Реферат: Отражение звука
Название: Отражение звука Раздел: Рефераты по физике Тип: реферат |
ОТРАЖЕНИЕ ЗВУКАОТРАЖЕНИЕ ЗВУКА - явление, возникающее при падении звуковой волны на границу раздела двух упругих сред и состоящее в образовании волн, распространяющихся от границы раздела в ту же среду, из к-рой пришла падающая волна. Как правило, О. з. сопровождается образованием преломлённых волн во второй среде. Частный случай О. з. - отражение от свободной поверхности. Обычно рассматривается отражение на плоских границах раздела, однако можно говорить об О. з. от препятствий произвольной формы, если размеры препятствия значительно больше длины звуковой волны. В противном случае имеет место рассеяние звука или дифракция звука.
Отражение плоских волн [1 - 6]. Особую роль играет отражение плоских волн, поскольку плоские волны, отражаясь и преломляясь, остаются плоскими, а отражение волн произвольной формы можно рассматривать как отражение совокупности плоских волн. Кол-во возникающих отражённых и преломлённых волн определяется характером упругих свойств сред и числом акустич. ветвей, существующих в них. В силу граничных условий проекции на плоскость раздела волновых векторов падающей, отражённых и преломлённых волн равны между собой (рис. 1). Рис. 1. Схема отражения и преломления плоеной звуковой волны на плоской границе раздела. Отсюда следуют законы отражения и преломления, согласно к-рым: 1) волновые векторы падающей ki
, отражённых kr
и преломлённых kt
волн и нормаль NN'
к границе раздела лежат в одной плоскости (плоскости падения); 2) отношения синусов углов падения отраженияи преломленияк фазовым скоростям ci
, и соответствующих волн равны между собой: где - интенсивности звука в соответствующих волнах, и - плотности соприкасающихся сред. Баланс энергии, подводимой к границе раздела и уносимой от неё, сводится к балансу нормальных компонент потоков энергии: Коэф. отражения зависят как от акустич. свойств соприкасающихся сред, так и от угла падения. Характер угл. зависимости определяется наличием критич. углов, а также углов нулевого отражения, при падении под к-рыми отражённая волна с поляризацией не образуется. О. з. на границе двух жидкостей [1 - 3]. Наиб. простая картина О. з. возникает на границе раздела двух жидкостей. Конверсия волн при этом отсутствует, и отражение происходит по зеркальному закону, а коэф. отражения равен где и c 1,2 - плотности и скорости звука в граничащих средах 1 и 2. Если скорость звука для падающей волны больше скорости звука для преломлённой (с 1 >c 2 ), то критич. угол отсутствует. Коэф. отражения действителен и плавно меняется от значения при нормальном падении волны на границу раздела до значения R = - 1 при скользящем падении Если акустич. импеданс r2 с2 среды 2 больше импеданса среды 1 , то при угле падения коэф. отражения обращается в нуль и всё падающее излучение полностью проходит в среду 2.
О. з. от границы твёрдого тела [1 - 3, 5 - 7]. Характер отражения усложняется, если отражателем является твёрдое тело. Когда скорость звука с в жидкости меньше скоростей продольного сL и поперечного с т звука в твёрдом теле, при отражении на границе жидкости с твёрдым телом возникают два критич. угла: продольный= arcsin (с/сL )и поперечный= arcsin (с/с т ). При этом , поскольку всегда сL > с т . При углах падения коэф. отражения действителен (рис. 2). Падающее излучение проникает в твёрдое тело в виде как продольной, так и поперечной преломлённых волн. При нормальном падении звука в твёрдом теле возникает только продольная волна и значение R 0 определяется отношением продольных акустич. импедансов жидкости и твёрдого тела аналогично ф-ле (5) ( - плотности жидкости и твёрдого тела). Рис. 2. Зависимость модуля коэффициента отражения звука | R | (сплошная линия) и его фазы (штрих-пунктирная линия) на границе жидкости и твёрдого тела от угла падения. При > коэф. отражения становится комплексным, поскольку в твёрдом теле вблизи границы образуется неоднородная волна. При углах падения, заключённых между критич. углами и часть падающего излученпя проникает в глубь твёрдого тела в виде преломлённой поперечной волны. Поэтому для<<величина лишь при поперечная волна не образуется и |R|
= 1. Участие неоднородной продольной волны в формировании отражённого излучения обусловливает, как и на границе двух жидкостей, фазовый сдвиг у отражённой волны. При > имеет место полное внутр. отражение: 1. В твёрдом теле вблизи границы образуются лишь экспоненциально спадающие в глубь тела неоднородные волны. Фазовый сдвиг у отражённой волны для углов связан в основном с возбуждением на границе раздела вытекающей Рэлея волны.
