Курсовая работа: Испытание электрооборудования
Название: Испытание электрооборудования Раздел: Рефераты по физике Тип: курсовая работа | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Факультет менеджмента
Кафедра Стандартизации, сертификации и управления качеством
Испытание электрооборудования (курсовая работа по дисциплине: «Методы и средства измерений, испытания и контроль»)
Оглавление Введение 1. Испытания электрооборудования 1.1. Основные понятия 1.2. Общие методические указания по испытаниям электрооборудования 2. Нормы испытаний электрооборудования на примере электродвигателей переменного тока 2.1.Испытания электродвигателей переменного тока 3. Метрологическое обеспечение Заключение Список использованной литературы Введение
Электрооборудование - это совокупность электротехнических устройств, предназначенных для выполнения определенных функций. Оно может обеспечивать безопасную и надежную работу, если конструкционное исполнение соответствует условию окружающей среды и режимам работы. Электрооборудование с нормальной изоляцией - электрооборудование, предназначенное для применения в электроустановках, подверженных действию атмосферных перенапряжений, при обычных мерах по грозозащите. Электрооборудование с облегченной изоляцией - электрооборудование, предназначенное для применения лишь в электроустановках, не подверженных действию атмосферных перенапряжений, или при специальных мерах по грозозащите, ограничивающих амплитуду атмосферных перенапряжений до значений, не превышающих амплитуду одноминутного испытательного напряжения частоты 50 Гц. Современный электромотор[1] состоит из двух частей – ротора, связанного с механизмом, который приводится в движение, и статора, на котором расположена обмотка возбуждения. Все электродвигатели можно разделить на две группы: постоянного и переменного тока . Электромоторы первой группы позволяют плавно регулировать частоту вращения в широком диапазоне, поэтому они незаменимы для привода транспортных и подъемных средств в крановых, экскаваторных двигателях. Электромоторы переменного тока отличаются простотой устройства, доступной ценой и неприхотливостью в эксплуатации. Основной недостаток таких электродвигателей – невозможность плавно регулировать частоту вращения. В зависимости от отношения к частоте электрической сети различают синхронные (постоянное) и асинхронные (непостоянное) электродвигатели переменного тока. Синхронные электродвигатели используются в таких установках, как воздуховоды, гидравлические насосы и т.д. Асинхронные электродвигатели могут применяться как в бытовой технике (асинхронные двигатели малой мощности), так и в производстве (грузовые лебедки, крановые установки общепромышленного значения и т.д.). По степени защиты различают брызгозащитное исполнение (защита от попадания капель под углом 600) и закрытое (защита от попадания твердых тел диаметром до 1 мм и брызг воды под любым углом). Испытания[2] – это разновидность контроля. В систему испытаний входят следующие основные элементы: а) объект испытаний – изделие, подвергаемое испытаниям. Главным признаком объекта испытаний является то, что по результатам испытаний принимается решение именно по этому объекту: о его годности или браковке, о возможности предъявления на последующие испытания, о возможности серийного выпуска и т.п. Характеристики свойств объекта при испытаниях можно определить путем измерений, анализов или диагностирования; б) условия испытаний – это совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. Условия испытаний могут быть реальными или моделируемыми, предусматривать определение характеристик объекта при его функционировании и отсутствии функционирования, при наличии воздействий или после их приложения; в) средства испытаний – это технические устройства, необходимые для проведения испытаний. Сюда входят средства измерений, испытательное оборудование и вспомогательные технические устройства; г) исполнители испытаний – это персонал, участвующий в процессе испытаний. К нему предъявляются требования по квалификации, образованию, опыту работы и другим критериям; д) нормативно-техническая документация (НТД) на испытания, которую составляют комплекс стандартов, регламентирующих организационно-методические и нормативно-технические основы испытаний; комплекс стандартов системы разработки и постановки продукции на производство; нормативно-технические и технические документы, регламентирующие требования к продукции и методам испытаний; Нормативно-технические документы, регламентирующие требования к средствам испытаний и порядок их использования. Испытания как основная форма контроля электрооборудования представляют собой экспериментальное определение количественных и качественных показателей свойств изделия как результата воздействия на него при его функционировании, а также при моделировании