Реферат: Нанотехнологии в современном мире
Название: Нанотехнологии в современном мире Раздел: Промышленность, производство Тип: реферат | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Содержание Введение 3 1. Возникновение и развитие нанонауки 4 2. Природные нанообъекты и наноэффекты 6 3. Фундаментальные положения 9 3.1 Сканирующая зондовая микроскопия - 3.2 Сканирующая туннельная микроскопия - 4. Наноматериалы 11 4.1 Фуллерены - 4.2 Фуллериты - 4.3 Углеродные нанотрубки - 4.4 Сверхпрочные материалы 12 4.5 Высокопроводящие материалы - 4.6 Нанокластеры - 4.7 Графен 13 5. Прикладная нанотехнология 14 5.1 Инкрементная нанотехнология - 5.2 Эволюционная нанотехнология 17 5.3 Радикальная нанотехнология - 6. Перспективы развития нанонауки 18 7. Критика нанотехнологий 19 Заключение 20 Список литературы 21 Введение Согласно Энциклопедическому словарю, технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции. Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения. Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами. Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений. Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях. Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью. Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов. Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем. Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами. Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа. Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма. Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения. Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции. 1. Возникновение и развитие нанонауки Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам. Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап — полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Вот как Р. Фейнман описал предполагаемый им манипулятор: «Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой — от хирургических операций до транспортирования и переработки радиоактивных материалов. Я надеюсь, что принцип предлагаемой программы, а также связанные с ней неожиданные проблемы и блестящие возможности понятны. Более того, можно задуматься о возможности дальнейшего существенного уменьшения масштабов, что, естественно, потребует дальнейших конструкционных изменений и модификаций (кстати, на определенном этапе, возможно, придется отказаться от «рук» привычной формы), но позволит изготовить новые, значительно более совершенные устройства описанного типа. Ничто не мешает продолжить этот процесс и создать сколько угодно крошечных станков, поскольку не имеется ограничений, связанных с размещением станков или их материалоемкостью. Их объем будет всегда намного меньше объема прототипа. Легко рассчитать, что общий объем 1 млн уменьшенных в 4000 раз станков (а следовательно, и масса используемых для изготовления материалов) будет составлять менее 2 % от объема и массы обычного станка нормальных размеров. Понятно, что это сразу снимает и проблему стоимости материалов. В принципе, можно было бы организовать миллионы одинаковых миниатюрных заводиков, на которых крошечные станки непрерывно сверлили бы отверстия, штамповали детали и т. п. По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Все, с чем приходится встречаться в жизни, зависит от масштабных факторов. Кроме того, существует еще и проблема «слипания» материалов под действием сил межмолекулярного взаимодействия (так называемые силы Ван-дер-Ваальса), которая может приводить к эффектам, необычным для макроскопических масштабов. Например, гайка не будет отделяться от болта после откручивания, а в некоторых случаях будет плотно «приклеиваться» к поверхности и т. д. Существует несколько физических проблем такого типа, о которых следует помнить при проектировании и создании микроскопических механизмов». В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»). Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул». Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии». Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров. 2. Природные нанообъекты и наноэффекты Как великий художник природа умеет и с небольшими средствами достигать великих эффектов. Окружающий нас мир наполнен разнообразными биологическими нанообъектами и наноэффектами, о нанометрической сущности которых мы порой даже и не задумываемся. Например, если размеры бактерий исчисляются микрометрами, то большинство вирусов имеют размеры от 10 до 200 нм. Так, вирус гриппа H2 N2, вызвавший в 1957 году эпидемию, в результате которой умерли от 1 до 4 млн человек, представляет собой сферу диаметром от 80 до 120 нм. Вирусы — это уникальное природное произведение нанобиотехнологий. Сердцевина вируса содержит одну отрицательную цепь рибонуклеопротеинов (РНП), состоящую из восьми частей, которые кодируют десять вирусных белков. Фрагменты РНП имеют общую белковую оболочку, объединяющую их и образующую нуклеопротеид. На поверхности вируса находятся выступы (гликопротеины) — гемагглютинин (названный так из-за способности агглютинировать эритроциты) и нейраминидаза (фермент). Гемагглютинин обеспечивает способность вируса присоединяться к клетке. Размеры аминокислот составляют около 1 нм, а сами белки занимают размерную нишу в диапазоне 4—50 нм.