Такая волна возникает на границе твёрдого тела с жидкостью при углах падения, близких к углу Рэлея = arcsin (с/сR
),
где CR
-
скорость волны Рэлея на поверхности твёрдого тела. Распространяясь вдоль поверхности раздела, вытекающая волна полностью переизлучается в жидкость. О. з. на границе раздела анизотропных сред [6]. О. з. на границе раздела кристаллич. сред носит сложный характер. Скорости и отражённых и преломлённых волн в этом случае сами являются ф-циями углов отражения и преломления (см. Кристаллоакустика; )поэтому даже определение углови по заданному углу падения сталкивается с серьёзными матем. трудностями. Если известны сечения поверхностей волновых векторов плоскостью падения, то используется графич. метод определения углов и концы волновых векторов kr и kt лежат на перпендикуляре NN', проведённом к границе раздела через конец волнового вектора ki падающей волны, в точках, где этот перпендикуляр пересекает разл. полости поверхностей волновых векторов (рис. 3). Кол-во отражённых (или преломлённых) волн, реально распространяющихся от границы раздела в глубь соответствующей среды, определяется тем, со сколькими полостями пересекается перпендикуляр NN' . Если пересечение с к.-л. полостью отсутствует, то это означает, что волна соответствующей поляризации оказывается неоднородной и энергию от границы не переносит. Перпендикуляр NN' может пересекать одну и ту же полость в неск. точках (точки a 1 и а2 на рис. 3). Из возможных положений волнового вектора kr (или kt )реально наблюдаемым волнам соответствуют лишь те, для к-рых вектор лучевой скорости, совпадающий по направлению с внеш. нормалью к поверхности волновых векторов, направлен от границы в глубь соответствующей среды. Рис. 3. Графический метод определения углов отражения и преломления на границе раздела кристаллических сред 1 и 2. L, FT и ST - поверхности волновых векторов для квазипродольных, быстрых и медленных квазипоперечных волн соответственно. Как правило, отражённые (преломлённые) волны принадлежат разл. ветвям акустич. колебании. Однако в кристаллах со значит. анизотропией, когда поверхность волновых векторов имеет вогнутые участки (рис. 4), возможно отражение с образованием двух отражённых или преломлённых волн, принадлежащих одной и той же ветви колебаний. Рис. 4. Отражение акустической волны, падающей на свободную поверхность кристалла с образованием двух отраженных волн той же поляризации: а - определение волновых векторов отражённых волн (сg - векторы лучевой скорости); б - схема отражения звуковых пучков конечного сечения. Влияние затухания на характер О. з. [8,9]. Коэф. отражения и прохождения не зависят от частоты звука, если затухание звука в обеих граничных средах пренебрежимо мало. Заметное затухание приводит не только к частотной зависимости коэф. отражения R, но и искажает его зависимость от угла падения, в особенности вблизи критич. углов (рис. 5, а ). При отражении от границы раздела жидкости с твёрдым телом эффекты затухания существенно меняют угловую зависимость R при углах падения, близких к рэлеевскому углу (рис. 5,б). На границе сред с пренебрежимо малым затуханием при таких углах падения имеет место полное внутреннее отражение и |R | = 1 (кривая 1 на рис. 5, б). Наличие затухания приводит к тому, что |R | становится меньше 1, а вблизи образуется минимум |R | (кривые 2 - 4). По мере увеличения частоты и соответствующего роста коэф. затухания глубина минимума увеличивается, пока, наконец, на нек-рой частоте f 0 , наз. частотой нулевого отражения, мин. значение |R | не обратится в нуль (кривая 3, рис. 5,б ). Дальнейший рост частоты приводит к уширенпю минимума (кривая 4 )и влиянию эффектов затухания на О. з. практически для любых углов падения (кривая 5). Уменьшение амплитуды отражённой волны по сравнению с амплитудой падающей не означает, что падающее