Реферат: Проектирование трёхфазных силовых трансформаторов
Название: Проектирование трёхфазных силовых трансформаторов Раздел: Промышленность, производство Тип: реферат | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Федеральное агентство по образованиюГосударственное образовательное учреждение ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (НОВОЧЕРКАССКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ) ПРОЕКТИРОВАНИЕ ТРЕХФАЗНЫХ СИЛОВЫХ ТРАНСФОРМАТОРОВ Пособие к курсовому проектированию Новочеркасск 2008 УДК 621.313. (076.5) Рецензент канд. техн. наук Е.А. Попов Составители: Р.В. Ротыч, Л.Ф. Коломейцев, О.А. Васин. Проектирование трехфазных силовых трансформаторов. Пособие к курсовому проектированию./Южно-Российский гос. тех. ун-т (НПИ).-Новочеркасск: ЮРГТУ 2008 Пособие предназначено для выполнения курсового проекта студентами очного обучения, изучающих дисциплины: «Электрические машины», «Конструкции, расчет, проектирование, потребительские свойства электромагнитных устройств и электромеханических преобразователей» ã Южно-Российский государственный технический университет (НПИ), 2008 ã Ротыч Р.В., Коломейцев Л.Ф., О.А. Васин Задание Тип трансформатора ТМ-1600/35. Мощность трансформатора S = 1600 кВ∙А; число фаз m = 3; частота f = 50 Гц. Номинальные напряжения обмоток: первичное – 35000 В; вторичное – 690 В. Схема и группа соединения Y/Δ – 11. Переключение ответвлений без возбуждения (ПБВ). Режим работы – продолжительный; Установка – наружная. 1. Расчет основных электрических величин 1.1 Определение линейных и фазных токов и напряжений ВН и НН Символы величин обмотки НН обозначаются с индексом “1”, обмотки ВН – с индексом “2” (обмотка НН размещается на стержнях магнитной системы, обмотка ВН - снаружи). Мощность одной фазы и одного стержня кВ∙А Номинальные (линейные) токи на сторонах НН А ВН А Фазные токи при соединении Y /Δ А А Фазные напряжения обмоток В В 1.2 Определение активной и реактивной составляющих напряжений Uк %.
По методике [1] следует задаться потерями короткого замыкания Pк и напряжением короткого замыкания Uк %, которые выбираются из табл. П.1 и табл. П.2. Вт, %. Активная составляющая напряжения короткого замыкания % Реактивная составляющая % 1.3 Определение испытательных напряжений обмоток. Испытательные напряжения обмоток по табл. П.3 для обмотки ВН Uисп = 85 кВ; для обмотки НН Uисп = 5 кВ. 2. Определение основных размеров трансформатора 2.1 Выбор конструкции магнитной системы Согласно указаниям [1] выбираем трехфазную стержневую шихтованную магнитную систему с косыми стыками на крайних стержнях и прямыми на средних стержнях. Для мощности 1600 кВА согласно табл. П.5 число ступеней в стержне принимаем 8, коэффициент заполнения круга ккр =0,928, число ступеней в ярме меньше на 2 и равно 6. Стержни магнитной системы скрепляются бандажами из стеклоленты, ярма прессуются профильными стальными балками (табл. П.4). Изоляция пластин — нагрево-стойкое изоляционное покрытие, с коэффициентом заполнения kз = 0,97. Коэффициент заполнения сталью kс =kкр ∙kз =0,928 ∙ 0,97 =0,9. Число зазоров в магнитной системе на косом стыке 4, на прямом 3. Материал магнитной системы — холоднокатаная текстурированная рулонная сталь 3404 толщиной 0,35мм. 2.2 Определение диаметра и высоты стержня магнитной системы м, где β рекомендуется выбирать в интервале 1,8 ÷ 2,4 (например β = 1,9 ); м. Значение а12 определить из табл.П.8 для Uисп = 85 кВ. Значение k по табл. П.9. Коэффициент приведения идеального поля рассеяния к реальному kр 0,95; Индукция в стержне (предварительная) Bc по табл. П.10. По табл. П.12 принимаем стандартный диаметр в = 0,26 м. Активное сечение стержня м2 . 2.3 Выбор конструкции обмоток и изоляционных промежутков главной изоляции Выбираем типы обмоток по табл. П.6 для ВН при напряжении 35 кВ и токе 26,4 А – непрерывная катушечная из прямоугольного медного провода; для обмотки НН при напряжении 0,69 кВ и токе 773 А – цилиндрическая многослойная из прямоугольного медного провода. Средний диаметр обмоток НН и ВН м, где а выбирается в зависимости от значения напряжения обмотки ВН: при 35 кВ принять а = 1,4 [1]. Рис. 1. Основные размеры трансформатора Высота обмоток (предварительная) м. По испытательному напряжению обмотки ВН Uисп = 85 кВ находим из табл. П.8 изоляционные расстояния (рис. 1): мм, мм, мм. Для обмотки НН при Uисп = 5 кВ по табл. П.7 находим мм. 3. Расчет обмоток 3.1 Расчет обмотки НН