Таблица 1. Размеры некоторых биологических объктов Существуют предположения, что на базе вирусной частицы можно создать подвижную металлизированную частицу, которая будет электрическим проводником. Для подобных экспериментов наиболее подходит вирус табачной мозаики (длина 120 нм), содержащийся в соке пораженных им растений. При этом листья больных растений покрываются специфическими табачными пятнами. По мнению академика Иосифа Григорьевича Атабекова, озвученному в еженедельной газете научного сообщества «Поиск» от 23 мая 2008 года, этот вирус можно использовать как средство доставки внутрь клетки нового гена, несущего на себе специальную вакцину. Им предлагается осуществлять сборку вирусоподобных частиц из химерных субъединиц вирусного белка, а затем применять в лечебных целях в качестве наноконтейне-ров для доставки лекарственных средств к пораженным клеткам организма. Дезоксирибонуклеиновая кислота (ДНК) имеет структуру двойной упакованной наноцепи, в которой две нуклеотидные наноцепи закручены одна вокруг другой с периодом 3,4 нм и диаметром 2 нм. Важным достижением в области эволюционных нанотехнологий являются работы ученых из университета Брауна и Бостонского колледжа с молекулами ДНК. По сообщению, они сумели использовать возможности кодирования информации, которыми обладает молекула ДНК, для производства проводящих микроволокон из окиси цинка. Задача современной науки — заметить, правильно оценить и успешно применить на практике уникальные явления природы, основанные на нанотехнологиях (да и не только), которые природа смогла создать за миллиарды лет эволюции. Об одном таком открытии, нашедшем в последующем широкое применение в строительстве и технике, мы расскажем подробнее. В середине 70-х годов XX века ученые-ботаники Боннского университета (ФРГ) В. Бартлотт и К. Найнуис обнаружили, что листья и цветки некоторых растений почти не загрязняются, а также убедились, что этот феномен протекает в их наноструктурированных поверхностных областях. Впоследствии данное явление было запатентовано ими и названо в честь наиболее яркого представителя таких растений «лотос-эффект». Издревле цветок лотоса считается в буддизме символом незапятнанной чистоты: как известно, листья и нежно-розовые цветки лотоса распускаются в грязной тине водоемов безупречно чистыми. После детального исследования этого феномена самоочистки открылись удивительные возможности природы защищаться не только от грязи, но и от различных микроорганизмов. Данный эффект наблюдается и у других растений (листья капусты, камыша, водосбора, тюльпана), а также у животных (крылья стрекоз и бабочек). Они наделены природным свойством защиты от различных загрязнений, в большей степени неорганического (пыль, сажа), а также биологического (споры грибков, микробов, водоросли и т.д.) происхождения. С помощью электронных микроскопов учеными было обнаружено, что поверхности листьев, цветков и побегов покрыты тонкой внеклеточной мембраной — поверхностным слоем (эпидермисом, кожицей). Эпидермис некоторых растений выделяет воскоподобное вещество кутин, представляющее собой смесь высших жирных кислот и их эфиров. Жиры и жироподобные вещества, входящие в состав липидов (природных органических соединений), — одни из основных компонентов биологических мембран. Липиды участвуют в обмене между растениями и окружающей средой. Лотос-эффект основан исключительно на физико-химических явлениях и свойствах растений и не привязан только к живой системе, то самоочищающиеся поверхности можно технически воспроизвести для всевозможных материалов. Именно поэтому в последнее время проводятся интенсивные исследования по разработке и производству устойчивых к загрязнению и самоочищающихся поверхностей и покрытий. Следует сказать, что не стоит так просто относить к нанотехнологиям все, что имеет наноскопические (а тем более, микроскопические) размеры, — ведь тогда зубной порошок, муку, крахмал и многие другие материалы тоже следует называть нанотехнологиями. Трубочист только и имеет дело с нанообъектом, то есть сажей, где к тому же может быть полно фуллеренов, но это же не значит, что он специалист по нанотехнологиям. 3. Фундаментальные положения
