Реферат: Системы счисления

Название: Системы счисления
Раздел: Рефераты по математике
Тип: реферат

Система счисления – это способ представления чисел и соответствующие ему правила действия над числами. Разнообразные системы счисления, которые существовали ранее и существуют теперь, можно разделить на позиционные и непозиционные. Знаки, которые используются при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает.

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

I V X L C в M

1 5 10 50 100 500 1000

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа – большая, то их значения вычитаются.

Пример 2.

VI=5+1=6, а IV=5-1=4

Пример 3.

MCMXCVIII =1000+ (1000-100) + (-10+100) +5+1+1+1=1998

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять при наличии любого многозначного числа. Например, в числе 333первая тройка означает три сотни, вторая – три десятка, а третья – три единицы.

Для записи чисел в позиционной системе счисления с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Основание

Название

Алфавит

n=2

двоичная

0 1

n=3

троичная

0 1 2

n=8

восьмеричная

0 1 2 3 4 5 6 7

n=16

шестнадцатеричная

0 1 2 3 4 5 6 7 8 9 A B C в E F

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

В системе счисления с основанием q (q-ичная система счисления) единицами разрядов служат последовательные степени числа q. q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа в q-ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0,1,…,q-1. запись числа q в q-ичной системе счисления имеет вид 10.

Развернутой формулой записи числа называется запись в виде

Здесь – само число, q – основание системы счисления, - цифры данной системы счисления, n – число разрядов целой части числа, m – число разрядов дробной части числа.

Пример 4. получить развернутую форму десятичных чисел 32478; 26,387.

Пример 5. получит развернутую форму чисел

, , ,

Обратите внимание, что в любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную.

Пример 6. Все числа из предыдущего примера перевести в десятичную систему.

Задачи

№1

Какие числа записаны с помощью римских цифр:

MMMD, IV, XIX, MCXCIVII?

№2

Запишите год, месяц и число вашего рождения с помощью римских цифр.

№3

В старину на Руси широко применялась система счисления, отдаленно напоминающая римскую. С ее помощью сборщики податей заполняли квитанции об уплате податей. Для записи чисел употреблялись следующие знаки:

Звезда – тысяча рублей, колесо – сто рублей, квадрат – десять рублей,

Х – один рубль, I I I I I I I I I I – десять копеек, I – копейка.

Запишите при помощи старинной русской системы счисления сумму 3452 рубля 43 копейки.


№4

Какая сумма записана при помощи старинной русской системы счисления

Х Х Х I I I I I I I I I I I I I

№5

Придумайте свою непозиционную систему счисления и запишите в ней числа 45, 769, 1001.

№6

В некоторой системе счисления цифры имеют форму различных геометрических фигур. На рисунке приведены некоторые числа, записанные этой системе счисления:

- 4 -190

- 6 - 1900

-19

Какому числу соответствует следующая запись:

№7

Выполните действия и запишите результат римскими цифрами:


XXII-V; CV-LII; IC+XIX; MCM+VIII;

XX/V; X*IV; LXVI/XI; XXIV*VII.

№8

Какое количество обозначает цифра 8 в десятичных числах

6538, 8356, 87 и 831?

№9

Что вы можете сказать о числах 111 и I I I?

№10

Выпишите алфавит в 5-ричной, 7-ричной и 12-ричной системах счисления.

№11

Запишите первые 20 чисел натурального числового ряда в двоичной, 5-ричной, 8-ричной, 16-ричной системах счисления.

№12

Запишите в развернутом виде числа:

1) ; 2)

№13

Запишите в развернутом виде числа:

1) ; 2)


№14

Запишите в развернутой форме числа:

1) ; 2)

№15

Запишите десятичной системе счисления числа:

1) ; 2)

№16

Запишите в десятичной системе счисления числа:

1) ; 2)

№17

Запишите десятичный эквивалент числа 110101, если считать его написанным во всех системах счисления – от двоичной до девятеричной включительно.

№18

Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 10, 21, 201, 1201?

№19

Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 403, 561, 666, 125?


№20

Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 22, 964, 1010, А219?

№21

В каких системах счисления 10 – число нечетное?

№21

В каких системах счисления справедливы неравенства:

2*2=10, 2*3=11, 3*3=13?

Перевод десятичных чисел в другие системы счисления.

Перевод целых чисел

1. основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить в десятичной системе счисления;

2. последовательно выполнять деление данного числа и получаемых неполных частых на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3. полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4. составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число в двоичную систему. Для обозначения цифр используем символику:

Перевод дробных чисел.

