Реферат: Мера угла

Название: Мера угла
Раздел: Рефераты по математике
Тип: реферат

Дисциплина: "Высшая математика"

Тема: "Мера угла"

1. Градусная и радианная мера угла

Как было показано ранее, функция задает определенное соотношение между двумя числовыми множествами. Однако в некоторых случаях область определения функции может являться множеством чисел, имеющих размерность. В частности, речь идет о множестве значений некоторого угла. Прежде чем приступить к рассмотрению подобных функций, напомним некоторые факты, связанные с измерением углов.

Определение 1. Углом в называется центральный угол, опирающийся на дугу окружности, имеющей длину, равную ее части.

Исторически сложилось деление градуса на 60 минут, а минуты на 60 секунд, то есть: , . Секунды делятся на десятые, сотые и т.д. части. Градус является наиболее распространенной единицей измерения углов.

Определение 2. Углом в 1 радиан называется центральный угол, опирающийся на дугу окружности, имеющую длину, равную ее радиусу .

Таким образом, для отыскания радианной меры центрального угла достаточно длину дуги (l), на которую он опирается, разделить на длину радиуса (R), то есть .

Из сказанного выше следует, что полной окружности будет соответствовать в градусах угол в 360 раз больший, то есть . В радианах это будет радиан. Необходимо также отметить, что величина угла в градусной и радианной мере никак не связана с радиусом окружности. Следовательно, в дальнейшем можно рассматривать окружность любого радиуса, проще всего - единичного.

Формулы перехода от градусной меры дуг и углов к радианной и наоборот имеют вид:

, .

Отсюда следует, что

1 рад = , а рад0,01745 рад.

Рассмотрим теперь координатную плоскость с началом координат в точке О. Проведем окружность единичного радиуса с центром в точке О и отметим точки ее пересечения с осями координат.

Рассмотрим произвольную точку M на окружности и вектор , который называется радиус-вектором точки M.

Будем рассматривать центральные углы AOM, образованные векторами и при перемещении точки M по окружности.

Y


D

C

B

A

O

X

M

Если точка M совпадает с точкой A, то полагают равным нулю. Будем считать положительным, если вращение вектора от начального положения происходит в направлении противоположном движению часовой стрелки. В противном случае будем считать отрицательным.

Так как полный оборот вектора приводит его в то же положение, однозначно определить величину угла, если это не оговорено, нельзя. Иначе говоря, в общем случае

Или

.

2. Элементарные тригонометрические функции произвольного угла

Введем определение основных тригонометрических функций угла. Для этого изобразим вначале единичную окружность.

Y


R

y

x

M

O

X

Определение 1. Синусом угла называется отношение ординаты конца подвижного радиус-вектора , который образует угол с осью абсцисс, к длине этого радиус-вектора и обозначается .

Определение 2. Косинусом угла называется отношение абсциссы конца подвижного радиус-вектора , который образует угол с осью абсцисс, к длине этого радиус-вектора и обозначается .

Определение 3. Тангенсом угла называется отношение ординаты конца подвижного радиус-вектора , который образует угол с осью абсцисс, к абсциссе конца этого радиус-вектора и обозначается .

Определение 4. Котангенсом угла называется отношение абсциссы конца подвижного радиус-вектора , который образует угол с осью абсцисс, к ординате конца этого радиус-вектора и обозначается .

Из приведенных определений следует, что

, , ,

причем у единичной окружности

, .

Введение произвольных по знаку и абсолютной величине углов позволяет каждому действительному числу поставить в соответствие угол в радиан и, наоборот, каждому углу - однозначно определяемое действительное число, равное числу радиан. Такое взаимнооднозначное соответствие позволяет определить тригонометрические функции числового аргумента.

Определение 5. Тригонометрическая функция числа это та же тригонометрическая функция угла величиной в радиан .

Рассмотрим графики основных элементарных тригонометрических функций.

Y

.

1

X

O

-1

Здесь

; ;

период ; ; корни , где .

2. .

1

X

O

Y

-1

Здесь

; ;

период ; ; корни , где .

3. .

Здесь

,

где ; ; период ; ; корни , где .

4. .


Здесь

,

где ; ; период ; ; корни , где .

Y

5. .

O

X

-1

1

Здесь

; ; ; корень .

Y

6. .

X

O

1

-1

Здесь

; ; ; корень .

7. .



O

X

Здесь

; ; ; корень .

8. .

Y


X

O

Здесь

; ; ; корней нет.

Литература

1. Ефимов Н.В. Высшая геометрия. Изд-во: ФИЗМАТЛИТ®, 2003. - 584c.

2. Клейн Ф., Феликс Христиан Клейн Высшая геометрия: Пер. с нем. Изд.3. Изд-во: ЛИБРОКОМ, 2009. - 400c.

3. Крищенко Александр, Канатников Анатолий Аналитическая геометрия: Учебное пособие для студентов высших учебных заведений. Издательство "Академия/Academia", 2009. - 2008c.

4. Фролов С. Начертательная геометрия Учебник.3-е изд., перераб. и доп. Изд-во: ИНФРА-М, ИЗДАТЕЛЬСКИЙ ДОМ, 2007. - 286c.