Одним из методов, используемых для изучения нанообъектов, является сканирующая зондовая микроскопия. В рамках сканирующей зондовой микроскопии реализованы как не оптические, так и оптические методики. Исследований свойств поверхности с помощью сканирующего зондового микроскопа (СЗМ) проводят на воздухе при атмосферном давлении, вакууме и даже в жидкости. Различные СЗМ методики позволяют изучать как проводящие, так и не проводящие объекты. Кроме того, СЗМ поддерживает совмещение с другими методами исследования, например с классической оптической микроскопией и спектральными методами. С помощью сканирующего зондового микроскопа (СЗМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре компании IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля, сотрудники смогли выложить три буквы логотипа компании, используя 35 атомов ксенона. При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума (10−11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов. 3.2 Сканирующая туннельная микроскопия Новые микроскопы позволили наблюдать атомно-молекулярную структуру поверхности монокристаллов в нанометровом диапазоне размеров. Наилучшее пространственное разрешение приборов составляет сотую долю нанометра по нормали к поверхности. Действие сканирующего туннельного микроскопа основано на туннелировании электронов через вакуумный барьер. Высокая разрешающая способность обусловлена тем, что туннельный ток изменяется на три порядка при изменении ширины барьера на размеры атома. Теория квантового эффекта туннелирования заложена Г.А. Гамовым в 1928 г. в работах по a-распаду. С помощью различных сканирующих микроскопов в настоящее время наблюдают за атомной структурой поверхностей монокристаллов металлов, полупроводников, высокотемпературных сверхпроводников, органических молекул, биологических объектов. На рисунке показана реконструированная поверхность нижней террасы грани монокристалла кремния. Серые кружки являются образами атомов кремния. Темные области являются локальными нанометровыми дефектами. На рисунке приведена атомная структура чистой поверхности грани серебра (левая рамка) и той же поверхности, покрытой атомами кислорода (правая рамка). Оказалось, что кислород адсорбируется не хаотично, а образует достаточно длинные цепочки вдоль определенного кристаллографического направления. Наличие сдвоенных и одинарных цепочек свидетельствует о двух формах кислорода.
Эти формы играют важную роль в селективном окислении углеводородов, например этилена. На следующем рисунке можно видеть наноструктуру высокотемпературного сверхпроводника Bi2Sr2CaCu2O2. В левой рамке рис. 4 отчетливо видны кольца молекул бензола (С6Н6). В правой рамке показаны СН2 - цепочки полиэтилена. Новые микроскопы полезны не только при изучении атомно-молекулярной структуры вещества. Они оказались пригодными для конструирования наноструктур. С помощью определенных движений острием микроскопа удается создавать атомные структуры. На последнем рисунке представлены этапы создания надписи "IBM" из отдельных атомов ксенона на грани монокристалла никеля. Движения острия при создании наноструктур из отдельных атомов напоминают приемы хоккеиста при продвижении шайбы клюшкой. Представляет интерес создание компьютерных алгоритмов, устанавливающих нетривиальную связь между движениями острия и перемещениями манипулируемых атомов на основе соответствующих математических моделей. Модели и алгоритмы необходимы для разработки автоматических "сборщиков" наноконструкций. а - С6Н6; б - СН2-СН2 Xe/Ni 4. Наноматериалы 4.1 Фуллерены
Фуллерены, как новая форма существования углерода в природе наряду с давно известными алмазом и графитом, были открыты в 1985 г. при попытках астрофизиков объяснить спектры межзвездной пыли. Оказалось, что атомы углерода могут образовать высокосимметричную молекулу С60. Такая молекула состоит из 60 атомов углерода, расположенных на сфере с диаметром приблизительно в один нанометр и напоминает футбольный мяч. В соответствии с теоремой Л. Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников. Молекула названа в честь архитектора Р. Фуллера, построившего дом из пятиугольников и шестиугольников. Первоначально С60 получали в небольших количествах, а затем, в 1990г., была открыта технология их крупномасштабного производства. 4.2 Фуллериты
Фуллериты. Молекулы С60 , в свою очередь, могут образовать кристалл фуллерит с гранецентрированной кубической решеткой и достаточно слабыми межмолекулярными связями. В этом кристалле имеются октаэдрические и тетраэдри-ческие полости, в которых могут находиться посторонние атомы. Если октаэдрические полости заполнены ионами щелочных металлов (К (калий), Rb (рубидий), Cs (цезий)), то при температурах ниже комнатной структура этих веществ перестраивается и образуется новый полимерный материал ¦1С60. Если заполнить также и тетраэдрические полости, то образуется сверхпроводящий материал ¦зС60 с критической температурой 20-40 К. Изучение сверхпроводящих фуллери-тов проводится, в частности, в Институте им. Макса Планка в Штутгарте. Существуют фуллериты и с другими присадками, дающими материалу уникальные свойства. Например, С60-этилен имеет ферромагнитные свойства. Высокая активность в новой области химии привела к тому, что уже к 1997 г. насчитывалось более 9000 фуллереновых соединений. 