1. основание новой системы счисления выразить в десятичной системе и все последующие действия производить в десятичной системе счисления;

2. последовательно умножать данное число и полученные дробные части произведений на основание новой системы до тех пор, пока дробная часть не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

3. полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4. составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Перевод смешанных чисел, содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Пример 4. Перевести десятичное число 315,1875 в восьмеричную и шестнадцатеричную системы счисления.

Из рассмотренных выше примеров следует:

.

Задачи

№23

Перевести целые числа из десятичной системы счисления в троичную:

1. 523; 65; 7000; 2307; 325

2. 12; 524; 76; 121; 56.

№24

Перевести целые числа из десятичной системы счисления в восьмеричную:

1. 856; 664; 5012; 6435; 78;

2. 214; 89; 998; 653; 111.

№25

Перевести десятичные дроби в двоичную систему счисления. В двоичной записи числа сохранить шесть знаков.

1. 0,654; 0,321; 0,6135; 0,9876;

2. 0,55; 0,333; 0,1213; 0,453.

№26

Перевести десятичные дроби в шестнадцатеричную систему счисления. В новой записи дроби сохранить шесть знаков

1. 0,745; 0,101; 0,8453; 0,3451;

2. 0,8455; 0,225; 01234; 0,455

№27

Перевести смешанные десятичные числа в троичную и пятеричную системы счисления, оставить пять знаков в дробной части нового числа:

1. 40,5; 34,25; 124,44;

2. 78,333; 225,52; 90,99.

№28

Перевести смешанные десятичные числа в двоичную и восьмеричную системы счисления, оставив пять знаков в дробной части нового числа:


1. 21,5; 432,54; 678,333;

2. 12,25; 97,444; 7896,2.

№29

Перевести из десятичной системы счисления следующие числа:

1. 345 - , 0,125 - , 45,65 - ;

2. 675 - , 0,333 - , 23,15.

№30

Перевести из десятичной системы счисления следующие числа:

1. 1,25 - , 675 - , 0,355 - ;

2. 890 - , 0,675 - , 12,35 -

№31

Перевести из десятичной системы счисления следующие числа:

1. 425 - , 0,425 - , 98,45 - ;

2. 0,55 - , 765 - , 765,75 - .

№32

Перевести из десятичной системы счисления следующие числа:

1. 98 - , 0,545 - , 87,325 - ;

2. 0,775 - , 907 - , 566,225 -

Системы счисления, используемые в ЭВМ (с основанием )

Для того чтобы целое двоичное число записать в системе счисления с основанием (4,8,16 и т.д.), нужно:

1. данное двоичное число разбить справа налево на группы по n цифр в каждой;

2. если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов;

3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой системе счисления с основанием .

Для того чтобы дробное двоичное число записать в системе счисления с основанием , нужно:

1. данное двоичное число разбить слева направо на группы по n цифр в каждой;

2. если в последней правой группе окажется меньше n разрядов, то ее надо дополнить справа нулями до нужного числа разрядов;

3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой системе счисления с основанием .

Для того чтобы произвольное двоичное число записать в системе счисления с основанием , нужно:

1. данное двоичное число разбить слева и справа (целую и дробную части) на группы по n цифр в каждой;

2. если в последних правой и левой группах окажется меньше n разрядов, то их нужно дополнить нулями до нужного числа разрядов;

3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой системе счисления с основанием .

Для того чтобы произвольное число, записанное в системе счисления с основанием , перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-разрядным эквивалентом в двоичной системе счисления.

Применительно к компьютерной информации часто используются системы счисления с основанием 8 (восьмеричная) и 16 (шестнадцатеричная).

Пример 5. Перевести число в двоичную систему.

Для решения задачи воспользуемся приведенной ниже двоично-шестнадцатеричной таблицей.

Двоично-шестнадцатеричная таблица

16

2

16

2

0

0000

8

1000

1

0001

9

1001

2

0010

A

1010

3

0011

B

1011

4

0100

C

1100

5

0101

D

1101

6

0110

E

1110

7

0111

F

1111

В одном столбце таблицы помещены шестнадцатеричные цифры, напротив, в соседнем столбце – равные им двоичные числа. Причем все двоичные числа записаны в четырехзначном виде (там, где знаков меньше четырех, слева добавлены нули).