Конструкция обмотки НН определяется мощностью и напряжением согласно рекомендациям табл. П.6. Выбрана цилиндрическая многослойная конструкция из прямоугольного медного провода. Обмотка НН расположена ближе к стержню магнитопровода, т.е. является внутренней и расчет всегда начинается с неё. ЭДС одного витка В. Число витков обмотки НН . Принимаем w 1 = 40 витков. Напряжение одного витка UВ = 690/40 = 17,25 В. Средняя плотность тока в обмотках МА/м2 , где k Д из табл. П.14. Сечение витка ориентировочно м2 = 213,5 мм2 . По полученному ориентировочному значению выбираем по табл. П.13 сечение витка из N = 6 параллельных проводов марки ПБ класса нагревостойкости “В” с намоткой на ребро (для провода марки ПСД и ПСДК см. табл. П.15, для круглого провода марки ПБ см. табл. П.17). Рекомендуется число N выбирать минимальным. Для прямоугольного провода марки ПБ (в числителе размеры провода без изоляции, в знаменателе с изоляцией рис. 2 и 3). сечением 37,2·10-6 м2 каждого провода (по табл. П.15); Для круглого провода , по табл. П. 17, рис. 3. Общее сечение витка из прямоугольного провода м2 . Общее сечение витка из круглого провода
Осевой размер витка из N параллельных проводов: для прямоугольного провода м. для круглого провода Число витков в слое
Число слоев обмотки . Плотность тока МА/м2 . Рис. 2. Размеры провода в изоляции Рис Рис. 3. Поперечное сечение одного витка в изоляции из N проводников Осевой размер обмотки м. Предварительный радиальный размер обмотки без каналов между слоями м, где - толщина изоляции между слоями (выбран электрокартон толщиной , можно использовать кабельную бумагу толщиной 0,2 мм в Предварительная плотность теплового потока на поверхности обмотки Вт/м2 , где n сл1 – число слоев обмотки; b – размер провода, которым он уложен перпендикулярно к стержню; a (a ´ – в изоляции) - размер провода, которым он уложен параллельно стержню; k з – коэффициент закрытия поверхности распорными планками, k з 0,75; k д – коэффициент, учитывающий отношение основных потерь к потерям короткого замыкания, по табл. П.16, k д = 0,91. Расчетное значение Вт/м2 больше допустимого значения Вт/м2 , поэтому для увеличения поверхности охлаждения используем канал между частями обмотки шириной ак1 = 7,5 мм и определяем q 1 для каждой части обмотки. В данном варианте каждая часть обмотки содержит число слоев n =1. Следовательно Вт/м2 , что допустимо. Окончательный радиальный размер обмотки м. В случае круглого провода плотность теплового потока рассчитывать по формуле Диаметры обмотки: внутренний м; внешний м. Масса металла обмотки
кг, где м — средний диаметр обмотки. Масса провода по табл. П.17 и П.18. кг.
3.2 Расчет обмотки ВН. По рекомендациям табл. П.6 выбрана непрерывная катушечная обмотка из прямоугольного медного провода с радиальными каналами. Выбираем схему регулирования по рис. 4 с выводом концов всех трех фаз обмотки к одному трехфазному переключателю по рис. 4. Контакты переключателя рассчитываются на ток 30 А. Эта схема применяется для всех конструкций обмоток (табл. П.6). Число витков обмотки ВН при номинальном напряжении . Принимаем w 1 = 1176 витков. Напряжение одного витка UВ = 20207/1176 = 17,18 В . Согласно ГОСТ 11920 – 85 регулирование напряжения переключением ответвлений обмотки без возбуждения (ПВБ) предусматривается четыре ответвления (+5, +2.5, -2.5 и -5)%U н и основной зажим с номинальным напряжением. Напряжение ступени регулирования В . Число витков на одной ступени регулирования в фазной обмотке витков. Для получения на стороне ВН различных напряжений необходимо соединить:
Рис. 4. Схема регулирования напряжения ВН Ориентировочное сечение витка м2 мм2 . По табл. П.6 по мощности 1600 кВ∙А, току на один стержень 26,4 А, номинальному напряжению обмотки 35000 В и сечению витка 7,31 мм2 выбираем конструкцию непрерывной катушечной обмотки из прямоугольного медного провода марки ПБ класса В с радиальными каналами. Если по рекомендации табл. П.6 выбрана цилиндрическая многослойная обмотка из круглого провода, то расчет обмотки ВН выполнить по формулам для расчета обмотки НН. По полученному ориентировочному значению выбираем по табл. П.13 сечение витка из одного прямоугольного провода марки ПБ: сечением 7,625·10-6 м2 . В двух верхних и двух нижних катушках обмотки каждой фазы применяем провод с усиленной изоляцией 1,50 мм, с размерами провода в изоляции 2,907,10 мм. (1,4+1,5 = 2,9 мм, 5,6 +1,5 = 7,1 мм). Плотность тока в обмотке МА/м2 . При J2 = 3,46 МА/м2 и b = 5,6 мм по графикам рис. 5, а находим q800 Вт/м2 . Рис. 5. Графики для ориентировочного определения размера провода b по заданным значениям q и J в катушечных, винтовых и цилиндрических обмотках из прямоугольного провода (для цилиндрической обмотки размер b , полученный по графику, умножить на 0,8). Принимаем конструкцию обмотки с радиальными каналами по мм между всеми катушками. Две крайние катушки сверху и снизу отделены каналами по мм. Схема регулирования напряжения – по рис. 4, канал в месте разрыва обмотки h кр = 10 мм (рис. 6). Осевой размер катушки 6,1 мм, осевой размер крайних катушек с усиленной изоляцией 7,1 мм, т. е. провод укладывается “плашмя” (на сторону ). Число катушек на стержне предварительно катушек, где h ' к – ширина межкатушечных каналов (для SН < 1600 кВ∙А, h ' к = (4 ÷ 6)мм). Число витков в катушке ориентировочно . Радиальный размер м, где а ´– радиальный размер провода. Общее распределение витков по катушкам: Распределение витков по катушкам следует начинать с регулируемых катушек: В одной ступени регулирования 29 виток, поэтому регулируемая катушка должна содержать w кр = w р /2 = 14,5 витка, а число регулируемых катушек
Для защиты обмотки ВН от внешних электрических импульсов крайние катушки обмотки должны иметь лучшую изоляцию. Четыре катушки, например, могут содержать по18 витков 49 силовых катушек Г по 20 витков..............................................980 8 регулировочных катушек Д по 14,5 витка .................................116 4 катушки с усиленной изоляцией Е по 20 витков .........................80 Всего 61 катушка ..............................................................1176 витков Расположение катушек на стержне и размеры радиальных каналов приняты по рис. 6 и 7. Рис. 6. Расположение катушек и радиальных каналов. Осевой размер обмотки
Величина l 2 должна быть равна l 1 (l 1 = l 2 = 0,62 м). По испытательному напряжению U исп = 85 кВ и мощности трансформатора S = 1600 кВ∙А по табл. П.7 находим: Канал между обмотками ВН и НН ……………………….. Толщина цилиндра (изоляционного)…………………….... Выступ цилиндра за высоту обмотки ……………………... Расстояние обмотки ВН до ярма …………………………... Плотность теплового потока на поверхности обмотки для катушек группы Г Вт/м2 . Значение q 2 меньше 1200 Вт/м2 , что гарантирует допустимый нагрев обмотки ВН. Внутренний диаметр обмотки мм. Принимаем размеры бумажно-бакелитового цилиндра, на котором на 12 рейках толщиной 18 мм наматывается обмотка ВН (диаметром 0,380/0,4000,770 м). Основные размеры обмоток трансформатора показаны на рис. 6 и 7. Радиальный размер обмотки с экраном () м. Внешний диаметр обмотки м. Рис. 7. Схема обмоток НН и ВН и изоляционных расстояний трансформатора Масса меди обмотки ВН кг, где мм. Масса провода в обмотке ВН с изоляцией кг, где k из – коэффициент увеличения массы обмотки ВН с учетом изоляции. Масса меди двух обмоток кг. Масса провода двух обмоток кг. 4. Определение параметров режима короткого замыкания 4.1 Определение потерь короткого замыкания Основные потери Обмотка НН Вт. Обмотка ВН Вт. Основные потери в отводах рассчитываются следующим образом. Длина отводов определяется приближенно м – для схемы “треугольник”, м – для схемы “звезда”. Масса отводов НН кг. где м2 . Потери в отводах НН Вт. Масса отводов ВН кг. где м2 . Потери в отводах ВН Вт. Потери в стенках бака и других элементах конструкции до выяснения размеров бака определяем приближенно Вт. где k = 0,02 для S н < 1000 кВ·А, k = (0,03÷0,04) для S н >1000 кВ·А. Полные потери короткого замыкания Вт. к д – коэффициент добавочных потерь: для многослойных цилиндрических обмоток к д =1,12 , для катушечных – к д =1,05÷1,06. или % заданного значения. 4.2 Определение напряжения короткого замыкания () Активная составляющая (в %) % . Реактивная составляющая (в %) %, где уточненное значение Напряжение короткого замыкания (в %) %, или % заданного значения U к . Установившийся ток короткого замыкания на обмотке ВН А, где S к – мощность короткого замыкания электрической сети: S к = 5000 кВ·А при U ВН < 10 кВ, S к = 2500 кВ·А при U ВН >10 кВ. Мгновенное максимальное значение тока короткого замыкания А, при по табл. П.20 . Температура обмотки через t = 5 с после возникновения короткого замыкания ºС . – рабочая температура обмотки до КЗ (принимают 90 ºС ) . Предельно допустимая температура обмоток при аварийном коротком замыкании: для обмотки из меди кл. А и Е 250 ºС, для кл. В 350 ºС [1]. 4.3 Определение механических сил в обмотках Радиальная сила