4.3 Углеродные нанотрубки Углеродные нанотрубки. Из углерода можно получить молекулы с гигантским числом атомов. Такая молекула, например С=1000000, может представлять собой однослойную трубку с диаметром около нанометра и длиной в несколько десятков микрон. На поверхности трубки атомы углерода расположены в вершинах правильных шестиугольников. Концы трубки закрыты с помощью шести правильных пятиугольников. Следует отметить роль числа сторон правильных многоугольников в формировании двухмерных поверхностей, состоящих из атомов углерода, в трёхмерном пространстве. Нехиральные нанотрубки: а - С(n', n) - метал; б-С(n, 0):mod (n, 3) = 0 - полуметалл mod (n, 3)!= 0 - полупроводник. Изогнутая трубка Правильные шестиугольники являются ячейкой в плоском графитовом листе, который можно свернуть в трубки различной хиральности. Правильные пятиугольники (семиугольники) являются локальными дефектами в графитовом листе, позволяющими получить его положительную (отрицательную) кривизну. Таким образом, комбинации правильных пяти-, шести- и семиугольников позволяют получать разнообразные формы углеродных поверхностей в трехмерном пространстве. Геометрия этих наноконструкций определяет их уникальные физические и химические свойства и, следовательно, возможность существования принципиально новых материалов и технологий их производства. Предсказание физико-химических свойств новых углеродных материалов осуществляется как с помощью квантовых моделей, так и расчетов в рамках молекулярной динамики. Наряду с однослойными трубками имеется возможность создавать и многослойные трубки. Для производства нанотрубок используются специальные катализаторы. 4.4 Сверхпрочные материалы Сверхпрочные материалы. Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки на два порядка прочнее стали и приблизительно в четыре раза легче ее! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра. 4.5 Высокопроводящие материалы
Высокопроводящие материалы. Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели. Дело за технологией, позволяющей производить трубки достаточной длины и в достаточном количестве. 4.6 Нанокластеры К множеству нанообъектов относятся сверхмалые частицы, состоящие из десятков, сотен или тысяч атомов. Свойства кластеров кардинально отличаются от свойств макроскопических объемов материалов того же состава. Из нанокластеров, как из крупных строительных блоков, можно целенаправленно конструировать новые материалы с заранее заданными свойствами и использовать их в каталитических реакциях, для разделения газовых смесей и хранения газов. Одним из примеров является Zn4O(BDC)3(DMF)8(C6H5Cl)4. Большой интерес представляют магнитные кластеры, состоящие из атомов переходных металлов, лантиноидов, актиноидов. Эти кластеры обладают собственным магнитным моментом, что позволяет управлять их свойствами с помощью внешнего магнитного поля. Примером является высокоспиновая металлоорганическая молекула Mn12O12(CH3COO)16(H2O)4. Эта изящная конструкция состоит из четырех ионов Мn4+ со спином 3/2, расположенных в вершинах тетраэдра, восьми ионов Мn3+ со спином 2, окружающих этот тетраэдр. Взаимодействие между ионами марганца осуществляется ионами кислорода. Антиферромагнитные взаимодействия спинов ионов Мn4+ и Мn3+ приводят к полному достаточно большому спину, равному 10. Ацетатные группы и молекулы воды отделяют кластеры Мn12 друг от друга в молекулярном кристалле. Взаимодействие кластеров в кристалле чрезвычайно мало. Наномагниты представляют интерес при проектировании процессоров для квантовых компьютеров. Кроме того, при исследовании этой квантовой системы обнаружены явления бистабильности и гистерезиса. Если учесть, что расстояние между молекулами составляет около 10 нанометров, то плотность памяти в такой системе может быть порядка 10 гигабайт на квадратный сантиметр. 4.7 Графен
Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать, как детектор молекул (NO2), позволяющий детектировать приход и уход единичных молекул. Графен обладает высокой подвижностью при комнатной температуре, благодаря чему как только решат проблему формирования запрещённой зоны в этом полуметалле, обсуждают графен как перспективный материал, который заменит кремний в интегральных микросхемах. 5. Прикладная нанотехнология Как ни парадоксально это звучит, но человечество с давних времен использовало наноматериалы. Именно наличием наночастиц теперь можно объяснить самые невероятные свойства материалов, изготавливаемых несколько веков назад и порой недоступных даже современной науке. Так, например, прекрасный рубиновый цвет стекла получали введением наночастиц золота в стеклянную матрицу. Декоративная глазурь с глянцем, характерная для средневековой гончарной посуды, содержала сферические металлические наночастицы, придающие ей специфические оптические свойства. В настоящее время наиболее значимые достижения практической, или прикладной, нанотехнологии (рассматривает задачи и способы практического применения нанотехнологии для нужд человечества) находятся в сферах изготовления различных наноматериалов, электроники и медицины. 5.1 Инкрементная нанотехнология
Инкрементная нанотехнология подразумевает промышленное применение наноструктур, а также специфических эффектов и феноменов, характерных для области перехода между атомным и мезоуровнями, в целях значительного усовершенствования существующих классических материалов. Наибольшее развитие инкрементные нанотехнологии получили в области создания композиционных конструкционных материалов с различными свойствами, защитных самоочищающихся покрытий, препаратов автохимии и некоторых других веществ. В Институте прикладной нанотехнологии (г. Зеленоград) разработана технология модифицирования наноча-стиц монтмориллонита (бентонита) в натриевой форме в Ag-форму. В межслоевое пространство бентонита вводится серебро в ионной форме. При контакте с продуктами жизнедеятельности человека, содержащими натрий, калий и пр., происходит ионный обмен ионов указанных элементов на ионы серебра, которые длительное время сохраняют бактерицидное действие. Такими наночастицами обрабатывают поверхности силикона, ПВХ и ткани, используемые в производстве экзопротезов. На Международной выставке по изобретениям в Женеве в апреле 2006 года данная разработка удостоена Золотой медали. На основе этой технологии были созданы составы для нанесения бактерицидных покрытий на элементы интерьера автомобиля (детали из пластика, тканей, стекол, ковриков и т.д.). В 2006 году на Сеульском салоне изобретений SIIFразработка была удостоена диплома Всемирной организации интеллектуальной собственности. Продолжаются испытания по использованию наноча-стиц монтмориллонита с серебром в ионной форме в различных красках и лаках как на водной, так и масляной основе. Предварительные результаты очень обнадеживают, так как при продолжительном испытании окрашенных элементов не обнаруживается рост микробных колоний. Это дает возможность создавать стерильные помещения на орбитальных станциях, в больницах, школах, местах массового скопления людей, на птицефабриках и т.п. Обрастание днищ судов — острая проблема экологической и экономической значимости. Так, например, для судна с «грязным» корпусом требуется на 40% больше топлива, чтобы двигаться с той же скоростью, что и судна с чистым корпусом, а это значительно увеличивает выбросы СО2 и других парниковых газов. Существующие способы предотвращения биологического обрастания судов основаны на использовании биоцидов, убивающих биологические организмы. К ним относятся медь, мышьяк и токсичные органические соединения. Однако биоциды могут создавать проблемы для теплообменников опреснения воды, электростанций и океанографических датчиков. На основе разработанной технологии получения бактерицидного состава в Институте прикладной нанотехнологии ведутся работы по созданию корабельных красок против обрастания биомассой днищ судов. Покрытия на основе этих красок проявляют бактерицидную активность, не позволяющую колониям микроорганизмов развиваться на такой поверхности. Развернуты исследования, направленные на предотвращение обрастания судовых корпусов, в рамках проекта ЕС АМВЮ. Ученые из корпорации BASF сотрудничают в этом проекте с 30 деловыми и научными партнерами из 14 стран. Старт пятилетнего проекта начался в марте 2005 года. Проект включает в себя общий объем бюджета в размере 17,9 млн евро, из которых 11,9 млн будут предоставлены Европейским союзом. Цель проекта АМВЮ — использование наноструктур, значительно уменьшающих сцепление микроорганизмов, водорослей, моллюсков с поверхностью днищ судов в морской воде без использования биоцидов. Бытовое применение нанотехнологии началось с разработки Cerax Nanowax немецкой компании Nanogate Technologies GmbH — продукта на основе химической нанотехнологии, создающего «умную» поверхность с многофункциональными свойствами. Это ультратонкое покрытие работает намного дольше, чем традиционные средства, которые, как правило, очень быстро исчезают. Например, содержащийся в нем воск способствует хорошему скольжению поверхности лыжи. «Умный» Cerax Nanowax застывает при