объекта. Цели испытаний различны на различных этапах проектирования и изготовления электрооборудования. К основным целям испытаний можно отнести: а) выбор оптимальных конструктивно-технологических решений при создании новых изделий; б) доводку изделий до необходимого уровня качества; в) объективную оценку качества изделий при их постановке на производство и в процессе производства; г) гарантирование качества изделий при международном товарообмене. Испытания служат эффективным средством повышения качества, так как позволяют выявить : а) недостатки конструкции и технологии изготовления электрооборудования, приводящие к срыву выполнения заданных функций в условиях эксплуатации; б) отклонения от выбранной конструкции или принятой технологии; в) скрытые дефекты материалов или элементов конструкции, неподдающиеся обнаружению существующими методами технического контроля; г) резервы повышения качества и надежности разрабатываемого конструктивно-технологического варианта изделия. По результатам испытаний изделий в производстве разработчик устанавливает причины снижения качества. В данной работе мы рассматриваем основные понятия, общие методические указания по испытаниям электрооборудования, подробно останавливаемся на испытаниях электродвигателей переменного тока. 1 Испытания электрооборудования
1.1 Основные понятия При изучении правил испытания электрооборудования следует знать значение следующих понятий.[3] Предельно допустимое значение параметра - наибольшее или наименьшее значение параметра, которое может иметь работоспособное электрооборудование. Исправное состояние - состояние электрооборудования, при котором оно соответствует всем требованиям конструкторской и нормативно-технической документации. Ресурс - наработка электрооборудования от начала его эксплуатации или ее возобновления после ремонта до перехода в состояние, при котором дальнейшая эксплуатация недопустима или нецелесообразна. Контроль технического состояния (контроль) - проверка соответствия значений параметров электрооборудования требованиям настоящих Норм. Ремонт по техническому состоянию - ремонт, объем и время проведения которого определяются состоянием электрооборудования по результатам контроля, проводимого с периодичностью и в объеме, установленными настоящими Нормами. Испытания - экспериментальное определение качественных и (или) количественных характеристик электрооборудования в результате воздействия на него факторами, регламентированными настоящими Нормами. Комплексные испытания - испытания в объеме, определяемом специальной программой. Измерения - нахождение значения физической величины опытным путем с помощью технических средств, имеющих нормированные метрологические свойства. Погрешность измерения - допустимые пределы погрешности, определяемые стандартизованной или аттестованной методикой измерений. Испытательное напряжение частоты 50 Гц - действующее значение напряжения переменного тока, которое должны выдерживать в течение заданного времени внутренняя и внешняя изоляция электрооборудования при определенных условиях испытания. Испытательное выпрямленное напряжени е - амплитудное значение выпрямленного напряжения, прикладываемого к электрооборудованию в течение заданного времени при определенных условиях испытания. Аппараты - силовые выключатели, выключатели нагрузки, разъединители, отделители, короткозамыкатели, заземлители, предохранители, предохранители-разъединители, вентильные разрядники, ограничители перенапряжений, комплектные распределительные устройства, комплектные экранированные токопроводы, конденсаторы. Условные обозначения категорий контроля:[4] П - при вводе в эксплуатацию нового электрооборудования и электрооборудования, прошедшего восстановительный или капитальный ремонт и реконструкцию на специализированном ремонтном предприятии; К - при капитальном ремонте на энергопредприятии; С - при среднем ремонте; Т - при текущем ремонте электрооборудования; М - между ремонтами. Категория "К" включает контроль при капитальном ремонте как данного вида электрооборудования, так и оборудования данного присоединения. Испытания при средних ремонтах турбогенераторов с выводом ротора производятся в объеме и по нормам для капитального ремонта (К), а без вывода ротора - в объеме и по нормам для текущего ремонта (Т). 