Контрольная работа: по Транспорту 2
Название: по Транспорту 2 Раздел: Рефераты по транспорту Тип: контрольная работа | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.Задача № 1 По данным эксплуатационных и ремонтных служб вероятность выхода из строя ТЭД в депо, эксплуатирующем электровозы, за одну поездку составляет р = 0,15. Определить методом перебора и проверить по максимуму функции распределения наиболее вероятное количество ТЭД, выходящих из строя в месяц, если известно, что за этот период электровоз делает в среднем n = 14 поездок. Решение: Согласно схеме биномиальных испытаний, вероятность того, что в n испытаниях выйдет из строя k ТЭД запишется в виде: , (1.1) Где (1.2) (1.3) (1.4) То есть из 14 поездок выйдет из строя 2 ТЭД. При k = 1: ; ; При k = 2: ; При k = 3: ; Как видно, при k = 3 вероятность Р начинает убывать, поэтому количество двигателей, которые могут выйти из строя принимаем равное 2. Вывод: определили наибольшую вероятность р = 0,291 выхода из строя определенного числа ТЭД k = 2. 2.Задача № 2 Изменяются нижеследующие данные по эксплуатации ТЭД в период послегарантийного пробега локомотива. При этом известно, что в период гарантийного пробега (350000 км) ТЭД из строя не выходили. Данные приведены в таблице 2.1. Принимая закон распределения вероятностей отказов ТЭД экспоненциальным (пробег близок к гарантийному), определить: 1. Вероятность того, что за пробег L тыс.км отказов ТЭД на локомотиве не будет. 2. Вероятность того, что ТЭД на локомотиве придется менять точно 3 раза. 3. Вероятность того, что ТЭД придется менять не менее 3 раз. 4. Сколько ТЭД на локомотиве выйдет из строя за пробег Lтыс. км. Таблица 2.1 Пробеги ТЭД до отказа
Заданный пробег локомотива – L = 564 тыс. км. Решение: Вероятность отказа не зависят от времени предшествующей работы, а зависит только от длины интервала, надежность элемента может быть рассчитана на основе экспоненциального закона распределения вероятностей. 1.В соответствии с этим законом вероятность безотказной работы ТЭД при пробеге L тыс. км может быть вычислена по формуле: (2.1) Где (2.2) Где, в свою очередь (2.3) (км) Вероятность безотказной работы при пробеге Lтыс. км: (2.4) . 2.Вероятность того, что ТЭД на электровозе придется менять точно 3 раза: (2.5) 3.Вероятность того, что ТЭД придется менять не менее 3-х раз: (2.6) 4.Вопрос, сколько ТЭД на локомотиве выйдет из строя за пробег 564 тыс.км, решаем путем перебора вариантов с использованием формулы: (2.7) В результате расчетов получаем, что количество ТЭД, которое выйдет из строя равно 4 ТЭД. 3. Задача №3 Пусть средний пробег локомотива по депо за год составляет тыс. км. В поездках происходит n = 8 отказов двигателей из-за размотки бандажей. По результатам обследования выясняется, что во всех случаях размотки произошли вследствие разносного боксования ТЭД. Определить вероятность того, что в депо за общий пробег локомотива L = 564 тыс. км отказов ТЭД по якорным бандажам не произойдет. Плечи обращения локомотивных бригад составляют по всем направлениям км. Локомотивы 4-осные. Решение: Вероятность отказа ТЭД из-за размотки бандажей в одной поездке, может быть вычислена как частость отказа: , (3.1) Где N – количество двигателей, участвующих в поездках локомотива за год, определяемое из заданного среднего пробега и заданных плеч обращения локомотивов ТЭД (3.2) Вычислим количество поездок: поездок (3.3) Вычислим произведение Так как величина мала, k – велико, произведение и находится в пределах 0,1-20, то вероятность безотказной работы ТЭД за время большее числа поездок kвычислим по формуле: (3.4) Вывод: в ходе выполнения данной задачи определили вероятность того, что в депо за общий пробег локомотива отказов ТЭД по якорным бандажам не произойдет, р = 0,345. 4.Задача №4 Пусть имеются данные о времени безотказной работы моторно-якорных подшипников (таблица 4.1) Таблица 4.1 Данные по отказам моторно-якорных подшипников
