза; - t = 0.1 - см. стр. 166[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]. - k = 1,7 - находим по таблице 8.5[1]; - = 0,73 - находим по таблице 8.8[1]; Тогда: S = 194,532 / ((1,7 / (0,73 x 0,97)) x 3,838 + 0,1 x 3,838) = 20,268. Результирующий коэффициент запаса прочности: S = Sx S / (S2 + S2)1/2 = 9,139 x 20,268 / (9,1392 + 20,2682)1/2 = 8,331 Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности. 12.2 Расчёт 2-го валаКрутящий момент на валу Tкр. = 955266,557 Hxмм. Для данного вала выбран материал: сталь 45. Для этого материала: - предел прочности b = 780 МПа; - предел выносливости стали при симметричном цикле изгиба -1 = 0,43 x b = 0,43 x 780 = 335,4 МПа; - предел выносливости стали при симметричном цикле кручения -1 = 0,58 x -1 = 0,58 x 335,4 = 194,532 МПа. 1 - е сечение. Диаметр вала в данном сечении в = 65 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки. Коэффициент запаса прочности по касательным напряжениям: S = -1 / ((k / (tx )) x v + tx m), где: - амплитуда и среднее напряжение отнулевого цикла: v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 955266,557 / 50662 = 9,428 МПа, здесь Wк нетто = x D3 / 16 - b x t1x (D - t1)2/ (2 x D) = 3,142 x 653 / 16 - 18 x 7 x (65 - 7)2/ (2 x 65) = 50662 мм3 где b=18 мм - ширина шпоночного паза; t1=7 мм - глубина шпоночного паза; - t = 0.1 - см. стр. 166[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]. - k = 1,7 - находим по таблице 8.5[1]; - = 0,7 - находим по таблице 8.8[1]; Тогда: S = 194,532 / ((1,7 / (0,7 x 0,97)) x 9,428 + 0,1 x 9,428) = 7,925. ГОСТ 16162-78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для редукторов должна быть 2,5 x Т1/2. Приняв у ведущего вала длину посадочной части под муфту равной длине полумуфты l = 80 мм, получим Мизг. = 2,5 x Tкр1/2x l / 2 = 2,5 x 955266,5571/2x 80 / 2 = 97737,739 Нxмм. Коэффициент запаса прочности по нормальным напряжениям: S = -1 / ((k / (x )) x v + x m) , где: - амплитуда цикла нормальных напряжений: v = Mизг. / Wнетто = 97737,739 / 23700,754 = 14,846 МПа, здесь Wнетто = x D3 / 32 - b x t1x (D - t1)2/ (2 x D) = 3,142 x 653 / 32 - 18 x 7 x (65 - 7)2/ (2 x 65) = 23700,754 мм3, где b=18 мм - ширина шпоночного паза; t1=7 мм - глубина шпоночного паза; - среднее напряжение цикла нормальных напряжений: m = Fa / ( x D2 / 4) = 0 / (3,142 x 652 / 4) = 0 МПа, где Fa = 0 МПа - продольная сила в сечении, - = 0,2 - см. стр. 164[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]; - k = 1,8 - находим по таблице 8.5[1]; - = 0,82 - находим по таблице 8.8[1]; Тогда: S = 335,4 / ((1,8 / (0,82 x 0,97)) x 14,846 + 0,2 x 0) = 9,983. Результирующий коэффициент запаса прочности: S = Sx S / (S2 + S2)1/2 = 9,983 x 7,925 / (9,9832 + 7,9252)1/2 = 6,207 Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности. 3 - е сечение. Диаметр вала в данном сечении в = 75 мм. Концентрация напряжений обусловлена наличием двух шпоночных канавок. Ширина шпоночной канавки b = 20 мм, глубина шпоночной канавки t1 = 7,5 мм. Коэффициент запаса прочности по нормальным напряжениям: S = -1 / ((k / (x )) x v + x m) , где: - амплитуда цикла нормальных напряжений: v = Mизг. / Wнетто = 159201,543 / 32304,981 = 4,928 МПа, здесь Wнетто = x D3 / 32 - b x t1x (D - t1)2/ в = 3,142 x 753 / 32 - 20 x 7,5 x (75 - 7,5)2/ 75 = 32304,981 мм3, где b=20 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза; - среднее напряжение цикла нормальных напряжений: m = Fa / ( x D2 / 4) = 0 / (3,142 x 752 / 4) = 0 МПа, Fa = 0 МПа - продольная сила, - = 0,2 - см. стр. 164[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]; - k = 1,8 - находим по таблице 8.5[1]; - = 0,76 - находим по таблице 8.8[1]; Тогда: S = 335,4 / ((1,8 / (0,76 x 0,97)) x 4,928 + 0,2 x 0) = 27,874. Коэффициент запаса прочности по касательным напряжениям: S = -1 / ((k / (tx )) x v + tx m), где: - амплитуда и среднее напряжение отнулевого цикла: v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 955266,557 / 73722,463 = 6,479 МПа, здесь Wк нетто = x D3 / 16 - b x t1x (D - t1)2/ в = 3,142 x 753 / 16 - 20 x 7,5 x (75 - 7,5)2/ 75 = 73722,463 мм3, где b=20 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза; - t = 0.1 - см. стр. 166[1]; - = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]. - k = 1,7 - находим по таблице 8.5[1]; - = 0,65 - находим по таблице 8.8[1]; Тогда: S = 194,532 / ((1,7 / (0,65 x 0,97)) x 6,479 + 0,1 x 6,479) = 10,738. Результирующий коэффициент запаса прочности: S = Sx S / (S2 + S2)1/2 = 27,874 x 10,738 / (27,8742 + 10,7382)1/2 = 10,02 Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности. 13.