излучение проникает в твёрдое тело. Оно связано с поглощением вытекающей волны Рэлея, к-рая возбуждается падающим излучением и участвует в формировании отражённой волны. Когда звуковая частота f равна частоте f 0 , вся энергия падающей волны диссипируется на границе раздела. Рис. 5. Угловая зависимость |R | на границе вода - сталь с учётом затухания: а - общий характер угловой зависимости |R |; сплошная линия - без учёта потерь, штриховая линия - то же с учётом затухания; б - угловая зависимость | R \ вблизи рэлеевского угла при различных значениях поглощения поперечных волн в стали на длине волны. Кривые 1 - 5 соответствуют увеличению этого параметра от значения 3 x 10-4 (кривая 1 )до значения = 1 (кривая 5) за счёт соответствующего возрастания частоты падающего УЗ-излучения. О. з. от слоев и пластин
[1,3,5,6,10,11]. О. з. от слоя или пластины носит резонансный характер. Отражённая и прошедшая волны формируются в результате многократных переотражений волн на границах слоя. В случае жидкого слоя падающая волна проникает в слой под углом преломления определяемым из закона Снелля. За счёт переотражений в самом слое возникают продольные волны, распространяющиеся в прямом и обратном направлениях под углом к нормали, проведённой к границам слоя (рис. 6, а
). Уголпредставляет собой угол преломления, отвечающий углу падения на границу слоя. Если скорость звука в слое с
2
больше скорости звука с
1
в окружающей жидкости, то система переотражённых волн возникает лишь тогда, когда меньше угла полного внутр. отражения = arcsin (c1
/c2
). Однако для достаточно тонких слоев прошедшая волна образуется и при углах падения, больших критического. В этом случае коэф. отражения от слоя оказывается по абс. величине меньше 1. Это связано с тем, что при в слое вблизи той его границы, на к-рую падает извне волна, возникает неоднородная волна, экспоненциально спадающая в глубь слоя. Если толщина слоя d
меньше или сравнима с глубиной проникновения неоднородной волны, то последняя возмущает противоположную границу слоя, в результате чего с неё излучается в окружающую жидкость прошедшая волна. Это явление просачивания волны аналогично просачиванию частицы через потенциальный барьер в квантовой механике. где - нормальная компонента волнового вектора в слое, ось z - перпендикулярна границам слоя, R 1 и R 2 - коэф. О. з. соответственно на верхней и нижней границах. При представляет собой периодич. ф-цию звуковой частоты f и толщины слоя d. При когда имеет место просачивание волны через слой, | R | при увеличении f или d монотонно стремится к 1. Рис. 6. Отражение звуковой волны от жидкого слоя: а - схема отражения; 1 - окружающая жидкость; 2 - слой; б - зависимость модуля коэффициента отражения |R| от угла падения. Как ф-ция угла падениязначение | R | имеет систему максимумов и минимумов (рис. 6, б). Если по обе стороны слоя находится одна и та же жидкость, то в точках минимума R = 0. Нулевое отражение возникает, когда набег фазы на толщине слоя равен целому числу полупериодов и волны, выходящие в верхнюю среду после двух последовательных переотражений, будут находиться в противофазе и взаимно гасить друг друга. Наоборот, в нижнюю среду все переотражённые волны выходят с одной и той же фазой, и амплитуда прошедшей волны оказывается максимальной. При нормальном падении волны на слой полное пропускание имеет место, когда на толщине слоя укладывается целое число полуволн: d =
где п