1.2 Общие методические указания по испытаниям электрооборудования Испытания электрооборудования должны производиться с соблюдением требований правил техники безопасности. Измерение изоляционных характеристик электрооборудования под рабочим напряжением разрешается осуществлять при условии использования устройств, обеспечивающих безопасность работ и защиту нормально заземляемого низкопотенциального вывода контролируемого объекта от появления на нем опасного напряжения при нарушении связи с землей. Электрические испытания изоляции электрооборудования и отбор пробы трансформаторного масла для испытаний необходимо проводить при температуре изоляции не ниже 5°С, кроме оговоренных в Нормах случаев, когда измерения следует проводить при более высокой температуре. В отдельных случаях (например, при приемо-сдаточных испытаниях) по решению технического руководителя энергопредприятия измерения тангенса угла диэлектрических потерь, сопротивления изоляции и другие измерения на электрооборудовании на напряжение до 35 кВ включительно могут проводиться при более низкой температуре. Измерения электрических характеристик изоляции, произведенные при отрицательных температурах, должны быть повторены в возможно более короткие сроки при температуре изоляции не ниже 5°С. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (расхождение - не более 5°С). Если это невозможно, должен применяться температурный перерасчет в соответствии с инструкциями по эксплуатации конкретных видов электрооборудования. При измерении сопротивления изоляции отсчет показаний мегаомметра производится через 60 с после начала измерений. Если в соответствии с Нормами требуется определение коэффициента абсорбции (R 60" /R 15" ), отсчет производится дважды: через 15 и 60 с после начала измерений. Испытанию повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами. Перед проведением испытаний изоляции электрооборудования (за исключением вращающихся машин, находящихся в эксплуатации) наружная поверхность изоляции должна быть очищена от пыли и грязи, кроме тех случаев, когда испытания проводятся методом, не требующим отключения электрооборудования. Испытание изоляции обмоток вращающихся машин, трансформаторов и реакторов повышенным приложенным напряжением частоты 50 Гц должно производиться поочередно для каждой электрически независимой цепи или параллельной ветви (в последнем случае при наличии полной изоляции между ветвями). При этом вывод испытательного устройства, который будет находиться под напряжением, соединяется с выводом испытуемой обмотки, а другой - с заземленным корпусом испытуемого электрооборудования, с которым на все время испытаний данной обмотки электрически соединяются все другие обмотки. Обмотки, соединенные между собой наглухо и не имеющие выведенных обоих концов каждой фазы или ветви, должны испытываться относительно корпуса без их разъединения. При испытаниях электрооборудования повышенным напряжением частоты 50 Гц, а также при измерении тока и потерь холостого хода силовых и измерительных трансформаторов рекомендуется использовать линейное напряжение питающей сети. Испытательное напряжение должно подниматься плавно со скоростью, допускающей визуальный контроль по измерительным приборам, и по достижении установленного значения поддерживаться неизменным в течение всего времени испытания. После требуемой выдержки напряжение плавно снижается до значения не более одной трети испытательного и отключается. Под продолжительностью испытания подразумевается время приложения полного испытательного напряжения, установленного Нормами. 2 Нормы испытаний электрооборудования на примере электродвигателей переменного тока
2.1Испытания электродвигателей переменного тока
Электродвигатели переменного тока[5] – электрические машины, преобразующие электрическую энергию в механическую, а также являются наиболее совершенным и распространенным видом привода машин и механизмов, преобразующих электрическую энергию в механическую. Измерение сопротивления изоляции.[6] Производится мегаомметром, напряжение которого указано в табл. 2.1. Допустимые значения сопротивления изоляции и коэффициента абсорбции R 60" /R 15" указаны в табл. 2.1-2.3. Оценка состояния изоляции обмоток электродвигателей при решении вопроса о необходимости сушки.[7] Электродвигатели переменного тока включаются без сушки, если значения сопротивления изоляции обмоток и коэффициента абсорбции не ниже указанных в табл. 2.1-2.3 Испытание повышенным напряжением промышленной частоты. Значение испытательного напряжения принимается согласно табл. 2.4. Продолжительность приложения испытательного напряжения 1 мин. Измерение сопротивления постоянному току. Измерение производится при практически холодном состоянии машины. Обмотки статора и ротора.[8] Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором. Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных больше чем на 2%.
Таблица 2.1 Допустимые значения сопротивления изоляции и коэффициента абсорбции
При текущих ремонтах измеряется, если для этого не требуется специально проведения демонтажных работ. Сопротивление изоляции измеряется при номинальном напряжении обмотки до 0,5 кВ включительно мегаомметром на напряжение 500 В, при номинальном напряжении обмотки свыше 0,5 кВ до 1 кВ - мегаомметром на напряжение 1000 В, а при номинальном напряжении обмотки выше 1 кВ - мегаомметром на напряжение 2500 В.