низкой температуре, сливается с поверхностью лыжи и скользит по кристалликам снега. В зависимости от вида зимнего спорта, погодных условий и уровней профессиональной подготовки спортсмена выпускаются различные модификации данного продукта. В последнее время наночастицы достаточно часто входят в различные ремонтно-эксплуатационные составы автохимии в качестве добавок к топливу и смазочным материалам. Нанотехнологии также широко применяются для нанесения износостойких композиционных наночастиц на рабочие поверхности при изготовлении специального металлообрабатывающего и стоматологического инструмента, защитных антикоррозионных и бактерицидных покрытий и в ряде других случаев. Например, сотрудники физического факультета МГУ им. М. В. Ломоносова совместно с университетским филиалом «Угреша» и в сотрудничестве с рядом зарубежных фирм выполняют научно-исследовательские и производственные работы по созданию и нанесению наночастиц различных металлов на любую, включая мелкодисперсную (типа песка), подложку. Применяемая для этих целей плазменная технология совмещает процессы образования наночастиц и их напыления на поверхность и в несколько раз сокращает продолжительность процесса нанесения, а также уменьшает стоимость конечного продукта по сравнению с традиционными методами. Кроме того, характерные размеры наночастиц имеют достаточно малый разброс (не более ±30%) относительно среднего значения (в интервале от 20 до 50 нм), которое определяется технологическими параметрами работы установки. В мире постоянно растет интерес к полимерным наноча-стицам и нанокомпозитам. Ежегодно проводятся международные выставки, симпозиумы, конгрессы и конференции, посвященные вопросам наноструктурных полимерных материалов. Так, если в 2001 году в Чикаго (США) и Монреале (Канада) состоялись две первые международные конференции по полимерным нанокомпозитам, а в 2002 году различным аспектам этой проблемы было посвящено более 10 форумов, то уже в 2003 году мировая научная общественность провела более 20 международных встреч по данной тематике. В США, Японии, Франции, Канаде и Индии разрабатываются специальные программы по наночастицам и нанокомпозитам различного назначения на основе полимеров. Многие программы ориентированы на разработку полимерных материалов со специфическими свойствами для нужд медицины, военных целей, транспорта и т.д. В нанотехнологических устройствах будущего, разумеется, могут быть использованы самые разнообразные явления — магнитное и электростатическое взаимодействие, перенос электронов, электромагнитной энергии (фотонов) или различных квазичастиц. В соответствии с подходом К. Э. Дрекслера рассматриваются молекулярные и даже биомолекулярные нанотехнологии, однако они сводятся в основном к чисто механическим сборочным конструкциям. Несомненно, использование многих других явлений и качеств, присущих наночастицам, в том числе квантовомеха-нических свойств, должно значительно расширить эти возможности. Например, в настоящее время научно-технической общественностью обсуждаются вопросы применения фуллеренов для создания фотоприемников и оптоэлектрон-ных устройств, катализаторов роста алмазных и алмазопо-добных пленок, сверхпроводящих материалов, а также синтеза металлов и сплавов с новыми свойствами. Углеродные фулдерены уже применяются в качестве тонеров (красителей) для копировальных машин, позволяя существенно повысить качество получаемых копий, снизить расход красителя и общую себестоимость выполнения копировальных работ. Планируется также использовать фуллерены в качестве основы для производства электрических аккумуляторных батарей. Такие элементы питания с принципом действия на основе реакции присоединения водорода во многих отношениях аналогичны широко распространенным никелевым батареям, но обладают, в отличие от них, способностью аккумулировать примерно в пять раз больше водорода. В то же время подобные батареи характеризуются более высокой энергоемкостью, небольшой массой, а также экологической и санитарной безопасностью по сравнению с наиболее современными в этом отношении аккумуляторами на основе лития, не говоря уже о кадмии. Эти аккумуляторы могут найти широкое применение в элементах питания переносных радиостанций, сотовых телефонов, персональных компьютеров (особенно ноутбуков), слуховых аппаратов и многих других портативных устройств. Создание одежды из материалов на основе нановоло-кон — также одна из областей, где нанотехнология уже находит практическое применение. Такая одежда не пропускает ультрафиолетовые лучи, обладает антибактериальными и антигрибковыми свойствами, практически не промокает под дождем и почти не пачкается.