Н. Среднее сжимающее напряжение в проводе обмотки НН МПа. Среднее растягивающее напряжение в проводах обмотки ВН МПа, т. е. 38,4 % допустимого значения 60 МПа. Осевые силы в катушечной обмотке Н Н. где мм (по рис. 8,а), т – множитель, зависящий от расположения обмоток, для расположения обмоток на рис. 8, б значение т = 4 [1]. Расстояние от стержня до стенки бака l "= 0,25 м . Для многослойных цилиндрических обмоток , и (направление на рис.8, б к центру обмотки 2). Максимальные сжимающие силы в обмотках Н. Н. Рис. 8. Механические силы в обмотках трансформатора а) схема расположения катушек обмотки ВН по рис.6. б) схема осевых сил обмоток НН и ВН Наибольшая сжимающая сила наблюдается в середине обмотки НН (обмотка 1), где F сж1 = 174715 Н. Напряжение сжатия на междувитковых прокладках МПа, что ниже допустимого значения 18÷20 МПа [1]; n – число прокладок по окружности обмотки; а – радиальный размер обмотки; b – ширина прокладки (b = 0,04 ÷ 0,06 м для S н < 63000 кВ·А). 5. Окончательный расчет магнитной системы 5.1 Определение размеров пакетов и активной площади стержня и ярма Выбрана конструкция трехфазной плоской шихтованной магнитной системы, собираемой из пластин холоднокатаной текстурованной стали марки 3404 толщиной 0,35 мм . Стержни магнитной системы скрепляются бандажами из стеклоленты, ярма прессуются ярмовыми балками. Размеры пакетов выбраны по табл. П.12 для стержня диаметром 0,260 м без прессующей пластины. Число ступеней в сечении стержня 8, в сечении ярма 6 (рис. 9). Размеры пакетов в сечении стержня и ярма по табл. П.12.
Общая толщина пакетов стержня (ширина ярма) 0,238 м. Площадь ступенчатой фигуры сечения стержня по табл. П.21. см2 м2 ; ярма –см2 м2 . Объем, угла магнитной системы см2 м2 . Активное сечение стержня м2 . Активное сечение ярма м2 . Объем стали угла магнитной системы м3 . а) б) Рис. 9. Магнитна система трансформатора: а)сечение стержня и ярма; б) основные размеры магнитной системы. Длина стержня (рис. 1 и 9) м. где l 0 и — расстояние от обмотки до верхнего и нижнего ярма (рис. 1). Расстояние между осями стержней м. где = 0,033 – расстояние между обмотками ВН двух соседних стержней (по табл. П.7).
5.2 Определение массы стержня и ярма Масса стали угла магнитной системы кг. кг/м3 – удельный вес стали. Масса стали ярм кг. Масса стали стержней кг. где кг; кг. Общая масса стали кг. 5.3 Определение потерь в стали магнитопровода Расчет потерь холостого хода по [1]. Индукция в стержне Тл. Индукция в ярме Тл. Индукция на косом стыке Тл. Площади сечения немагнитных зазоров на прямом стыке среднего стержня равны соответственно активным сечениям стержня и ярма. Площадь сечения стержня на косом стыке м2 . Удельные потери для стали стержней, ярм и стыков определяются по табл. П.22: для стали марки 3404 толщиной 0,35 мм при шихтовке в две пластины: при Тл Вт/кг; Вт/м2 ; при Тл Вт/кг; Вт/м2 ; при Тл Вт/м2 ; Для плоской магнитной системы с косыми стыками на крайних стержнях и прямыми стыками на среднем стержне, с многоступенчатым ярмом, без отверстий для шпилек, с отжигом пластин после резки стали и удаления заусенцев для определения потерь в магнитопроводе применим выражение: , где k п.д = 1,15 для трансформаторов Sн ≤ 63000 кВ·А и k п.д = 1,2, если Sн > 63000 кВ·А. По табл. П.23 находим коэффициент . Тогда потери холостого хода Вт. Полученное значение Px составляет % от заданного значения. 5.4 Определение тока холостого хода Для расчета намагничивающей мощности по табл. П.24 находим удельные намагничивающие мощности: при Тл; В·А/кг; В·А /м2 ; при Тл; В·А/кг; В·А /м2 ; при Тл; В·А /м2 . Для принятой конструкции магнитной системы и технологии ее изготовления используем Намагничивающая мощность холостого хода , где k тр = 1,18 для отожженной стали 3404 и 3405; k ту = 42,40 по табл. П.25; k т.пл = 1,32 для Sн ≤ 1600 кВ·А и k т.пл = 1,2 для Sн > 1600 кВ·А.