А теперь проделаем следующее: каждую цифру в шестнадцатеричном числе 15FC заменим на соответствующую ей в таблице четверку двоичных знаков. Иначе говоря, перекодируем число 15FC по таблице в двоичную форму. Получается:

0001 0101 1111 1100

Если отбросить нули слева (в любой системе счисления они не влияют на значения числа), то получим искомое двоичное число. Таким образом:

В справедливости этого равенства можно убедиться, производя тот же перевод через десятичную систему.

Пример 6. Перевести двоичное число 110111101011101111 в шестнадцатеричную систему.

Разделим данное число на группы по четыре цифры, начиная справа. Если в крайней левой группе окажется меньше четырех цифр, то дополним ее нулями.

0011 0111 1010 1110 1111

А теперь, глядя на двоично-шестнадцатеричную таблицу, заменим каждую двоичную группу на соответствующую шестнадцатеричную цифру.

3 7 А E F

Следовательно:

Пример 7. Перевести смешанное число в шестнадцатеричную систему.

Решение

Перевод дробных чисел производится аналогично. Группы по четыре двоичных знака выделяются от запятой как влево, так и вправо. Поэтому:

= 0101 1101, 1011 1000 = .

Связь между двоичной и восьмеричной системами устанавливается аналогично. В этом случае используется двоично-восьмеричная таблица, приведенная ниже. Каждой восьмеричной цифре соответствует тройка двоичных цифр.

Двоично-восьмеричная таблица

8

2

0

000

1

001

2

010

3

011

4

100

5

101

6

110

7

111

Пример 8. Перевести смешанное число в восьмеричную систему.

Решение

Группы по три двоичных знака выделяются от запятой как влево, так и вправо. Затем производится перекодировка по таблице:

= 001 011 101, 101 110 = .

Задачи

№33

Перевести двоичные числа в восьмеричную систему счисления:

1. 110000110101; 1010101; 0,1010011100100; 0,1111110001;

2. 0,1001111100000; 0,1100010; 11100001011001; 1000010101.

№34

Перевести двоичные числа в шестнадцатеричную систему счисления:


1. 11011010001; 111111111000001; 0,0110101; 0,11100110101;

2. 10001111010; 100011111011; 0,101010101; 01100110011.

№35

Перевести смешанные двоичные числа в восьмеричную и шестнадцатеричную системы:

1. 100010,011101; 1111000000,101; 101010,111001; 100011,111;

2. 101111,01100; 100000111,001110; 101010,0010; 1100011,11.

№36

Перевести восьмеричные числа в двоичную систему счисления:

1. 256; 0,345; 24,025; 0,25;

2. 657; 76,025; 0,344; 345,77.

№37

Перевести шестнадцатеричные числа в двоичную систему счисления:

1. 1АС7; 0,2D1; 2F,D8C; F0C,FF;

2. FACC; 0,FFD; FDA,12F; DDFF,A/

№38

Перевести числа из шестнадцатеричной системы в восьмеричную:

1. A45; 24A,9F; 0,FDD5; F12,0457$

2. A24,F9; 54A; 0,DFD3; 12D,567/

№39

Перевести числа из восьмеричной системы счисления в шестнадцатеричную:

1. 774; 765,25; 0,5432; 654,763;

2. 665; 546,76; 0,7654; 432,347.

№40

Перевести следующие числа:

1. ; ; ; ;

2. ; ; ;

№41

Перевести следующие числа:

1. ; ;

;

2. ; ;

;

№42

Перевести следующие числа:

1. ; ;

2. ; ;

3. ; ;

4. ; ;


№43

Опишите четверичную систему. Постройте двоично-четверичную таблицу.

№44

Перевести следующие числа:

1. ; ; ; ;

2. ; ; ; .

№45

Перевести следующие числа:

1. ; ; ; ;

2. ; ; ; .

Арифметика в позиционных системах счисления.

Любая позиционная система счисления определяется основанием системы, алфавитом и правилами выполнения арифметических операций. В основе правил арифметики лежат таблицы сложения и умножения однозначных чисел. Например, таблицы сложения и умножения в пятеричной системе счисления выглядят так:

Пятеричная таблица сложения пятеричная таблица умножения

+

0

1

2

3

4

0

0

1

2

3

4

1

1

2

3

4

10

2

2

3

4

10

11

3

3

4

10

11

12

4

4

10

11

12

13

1

2

3

4

1

1

2

3

4

2

2

4

11

13

3

3

11

14

22

4

4

16

22

31