Таблица 2.2 Допустимые значения сопротивления изоляции и коэффициента абсорбции для обмоток статора электродвигателей
Таблица 2.3 Наименьшие допустимые значения сопротивления изоляции для электродвигателей (табл. 5.2, пп. 3 и 4)
Таблица 2.4 Испытательные напряжения промышленной частоты для обмоток электродвигателя переменного тока
Испытание необходимо производить при капитальном ремонте (без смены обмоток) тотчас после останова электродвигателя до его очистки от загрязнения. U р - напряжение на кольцах при разомкнутом неподвижном роторе и полном напряжении на статоре. С разрешения технического руководителя предприятия испытание двигателей напряжением до 1000 В при вводе в эксплуатацию может не производиться. Реостаты и пускорегулировочные резисторы.[9] Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше, сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек. Значения сопротивлений не должны отличаться от исходных значений больше чем на 10%. При капитальном ремонте проверяется целостность цепей. Измерение воздушного зазора между сталью ротора и статора. Измерение зазоров должно производиться, если позволяет конструкция электродвигателя. При этом у электродвигателей мощностью 100 кВт и более, у всех электродвигателей ответственных механизмов, а также у электродвигателей с выносными подшипниками и подшипниками скольжения величины воздушных зазоров в местах, расположенных по окружности ротора и сдвинутых друг относительно друга на угол 90°, или в местах, специально предусмотренных при изготовлении электродвигателя, не должны отличаться больше чем на 10% от среднего значения. Измерение зазоров в подшипниках скольжения. Увеличение зазоров в подшипниках скольжения более значений, приведенных в табл. 2.5, указывает на необходимость перезаливки вкладыша. Таблица 2.5 Допустимые величины зазоров в подшипниках скольжения электродвигателя
Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом.[10] Производится у электродвигателей напряжением 3 кВ и выше. Значение тока ХХ для вновь вводимых электродвигателей не нормируется. Значение тока XX после капитального ремонта электродвигателя не должно отличаться больше чем на 10% от значения тока, измеренного перед его ремонтом, при одинаковом напряжении на выводах статора. Продолжительность проверки электродвигателей должна быть не менее 1 ч. Измерение вибрации подшипников электродвигателя. Измерение производится у электродвигателей напряжением 3 кВ и выше, а также у всех электродвигателей ответственных механизмов. Вертикальная и поперечная составляющие вибрации (среднеквадратическое значение виброскорости или размах вибросмещений), измеренные на подшипниках электродвигателей, сочлененных с механизмами, не должны превышать значений, указанных в заводских инструкциях. При отсутствии таких указаний в технической документации вибрация подшипников электродвигателей, сочлененных с механизмами, не должна быть выше следующих значений:
Периодичность измерений вибрации узлов ответственных механизмов в межремонтный период должна быть установлена по графику, утвержденному техническим руководителем электростанции. Измерение разбега ротора в осевом направлении.[11] Измерение производится у электродвигателей, имеющих подшипники скольжения. Осевой разбег ротора двигателя, не соединенного с механизмом, зависит от конструкции двигателя, приводится в технической документации на двигатель и должен составлять от 2 до 4 мм на сторону от нейтрального положения1, определяемого действием магнитного поля при вращении ротора в установившемся режиме и фиксируемого меткой на валу. Разбег ротора проверяется при капитальном ремонте у электродвигателей ответственных механизмов или в случае выемки ротора. Проверка работы электродвигателя под нагрузкой. Проверка производится при неизменной мощности, потребляемой электродвигателем из сети не менее 50% номинальной, и при соответствующей установившейся температуре обмоток. Проверяется тепловое и вибрационное состояние двигателя. Гидравлическое испытание воздухоохладителя. Испытание производится избыточным давлением 0,2-0,25 МПа в течение 5-10 мин, если отсутствуют другие указания завода-изготовителя. Проверка исправности стержней короткозамкнутых роторов. [12] Проверка производится у асинхронных электродвигателей при капитальных ремонтах осмотром вынутого ротора или специальными испытаниями, а в процессе эксплуатации по мере необходимости - по пульсациям рабочего или пускового тока статора. Нормы испытаний электродвигателей переменного тока при ремонтах обмоток приведены в Приложении. 3 Метрологическое обеспечение Для испытания электрооборудования используются следующие виды оборудования: Мегаомметр[13] (Мегомметр) - прибор для измерения очень больших электрических сопротивлений. Мегаомметр используется для измерения высокого сопротивления изолирующих материалов проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).