В∙А. Реактивная составляющая тока холостого хода %. Активная составляющая тока холостого хода %. Ток холостого хода %, что составляет % от заданного i 0% = 1,3% для серийного трансформатора (табл. П.2). 5.5 Внешние характеристики трансформатора Рассчитать и построить графики зависимости КПД и U 2 = f ( I 2 ). Изменение напряжения на вторичной обмотке трансформатора: , В, где 0,2; 0,4; 0,6; 0,8; 1,0; 1,2 при
Коэффициент мощности нагрузки задается в задании на проектирование (например ). . . . Коэффициент полезного действия (КПД) трансформатора
Для номинальной нагрузки Sн = 1600 кВ∙А; Рст = Рх = 3,645 кВт; Рмеди = Рк =18,715 кВт Рис. 10. График КПД трансформатора Рис. 11. Зависимости вторичного напряжения U2 и выходной мощность P2 от ki . 6. Тепловой расчет и расчет системы охлаждения При работе трансформатора в режиме нагрузки потери, возникающие в его обмотках и магнитопроводе, преобразуются в теплоту. Часть этой теплоты нагревает активные части, а остальная отводится в окружающую среду. В номинальном режиме нагрузки температура обмоток и масла достигает установившихся значений, которые не должны превышать допустимых ГОС стандартом. 6.1. Расчет температурного перепада в обмотках Внутренний перепад температуры: Обмотка НН ºС, где δ – толщина изоляции провода на одну сторону, δ = 0,25∙10-3 м ; q – плотность теплового потока на поверхности обмотки; λиз – теплопроводность бумажной изоляции провода пропитанной маслом, по табл. П.26. λиз = 0,17 Вт/(м∙ºС); Обмотка ВН ºС, Перепад температуры на поверхности обмоток: обмотка НН ºС, где k = 0,285 для цилиндрической обмотки; обмотка ВН ºС, где k1 = 1,0 для естественного масляного охлаждения; k2 = l,0 для наружной обмотки; для внутренней катушечной обмотки k2 = l,1; коэффициент k з учитывает влияние на конвекцию горизонтальных масляных каналов, по табл. П.27 k з = 0,95 для h к /a = 4,0/38 = 0,105, при отсутствии каналов k з = 0,95; hк – ширина масляного канала; a – глубина канала (ширина обмотки); Полный средний перепад температуры от обмотки к маслу: обмотка НН ºС, обмотка ВН ºС, 6.2 Выбор и расчет системы охлаждения (расчет бака, радиаторов, охладителей) В соответствии с мощностью трансформатора по табл. П.28 выбираем конструкцию гладкого бака с радиатором из труб (рис. 14). Тепловые расчеты для других конструкций баков (табл. П.28) изложены в [1,2]. Изоляционные расстояния отводов определяем до прессующей балки верхнего ярма и стенки бака. Минимальная ширина бака (рис.12 и 13) . м. Рис. 12. Схема бака трансформатора Изоляционные расстояния по табл. П.29 (рис.13): ― расстояние от изолированного отвода обмотки ВН до стенки бака = 40 мм для Uисп = 85 кВ; ― изоляционное расстояние от изолированного отвода обмотки ВН до собственной обмотки = 40 мм для Uисп = 85 кВ ― изоляционное расстояние от отвода обмотки НН до обмотки ВН = 25 мм для Uисп = 35 кВ; ― изоляционное расстояние от отвода обмотки НН до стенки бака = 90 мм для Uисп = 85 кВ; диаметр изолированного отвода от обмотки ВН, = 10 мм; диаметр изолированного отвода обмотки НН = 10 мм. Рис. 13. Схема отводов обмоток трансформатора Длина бака м , где С – расстояние между осями стержней (см. пункт «Расчет магнитной системы»); м. Принимаем А=1,8 м. Высота активной части м, где – высота стержня; h Я – высота ярма (равна высоте наибольшего пакета в сечении ярма. см. пункт «Расчет магнитной системы трансформатора»); hn – толщина бруска между дном бака и нижним ярмом (0,05 м). Согласно рекомендации [1] расстояние от верхнего ярма до крышки бака обмотки ВН: для 6 и 10 кВ м, для 20 кВ м; для 35 кВ м, если S4 ≥ 1600 кВт и U ≥ 25 кВ м, принимаем м. Глубина бака м, Допустимое превышение средней температуры масла над температурой окружающего воздуха для наиболее нагретой обмотки ºС; где – большее из двух значений, подсчитанных для обмоток ВН и НН. Найденное среднее превышение может быть допущено, так как превышение температуры масла в верхних слоях в этом случае будет ºС < 60 ºС; Принимая предварительно перепад температуры на внутренней поверхности