В таблице представлены некоторые наиболее известные зарубежные фирмы – производители наноструктур и товаров на их основе. 5.2 Эволюционная нанотехнология
Эволюционная нанотехнология связана с наномеханиз-Мами, работы над которыми находятся на начальном этапе. По идее К. Э. Дрекслера, из фуллеренов, нанотрубок, наноконусов и других аналогичных структур могут быть собраны молекулы в форме разнообразных нанодеталей — зубчатых колес, штоков, деталей подшипников и других узлов, роторов молекулярных турбин, подвижных узлов манипуляторов и т.д. Сборка готовых деталей в работоспособную механическую конструкцию может осуществляться с использованием СЗМ или ассемблеров (самосборщиков) с прикрепленными к деталям биологическими макромолекулами, способными избирательно соединяться друг с другом. Изделия, созданные на основе оптимальной сборки атомов и молекул, будут иметь предельно высокие характеристики. В 2006 году была создана молекулярная механическая «конструкция» — катящийся по золотой поверхности цель-номолекулярный четырехколесный «автомобиль», работающий на поглощении энергии света. Однако у фуллереновых «колес» оказались слишком большие потери на сцепление с поверхностью, и их пришлось заменить карборановыми (борорганическими). Наибольшее внимание это направление исследований получило в электротехнике, ниже оно будет рассмотрено подробнее, поскольку в будущем послужит переходным звеном к радикальным нанотехнологиям. 5.3 Радикальная нанотехнология
Радикальная нанотехнология — нанороботы (предполагаемые конструкции и результаты их использования в настоящее время существуют лишь в фантастических рассказах и кинофильмах). Они способны к перемещению в окружающей среде и снабжены бортовой системой управления. Нанороботы могут быть использованы для решения широкого круга задач, включая диагностику и лечение болезней, в том числе борьбу со старением, для перестройки организма человека «по заказу», изготовления сверхпрочных конструкц вплоть до лифтов «Земля-орбита» и даже «Земля-Луна», терраформирования (изменения) Луны, других планет, их естественных спутников и т.д. 6. Перспективы развития нанонауки Чтоб все знали — и бизнес, — что если он сегодня не пойдет в нанотехнологии... он пропустит все на свете. И будет в лучшем случае в телогрейке работать на скважине... которой будут управлять наши друзья и партнеры. (премьер-министр Российской Федерации, 2007 год) Нанотехнология открывает большие перспективы при разработке новых материалов, совершенствовании связи, развитии биотехнологии, микроэлектроники, энергетики и вооружений. Среди наиболее вероятных научных прорывов эксперты называют увеличение производительности компьютеров, восстановление человеческих органов с использованием вновь воссозданной ткани, получение новых материалов напрямую из заданных атомов и молекул и появление новых открытий в химии и физике, способных оказать революционное воздействие на развитие цивилизации. Согласно прогнозам Министерства торговли Великобритании, в 2015 году спрос на нанотехнологии составит не менее 1 трлн. долларов в год, а численность специалистов, занятых в данной отрасли, вырастет до 2 млн человек. По прогнозам американской ассоциации National Science Foundation, объем рынка товаров и услуг в мире с использованием нанотехнологии в ближайшие 10—15 лет может вырасти до 1 трлн. долларов: - в промышленности материалы с высокими заданными характеристиками, которые не могут быть созданы традиционным способом, займут рынок объемом 340 млрд долларов в ближайшие 10 лет; - в полупроводниковой промышленности объем рынка нанотехнологичной продукции может достигнуть 300 млрд долларов в ближайшие 10—15 лет; - в сфере здравоохранения использование нанотехнологий может позволить увеличить продолжительность жизни, улучшить