Тепловой расчёт редуктораДля проектируемого редуктора площадь теплоотводящей поверхности А = 0,73 мм2 (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища). По формуле 10.1[1] условие работы редуктора без перегрева при продолжительной работе: t = tм - tв = Pтрx (1 - ) / (Ktx A) [t], где Ртр = 8,899 кВт - требуемая мощность для работы привода; tм - температура масла; tв - температура воздуха. Считаем, что обеспечивается нормальная циркуляция воздуха, и принимаем коэффициент теплоотдачи Kt = 15 Вт/(м2xoC). Тогда: t = 8899 x (1 - 0,899) / (15 x 0,73) = 82,082o > [t], где [t] = 50oС - допускаемый перепад температур. Для уменьшения t следует соответсвенно увеличить теплоотдающую поверхность корпуса редуктора пропорционально отношению: t / [t] = 82,082 / 50 = 1,642, сделав корпус ребристым. 14. Выбор сорта маслаСмазывание элементов передач редуктора производится окунанием нижних элементов в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение элемента передачи примерно на 10-20 мм. Объём масляной ванны V определяется из расчёта 0,25 дм3 масла на 1 кВт передаваемой мощности: V = 0,25 x 8,899 = 2,225 дм3. По таблице 10.8[1] устанавливаем вязкость масла. При контактных напряжениях H = 380,784 МПа и скорости v = 2,261 м/с рекомендуемая вязкость масла должна быть примерно равна 30 x 10-6 м/с2. По таблице 10.10[1] принимаем масло индустриальное И-30А (по ГОСТ 20799-75*). Выбираем для подшипников качения пластичную смазку УТ-1 по ГОСТ 1957-73 (см. табл. 9.14[1]). Камеры подшинпиков заполняются данной смазкой и периодически пополняются ей. 15. Выбор посадокПосадки элементов передач на валы - Н7/р6, что по СТ СЭВ 144-75 соответствует легкопрессовой посадке. Посадка муфты на выходной вал редуктора - Н8/h8. Шейки валов под подшипники выполняем с отклонением вала k6. Остальные посадки назначаем, пользуясь данными таблицы 8.11[1]. 16. Технология сборки редуктораПеред сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов. На валы закладывают шпонки и напрессовывают элементы передач редуктора. Мазеудерживающие кольца и подшипники следует насаживать, предварительно нагрев в масле до 80-100 градусов по Цельсию, последовательно с элементами передач. Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого в подшипниковые камеры закладывают смазку, ставят крышки подшипников с комплектом металлических прокладок, регулируют тепловой зазор. Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышку винтами. Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями. ЗаключениеПри выполнении курсового проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, технологических, экономических и других нормативов. В ходе решения поставленной передо мной задачей, была освоена методика выбора элементов привода, получены навыки проектирования, позволяющие обеспечить необходимый технический уровень, надежность и долгий срок службы механизма. Опыт и навыки, полученные в ходе выполнения курсового проекта, будут востребованы при выполнении, как курсовых проектов, так и дипломного проекта. Можно отметить, что спроектированный редуктор обладает хорошими свойствами по всем показателям. По результатам расчета на контактную выносливость действующие напряжения в зацеплении меньше допускаемых напряжений. По результатам расчета по напряжениям изгиба действующие напряжения изгиба меньше допускаемых напряжений. Расчет вала показал, что запас прочности больше допускаемого. Необходимая динамическая грузоподъемность подшипников качения меньше паспортной. При расчете был выбран электродвигатель, который удовлетворяет заданные требования. Список использованной литературы1. Чернавский С.А., Боков К.Н., Чернин И.М., Ицкевич Г.М., Козинцов В.П. 'Курсовое проектирование деталей машин': Учебное пособие для учащихся. М.:Машиностроение, 1988 г., 416с. 2. Дунаев П.Ф., Леликов О.П. 'Конструирование узлов и деталей машин', М.: Издательский центр 'Академия', 2003 г., 496 c. 3. Шейнблит А.Е. 'Курсовое проектирование деталей машин': Учебное пособие, изд. 2-е перераб. и доп. - Калининград: 'Янтарный сказ', 2004 г., 454 c.: ил., черт. - Б.ц. 4. Березовский Ю.Н., Чернилевский Д.В., Петров М.С. 'Детали машин', М.: Машиностроение, 1983г., 384 c. 5. Боков В.Н., Чернилевский Д.В., Будько П.П. 'Детали машин: Атлас конструкций.' М.: Машиностроение, 1983 г., 575 c. 6. Гузенков П.Г., 'Детали машин'. 4-е изд. М.: Высшая школа, 1986 г., 360 с. 7. Детали машин: Атлас конструкций / Под ред. Д.Р.Решетова. М.: Машиностроение, 1979 г., 367 с. 8. Дружинин Н.С., Цылбов П.П. Выполнение чертежей по ЕСКД. М.: Изд-во стандартов, 1975 г., 542 с. 9. Кузьмин А.В., Чернин И.М., Козинцов Б.П. 'Расчеты деталей машин', 3-е изд. - Минск: Вышейшая школа, 1986 г., 402 c. 10. Куклин Н.Г., Куклина Г.С., 'Детали машин' 3-е изд. М.: Высшая школа, 1984 г., 310 c. 11. 'Мотор-редукторы и редукторы': Каталог. М.: Изд-во стандартов, 1978 г., 311 c. 12. Перель Л.Я. 'Подшипники качения'. M.: Машиностроение, 1983 г., 588 c. 13. 'Подшипники качения': Справочник-каталог / Под ред. Р.В. Коросташевского и В.Н. Нарышкина. М.: Машиностроение, 1984 г., 280 с. 14. 'Проектирование механических передач' / Под ред. С.А. Чернавского, 5-е изд. М.: Машиностроение, 1984 г., 558 c. |