стенки бака ºС и запас 2 ºС, находим среднее превышение температуры наружной стенки бака над температурой воздуха ºС; Для выбранного размера бака рассчитываем поверхность конвекции гладкой стенки бака м2 где м. Ориентировочная поверхность излучения бака с трубами м2 , где k – коэффициент, учитывающий отношение периметра поверхности излучения к поверхности гладкой части бака и приближенно равный: 1,0 – для гладкого бака; 1,2 – 1,5 – для бака с трубками и 1,5 – 2,0 – для бака с навесными радиаторами. Ориентировочная необходимая поверхность конвекции для заданного значения ºС м2 , где Вт. По табл. П.30 для мощности 1600 кВА выбираем бак с двумя рядами овальных труб (рис. 14). Размеры трубы: ― сечение, мм – 72×20; ― радиус закругления R= 188 мм; ― шаг труб между рядами tP = 100 мм; ― прямой участок для внутреннего ряда труб принимаем а1 = 50 мм; а2 = а1 + tр = 50+100 = 150 мм; По табл. П.31 по размеру наружного ряда труб выбираем минимальные значения с и е. с min = 75мм, е min = 85мм. Расстояние между осями труб на стенке бака (по рис.14): Наружный ряд м. Внутренний ряд м. Развернутая длина трубы (рис.14) первый (внутренний) ряд м, второй ряд м. Рис.14. Элемент трубчатого бака Поверхность конвекции составляется из: поверхности гладкого бака Пк,гл = 7,5 м2 и поверхности крышки бака м2 , где 0,16 – удвоенная ширина верхней рамы бака. Поверхность излучения бака с трубами
м2 . где d – больший размер поперечного сечения овальной трубы, d = 72 мм (табл. П.30), меньший размер – 20 мм. Поверхность конвекции труб м2 . Необходимая фактическая поверхность конвекции труб м2 , где k Фтр =1,34 для двух рядов труб и k Фтр =1,4 при одном ряде труб. При поверхности 1м трубы ПМ = 0,16 м2 необходимо иметь общую длину труб м. где Пм – поверхность 1 м трубы по табл. П.30. Число труб в одном ряду на поверхности бака . Шаг труб в ряду м. Поверхность конвекции бака м2 . Таким образом, поверхность конвекции бока достаточно близка к предварительному значению , необходимой для отвода тепловых потерь. 6.3 Определение превышения температуры обмоток и масла над воздухом . Среднее превышение температуры наружной поверхности трубы над температурой воздуха ºС. Среднее превышение температуры масла вблизи стенки над температурой внутренней поверхности стенки трубы ºС. Превышение средней температуры масла над температурой воздуха ºС. Превышение температуры масла в верхних слоях над температурой воздуха ºС < 60ºС. Превышение средней температуры обмоток над температурой воздуха: НН ºС < 65ºС. ВН ºС < 65ºС. Превышения температуры масла в верхних слоях ºС и обмоток ºС лежат в пределах допустимого нагрева по ГОСТ 11677-85. 6.4 Определение массы масла и основных размеров расширителей. Масса активной части кг. Объем активной части м3 . Объем бака м3 . Объем масла в баке м3 . Масса масла в баке кг. Масса масла в охладителях кг. Общая масса масла кг. По ГОСТ 982-80 используется трансформаторное масло марки Т-750 с антиокислительной присадкой и гарантированной кинетической вязкостью при –30ºС. Список литературы 1. Тихомиров П.М. «Расчет трансформаторов». Учебное пособие для вузов. М.,«Энергия», 1986. 2. Тихомиров П.М. «Расчет трансформаторов». Учебное пособие для вузов. М.,«Энергия», 1976. 3. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия. М.: Издательство стандартов, 1985. 4. Электротехнический справочник: В4, т.2. Электротехнические изделия и устройства/ Под общ. ред. профессоров МЭИ В.Г. Герасимов и др. (глав. Ред.Н.Н. Орлов) 8-е изд., испр. и доп. – М.: Издательство МЭИ, 2001. – 518 с. Приложение Параметры холостого хода и короткого замыкания трехфазных масляных силовых трансформаторов общего назначения классов напряжения 10 и 35 кВ мощностью 25 – 630 кВ·А ( ГОСТ 12022-76 ) Таблица П.1
Параметры холостого хода и короткого замыкания трехфазных масляных силовых трансформаторов общего назначения классов напряжения 10 и 35 кВ мощностью 1000 – 80 000 кВ·А, переключаемых без возбуждения ( ГОСТ 11920-85 ) Таблица П.2
Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76) Таблица П.3