ее качество и расширить физические возможности человека; - в фармацевтической отрасли около половины всей продукции будет зависеть от нанотехнологий. Объем продукции с использованием нанотехнологий составит более 180 млрд долларов в ближайшие 10—15 лет; - в химической промышленности наноструктурные катализаторы уже применяются при производстве бензина и в других химических процессах, причем рост рынка составляет приблизительно до 100 млрд долларов. По прогнозам экспертов, рынок таких товаров увеличивается на 10% в год; - в транспортной промышленности применение нанотехнологий и наноматериалов позволит создавать более легкие, быстрые, надежные и безопасные автомобили. Только рынок авиакосмических изделий может достичь 70 млрд долларов к 2010 году; - в сельском хозяйстве и в сфере защиты окружающей среды применение нанотехнологий может увеличить урожайность сельскохозяйственных культур, обеспечить более экономичные способы фильтрации воды и ускорить развитие таких возобновляемых энергетических источников, как преобразование солнечной энергии. 7. Критика нанотехнологий
Мода на нанотехнологии спровоцировала ответную негативную реакцию. Однако критики нанотехнологий неоднородны. Одни верят в нанотехнологии, но опасаются, что их развитие может привести к новым техногенным катастрофам (Серая слизь). Другие вообще полагают, что нанотехнологии - это «гениальная операция по выкачиванию денег из федеральных бюджетов многих стран». Приставка «нано-», по мнению первого вице-премьера Сергея Иванова, все чаще используется «ушлыми торговцами» в рекламных целях. О риске использования «популярной» терминологии для получения дополнительных финансовых средств некоторыми компаниями также говорил мининстр образования и науки А. Фурсенко: «Сегодня не всегда можно сформулировать, что такое нанотехнологии. То, что мы можем сформулировать, людей не очень привлекает». По мнению ряда депутатов ГД РФ, одной из причин сегодняшней «популярности» нанотехнологий является желание чиновников создать для себя дополнительную «нанокормушку». Эксперты подчеркивают, что, несмотря на колоссальные инвестиции в сферу нанотехнологий (созданный в 2007 году Роснанотех), говорить об использовании их в промышленных целях пока рано. Главное затруднение состоит в том, что нет приборов, способных конструировать из молекул нанообъекты. Выгравировать надпись на наноуровне можно, а вот сконструировать робота нет. Таким образом, нанотехнологии продолжают оставаться в сфере чистой науки, которая неспособна давать ощутимую прибыль. Основными техническими возражениями являются следующие: Откуда нанороботы будут получать энергию? Где нанороботы будут хранить информацию? Как создать "щупальце" манипулятора меньше диаметра молекулы? Заключение Согласно «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» нанотехнология определяется как совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм — это могут быть макрообъекты, атомарная структура которых контролируемо, создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов. Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты. Нанотехнология и в особенности молекулярная технология — новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям. Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств. Список литературы 1. Марк Ратнер, Даниэль Ратнер Нанотехнология: простое объяснение очередной гениальной идеи = Nanotechnology: A Gentle Introduction to the Next Big Idea. — М.: «Вильямс», 2006. 2. Малинецкий Г. Г. Нанотехнологии. От алхимии к химии и дальше// Интеграл. 2007. 3. К. Жоаким, Л. Плевер. Нанонауки. Невидимая революция. — М.: КоЛибри, 2009. 4. Виктор Балабанов, Нанотехнологии. Наука будущего, Серия: Открытия, которые потрясли мир, Издательство: Эксмо, 2009 г. Твердый переплет, 256 стр. |