= 1,2,3,..., - длина звуковой волны в материале слоя; поэтому слои, для к-рых выполнено условие (8), наз. полуволновымн. Соотношение (8) совпадает с условием существования нормальной волны в свободном жидком слое. В силу этого полное пропускание через слои возникает, когда падающее излучение возбуждает в слое ту или иную нормальную волну. За счёт контакта слоя с окружающей жидкостью нормальная волна является вытекающей: при своём распространении она полностью переизлучает энергию падающего излучения в нижнюю среду. Отражение неплоских волн [1 - 3, 7. 12]. Реально существуют только неплоские волны; их отражение может быть сведено к отражению набора плоских волн. Монохроматич. волну с волновым фронтом произвольной формы можно представить в виде совокупности плоских волн с одной и той же круговой частотой, но с разл. направлениями волнового вектора k. Осн. характеристикой падающего излучения является его пространственный спектр - набор амплитуд A (k) плоских волн, образующих в совокупности падающую волну. Абс. величина k определяется частотой, поэтому его компоненты не являются независимыми. При отражении от плоскости z = 0 нормальная компонента kz задаётся тангенциальными компонентами kx , ky : kz = Каждая плоская волна, входящая в состав падающего излучения, падает на границу раздела под своим углом и отражается независимо от других волн. Поле Ф(r ) отражённой волны возникает как суперпозиция всех отражённых плоских волн и выражается через пространственный спектр падающего излучения A(kx , ky )и коэф. отражения R(kx , ky ): Интегрирование распространяется на область сколь угодно больших значений kx
и ky
.
Если пространственный спектр падающего излучения содержит (как при отражении сферич. волны) компоненты с kx
(или ky
), большими, то в формировании отражённой волны помимо волн с действительными kz
принимают участие также неоднородные волны, для к-рых k, -
чисто мнимая величина. Этот подход, предложенный в 1919 Г. Вейлем (Н. Weyl) и получивший своё дальнейшее развитие в представлениях фурье-оптики, даёт последоват. описание отражения волны произвольной формы от плоской грашщы раздела. Отражение сферических волн [1 - 3]. Картина отражения сферич. волны, создаваемой в жидкости I точечным источником О, зависит от соотношения между скоростями звука с 1 и с2 в соприкасающихся жидкостях I и II (рис. 7). Если ct > с2 , то критич. угол отсутствует и отражение происходит по законам геом. акустики. В среде I возникает отражённая сферич. волна: отражённые лучи пересекаются в точке О'. образуя мнимое изображение источника, а волновой фронт отражённой волны представляет собой часть сферы с центром в точке О'. Рис. 7. Отражение сферической волны на границе раздела двух жидкостей: О и О' - действительный и мнимый источники; 1 - фронт отражённой сферической волны; 2 - фронт преломлённой волны; 3 - фронт боковой волны. Когда c2 >cl и имеется критич. угол в среде I помимо отражённой сферич. волны возникает ещё одна компонента отражённого излучения. Лучи, падающие на границу раздела под критич. углом возбуждают в среде II волну, к-рая распространяется со скоростью с 2 вдоль поверхности - раздела и переизлучается в среду I, формируя т. н. боковую волну. Её фронт образуют точки, до к-рых в один и тот же момент времени дошли лучи, вышедшие из точки О вдоль ОА и затем перешедшие снова в среду I в разл. точках границы раздела от точки А до точки С, в к-рой в этот момент находится фронт преломлённой волны. В плоскости чертежа фронт боковой волны представляет собой прямолинейный отрезок СВ, наклонённый к границе под углом и простирающийся до точки В, где он смыкается с фронтом зеркально отражённой сферич. волны. В пространстве фронт боковой волны представляет собой поверхность усечённого конуса, возникающего при вращении отрезка СВ вокруг прямой ОО'. При отражении сферич. волны в жидкости от поверхности твёрдого тела подобная же конич. волна образуется за счёт возбуждения на границе раздела вытекающей рэлеевской волны. Отражение сферич. волн - один из основных эксперим. методов геоакустики, сейсмологии, гидроакустики и акустики океана. Отражение акустических пучков конечного сечения