Примечание. Обмотки масляных трансформаторов с рабочим напряжением до 1 кВ имеют Uисп = 5 кВ. Выбор способа прессовки стержней и ярм, формы сечения и коэффициента усиления ярма для современных трансформаторов [1] Таблица П.4
Обычные пределы применения различных типов обмоток масляных трансформаторов Таблица П.6
Главная изоляция. Минимальные изоляционные расстояния обмоток НН с учетом конструктивных требований. Масляные трансформаторы Таблица П.7
* Для винтовой обмотки с испытательным напряжением U исп = 5 кВ размеры взять из следующей строки (для мощностей 1000-2500 кВ·А)
Главная изоляция. Минимальные изоляционные расстояния обмоток ВН с учетом конструктивных требований. Масляные трансформаторы. Таблица П.8
Примечания: 1. Для цилиндрических многослойных обмоток минимальное изоляционное расстояние а 12 = 27 мм. Электростатический экран – с изоляцией 3 мм. При расчете диаметра стержня магнитной системы и реактивной составляющей напряжения короткого замыкания принимать а 12 = 30 мм. 2. При наличии прессующих колец расстояние до верхнего ярма принимать увеличенным против данных таблицы для трансформаторов 1000 – 6300 кВ·А на 45 мм, для двухобмоточных трансформаторов 10 000 – 63 000 кВ·А — на 60 мм и для трехобмоточных трансформаторов этих мощностей — на 100 мм. Расстояние от нижнего ярма l 0 и в этих случаях выбирается по таблице. Значения коэффициента k в формуле для масляных двухобмоточных трансформаторов ПБВ с медными обмотками и потерями короткого замыкания по ГОСТ Таблица П.9
Рекомендуемая индукция в стержнях масляных трансформаторов В , Тл Таблица П.10
Примечания: 1. В магнитных системах трансформаторов мощностью от 100 000 кВ∙А и более допускается индукция до 1,7 Тл. 2. При горячекатаной стали в магнитных системах масляных трансформаторов индукция до 1,4–1,45 Тл. Ориентировочные значения b = 2 a2 / d для масляных двухобмоточных трансформаторов ПБВ с медными обмотками и потерями короткого замыкания по ГОСТ Таблица П.11
Примечания. 1. Для обмоток из алюминиевого провода значения b, полученные из таблицы, умножить на 1,25. Размеры пакетов – ширина пластин а и толщина пакетов b , мм, для магнитных систем без прессующей пластины с прессовкой стержня бандажами из стеклоленты ( n с и n я – число ступеней в сечении стержня и ярма; k кр – коэффициент заполнения круга для стержня) Таблица П.12
Примечания: 1. В магнитной системе с прессующей пластиной исключить последний – седьмой или восьмой – пакет стержня. 2. Крайний наружный пакет ярма имеет ширину а и толщину, равную сумме толщин трех крайних пакетов (5 – 7 или 6 – 8) при отсутствии прессующей пластины, или двух крайних пакетов (5 – 6 или 6 – 7) при её наличии. Номинальные размеры и сечения медного и алюминиевого обмоточного провода марок ПБ и АПБ (размеры а и b в – мм, сечения в – мм2 ) Медный провод ПБ ― все размеры таблицы, за исключением провода размером b 17 и 18 мм Алюминиевый провод АПБ ― все размеры таблицы вправо и вверх от жирной черты Таблица П.13
Примечания: 1. Провод марок ПБ и АПБ выпускается с толщиной изоляции на две стороны 2δ = 0,45 (0,50), 0,55 (0,62), 0,72 (0,82), 0,96 (1,06), 1,20 (1,35), 1,35 (1,50), 1,68 (1,83) и 1,92 (20,7) мм. 2. Вне скобок указана номинальная толщина изоляции. Размеры катушек считать по толщине изоляции, указанной в скобках. 3. Медный провод марки ПБУ выпускается с размерами проволоки по стороне а от 1,8 до 5,6 и по стороне b от 6,7 до 18 мм с изоляцией толщиной 2δ = 1,35 (1,45), 2,00 (2,20), 2,48 (2,63), 2,96 (3,16), 3,60 (3,80), 4,08 (4,28) и 4,40 (4,65) мм. Значения k Д для трехфазных трансформаторов Таблица П.14
Примечание. Для однофазных трансформаторов определять k Д по мощности 1,5S . Номинальные размеры и сечения прямоугольного медного обмоточного провода марок ПСД и ПСДК (предпочтительные размеры) (размеры a и b – в мм, сечение – в мм2 ) Таблица П.15
Примечание. Номинальная удвоенная толщина изоляции 2δ = 0,27÷0,48 мм. В расчете принимать для проводов с размером b ≤ 5,60 мм, 2δ = 0,45 мм; для проводов с размером b ≥ 6,30 мм – 2δ = 0,50 мм. Ориентировочное увеличение в процентах массы медного провода марки ПБ за счет изоляции Таблица П.16