Определить вероятность безотказной работы за L тыс. км. Предполагается, что опасность отказа при эксплуатации локомотива остается постоянной. Пробег L = 564 тыс. км. Решение: 1.Примем значение тыс.км; 2.Определим функцию - число отказов до пробега 600 тыс. км, 3.Определим накопленную частость отказов: (4.1) 4.Опрделим опасность отказов: Так как (4.2) (4.3) Откуда будет равна: (4.4) 5.Вероятность безотказной работы за 564 тыс. км: (4.5) 6.Вероятность отказа за тот же пробег: (4.6) Вывод: в ходе выполнения данной задачи, определили вероятность безотказной работы за пробег L = 564 тыс. км, которая составила р = 0,61. 5.Задача №5 Определить параметры распределения и оценить вероятность безотказной работы подшипников в течение времени часов и часов. Данные о работе моторно-якорных подшипников приведены в таблице 5.1. Таблица 5.1 Время безотказной работы моторно-якорных подшипников
Решение: 1.Найдем эмпирическое среднее и дисперсию времени безотказной работы: (5.1) (ч) (5.2) час2 2.Определим опасность отказов и число повреждений r: (5.3) (5.4) 3.Определим произведения и : 4.По номограмме для определения вероятностей безотказной работы, взятой из источника [2], определяем функции и 5.Используя нормальное распределение, запишем: час (5.5) 6.Посчитаем аргументы функции Лапласа: (5.6) (5.7) 7. По таблице функции Лапласа, взятой из источника [2], определяем 8. Запишем вероятность безотказной работы при нормальном законе распределения: (5.8) Вывод: в ходе решения данной задачи определили параметры распределения и оценили вероятность безотказной работы подшипников, и . 6.Задача №6 На ресурсные испытания корпусной изоляции якорей ТЭД ЭД118А были поставлены 1461 образец. По результатам испытаний была получена следующая таблица, характеризующая их надежность. Таблица 6.1 Результаты наблюдений и исходные данные для расчета характеристик надежности ТЭД ЭД118А
Используя данные таблицы 6.1, рассчитать количество запасных ТЭД, которыми должно располагать эксплуатационное предприятие для случаев их замены под локомотивами в данном регионе использования на среднюю наработку локомотивов по депо в 15 000 тыс. км с заданной вероятностью обеспечения замены Р = 0,99. Решение: Требуемое количество ремонтов якорей ТЭД n0 в электромашинном цехе депо за период эксплуатации t или число якорей ТЭД, которое должно быть на складе для их замены на локомотивах взамен вышедших из строя, равно: (6.1) Где хр – квантиль порядка Р нормального распределения, определяемого из условия Ф(хр )=Р; Т0 – математическое ожидание времени безотказной работы корпусной изоляции якорей ТЭД. Рассчитывается как статистическое значение среднего времени безотказной работы с использованием данных таблицы 6.1 по формуле: (6.2) Где - общее число отказавших ТЭД; k – общее число моментов наработки (число интервалов наработки); i – 1,2,…..,k – индекс наработки ТЭД в момент отказа; ni – число отказов в момент наработки ti ; ti – момент наработки возникновения отказа (центр интервала наработки); N – продолжительность наблюдений. тыс. км - среднее квадратичное отклонение наработки ТЭД от среднего значения: (6.3) Далее, используя полученные данные и формулу (6.1), можно рассчитать для заданных условий задачи количество запасных ТЭД, которыми должно располагать эксплуатационное предприятие в данном регионе эксплуатации локомотивов: ТЭД Вывод: в ходе решения данной задачи, рассчитали количество запасных ТЭД, которыми должно располагать эксплуатационное предприятие для случаев их замены под локомотивами в данном регионе использования на среднюю наработку локомотивов по депо в 15 000 тыс. км с заданной вероятностью обеспечения замены Р = 0,99, nо = 24 ТЭД. |