[1,3,7,12]. Отражение коллимированных звуковых пучков, волновой фронт к-рых в осн. части пучка близок к плоскому, происходит для большинства углов падения так, будто отражается плоская волна. При отражении пучка, падающего из жидкости на границу раздела с твёрдым телом, возникает отражённый пучок, форма к-рого является зеркальным отражением распределения амплитуды в падающем пучке. Однако при углах падения, близких к продольному критич. углу или рэлеевскому углу наряду с зеркальным отражением происходит эфф. возбуждение боковой или вытекающей ролеевской волны. Поле отражённого пучка в этом случае является суперпозицией зеркально отражённого пучка и переизлучённых волн. В зависимости от ширины пучка, упругих и вязких свойств граничащих сред возникает либо латеральный (параллельный) сдвиг пучка в плоскости раздела (т. н. смещение Шоха) (рис. 8), либо существенное уширение пучка и появление тонкой Рис. 8. Латеральное смещение пучка при отражении: 1 - падающий пучок; 2 - зеркально отражённый пучок; 3 - реально отражённый пучок. структуры. При падении пучка под углом Рэлея характер искажений определяется соотношением между шириной пучка l и радиац. затуханием вытекающей рэлеевской волны где - длина звуковой волны в жидкости, А -
числовой множитель, близкий к единице. Если ширина пучка значительно больше длины радиац. затухания происходит лишь смещение пучка вдоль поверхности раздела на величину В случае узкого пучказа счёт переизлучения вытекающей поверхностной волны пучок существенно уширяется и перестаёт быть симметричным (рис. 9). Внутри области, занятой зеркально отражённым пучком, в результате интерференции возникает нулевой минимум амплитуды и пучок распадается на две части. Незеркальное отражение коллимиров. пучков возникает и на границе двух жидкостей при углах падения, близких к критическому, а также при отражении пучков от слоев или пластин. Рис. 9. Отражение звукового пучка конечного сечения, падающего из жидкости Ж на поверхность твёрдого тела Т под углом Рэлея: 1 - падающий пучок; 2 - отражённый пучок; а - область нулевой амплитуды; б - область хвоста пучка. В последнем случае незеркальный характер отражения обусловлен возбуждением в слое или пластине вытекающих волноводных мод. Существенную роль играют боковые и вытекающие волны при отражении фокусированных УЗ-пучков. В частности, эти волны используются в микроскопии акустической для формирования акустич. изображений и проведения количеств, измерений. Лит.: 1) Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; 2) Ландау Л. Д., Лифшиц Е. М., Гидродинамика, 4 изд., М., 1988; 3) Бреховских Л. М., Годин О. А., Акустика слоистых сред, М., 1989; 4) Сagniаrd L., Reflexion et refraction des ondes seismiques progressives, P., 1939; 5) Ewing W. M., Jardetzky W. S., Press F., Elastic waves in layered media, N. Y. - [a. o.], 1957, ch. 3; 6) Au1d B. A., Acoustic fields and waves in solids, v. 1 - 2, N. Y. - [a. o.], 1973; 7) Вertоni H. L., Тamir Т., Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces, "Appl. Phys.", 1973, v. 2, № 4, p. 157; 8) Mоtt G., Reflection and refraction coefficients at a fluid-solid interface, "J. Acoust. Soc. Amer.", 1971, v. 50, № 3 (pt 2), p. 819; 9) Вeсker F. L., Riсhardsоn R. L., Influence of material properties on Rayleigh critical-angle reflectivity, "J. Acoust. Soc. Amer.", 1972, v. 51. .V" 5 (pt 2), p. 1609; 10) Fioritо R., Ubera11 H., Resonance theory of acoustic reflection and transmission through a fluid layer, ".I. Acoust. Soc. Amer.", 1979, v. 65, № 1, p. 9; 11) Fiоrft о R., Madigоsky W., С berа 11 H., Resonance theory of acoustic waves interacting with an clastic plate. "J. Acoust. Soc. Amer.", 1979, v. 66, № 6, p. 1857; 12) Neubauer W. G., Observation of acoustic radiation from plane and curved surfaces, в кн.: Physical acoustics. Principles and methods, ed. by W. P. Mason, R. N. Thurston, v. 10, N. Y. - L., 1973, ch. 2. В. М. Левин. |