Примечание . Для промежуточных значений диаметра провода и толщины изоляции можно пользоваться линейной интерполяцией. Номинальные размеры сечения и изоляции круглого медного и алюминиевого обмоточного провода марок ПБ и АПБ с толщиной изоляции на две стороны 2δ = 0,30 (0,40) мм Таблица П.17
Примечания: 1. Провод марок ПБ и АПБ всех диаметров выпускается с изоляцией на две стороны толщиной 2δ = 0,30 (0,40); 0,72 (0,82); 0,96 (1,06) и 1,20 (1,35) мм; провод диаметром от 2,24 мм и выше – также с изоляцией 1,68 (1,83) и 1,92 (2,07), а провод диаметром от 3,75 мм и выше – также с изоляцией 2,88 (3,08); 4,08 (4,33) и 5,76 (6,11) мм. 2. Без скобок указана номинальная толщина изоляции. Размеры катушек считать по толщине изоляции, указанной в скобках. 3. Увеличение массы провода за счет изоляции дано для медного провода. Для алюминиевого провода марки АПБ данные таблицы по увеличению массы умножить на 3,3. 4. Увеличение массы провода марок ПБ и АПБ с усиленной изоляцией принимают по табл. 5.4 с учетом прим. 3 к табл. 5.1. 5. Провод марок ПСД и ПСДК выпускается в пределах диаметров от 1,18 до 5,0 мм и провод марок АПСД и АПСДК – от 1,32 до 5,0. 6. Толщина изоляции провода марок ПСД, ПСДК, АПСД и АПСДК при диаметрах до 2,12 мм 2δ = 0,29 мм (в расчете принимать 0,30 мм), при диаметрах от 2,24 до 5,0 мм 2δ = 0,35÷0,38 мм (в расчете принимать 0,40 мм). 7. Для провода марок ПСД и ПСДК данные таблицы по увеличению массы умножить на 1,75 для диаметров от 1,18 до 2,12 мм и на 2,1 для диаметров от 2,24 мм и выше. Для алюминиевого провода марок АПСД и АПСДК учитывать прим. 3. Ориентировочное увеличение массы прямоугольного медного провода в процентах за счет изоляции для марки ПБ при нормальной толщине изоляции на две стороны Таблица П.18
Примечания: 1. При другой толщине изоляции данные из таблицы умножить при 2δ = 0,96 мм на 2,5; при 2δ = 1,35 мм на 3,5; при 2δ = 1,92 мм на 5,0. 2. Для провода марок ПСД и ПСДК данные из таблицы умножать при 2δ = 0,45 мм на 1,7; при 2δ = 0,50 мм 2,0. Значение коэффициента k б для расчета потерь в баке Таблица П.19
Значения k max при различных значениях u р /u а Таблица П.20
Площади сечения стержня П ф,с и ярма П ф,я и объем угла V y плоской шихтованной магнитной системы без прессующей пластины и с прессующей пластиной с размерами пакетов по табл. 11 Таблица П.21
Удельные потери в стали р и в зоне шихтованного стыка рз для холоднокатаной стали марок 3404 и 3405 по ГОСТ 21427-83 и для стали иностранного производства марок М6Х и М4Х толщиной 0,35, 0,30 и 0,28 мм при различных индукциях и f = 50 Гц Таблица П.22
Значения коэффициента k п.у для различного числа углов с косыми и прямыми стыками пластин плоской шихтованной магнитной системы для стали различных марок при В = 0,91,7 Тл и f = 50 Гц Таблица П.23
* Комбинированный стык по рис. 2.17, в [1]. Полная удельная намагничивающая мощность в стали q и в зоне шихтованного стыка q з для холоднокатаной стали марок 3404 и 3405 толщиной 0,35 и 0,30 мм при различных индукциях и f = 50 Г Таблица П.24
Продолжение таблицы П.24
Значения коэффициента k т.у для различного числа углов с косыми и прямыми стыками пластин плоской шихтованной магнитной системы для стали марок 3404 и 3405 толщиной 0,35 и 0,3 мм при f = 50 Гц Таблица П.25
Удельные теплопроводности λ изоляционных и других материалов Таблица П.26
Значения коэффициента k з Таблица П.27
Типы баков силовых масляных трансформаторов Таблица П.28
Минимально допустимые расстояния от отводов до заземленных частей бака (рис. 12 и 13) Таблица П.29
Данные круглых и овальных труб, применяемых в масляных силовых трансформаторах Таблица П.30
Минимальное расстояние оси трубы от дна и крышки бака для масляных силовых трансформаторов. Трубы круглого сечения Ø 51 мм Таблица П. 31
Примечание. Для труб овального сечения 72×20 мм при тех же размерах а значения с min и emin , найденные из таблицы, увеличивать на 10 мм. |