Рис. 1 Аналоговый мегаомметр Рис. 2 Цифровой мегаомметр
Приборы комплексного контроля:
Анализатор качества питания трехфазной сети[14] (FLUKE 435) - полноценный прибор для диагностики трехфазных сетей: измеряет практически все параметры электросети: напряжение, ток, частоту, мощность, потребляемую мощность, дисбаланс и фликер, гармоники и интергармоники. Отслеживает и фиксирует такие события, как скачки и спады напряжения, переходные процессы в сети и броски пускового тока, перебои и резкие изменения напряжения. Функция AutoTrend автоматически в режиме реального времени строит графики по результатам текущих измерений по каждой фазе и нейтрали и сохраняет графики в памяти прибора. Позволяет в фоновом режиме, не прерывая процесса записи результатов измерений, анализировать графики при помощи курсоров и режима масштабирования (zoom). Функция мониторинга (System-Monitor) помогает непрерывно отслеживать характеристики систем энергопитания, а так же диагностировать проблемы в них, в том числе перемежающиеся неисправности. Проверяет соответствие текущих параметров питающей сети требованиям европейских стандартов EN50160 или любым пределам, задаваемым пользователем. В случае превышения любым из параметров заданных пределов, это значение записывается с меткой реального времени в таблицу и отображается в графическом виде. Четыре канала одновременно измеряются напряжение и ток на всех трех фазах и нейтрали. Прибор позволяет не только отслеживать и измерять перекос фаз, но и отображать его на фазовой диаграмме. Автоматическое отображение переходных процессов: в случае обнаружения скачка/спада напряжения, отключения тока, а также искажения формы сигнала в любой фазе прибор автоматически фиксирует это событие, продолжительность и время его наступления. В память прибора может быть записано до 40 событий длительностью от 5 мкс в автоматическом режиме. Режим "Управляющие сигналы сети" может использоваться для анализа уровня дистанционных управляющих сигналов, которые часто подаются через энергораспределительные системы. Режим регистратора событий позволяет хранить многочисленные показания в длительной памяти с большим разрешением. Таблица 3.1 . Технические характеристики Анализатора качества питания трехфазной сети с функцией регистратора FLUKE 435:
Примечания: 1. В зависимости от коэффициента токовых клещей. 2. Номинальная частота 60Гц в соответствии со стандартом IEC 61000-4-30. 3. Значение, измеренное за 1 цикл, начиная от нулевой точки эпюры по основной частоте, и обновляемое каждые полцикла. Таблица 3.2. Прочие характеристики
Рис. 3. FLUKE 435 - Анализатор качества питания трехфазной сети
Тестер параметров электроустановок (Fluke 1653)[15] - Тестеры Fluke серии 1650 выполняют проверку безопасности электрических установок в жилых, коммерческих и промышленных зданиях. Они позволяют убедиться в безопасности и правильной установке стационарной электропроводки в соответствии с требованиями IEC 60364, HD 384 и соответствующих Российских стандартов. - Передовые и запатентованные технологии измерения тока отключения и времени отключения УЗО гарантируют непротиворечивые результаты после множества тестов; - Простота: включите прибор, нажмите кнопку и просмотрите результаты; - Удобство: компактный и легкий (вес менее 1,2 кг) прибор в прочном эргономичном корпусе, оборудован ремешком для ношения на шее; - Удобство: компактный и легкий (вес менее 1,2 кг) прибор в прочном эргономичном корпусе, оборудован ремешком для ношения на шее; - Возможно проведение безопасных измерений одной рукой при помощи щупа с дистанционным управлением запуском тестирования; - Тестирование различных типов УЗО; - Тестирование с дополнительными заземляющими проводниками - Выбираемый пользователем уровень безопасного контактного напряжения 50 или 25 Вольт; - Встроенная схема защиты прибора не допускает тестирования цепи, находящейся под напряжением - Функция авторазрядки позволяет быстро и безопасно снять - Четкая индикация тестового напряжения - Двойной дисплей обеспечивает одновременное считывание сетевого напряжения и частоты; - Различные уровни тестового напряжения 50, 100, 250, 500 и 1000 Вольт подходят для тестирования изоляции всех установок, включая телекоммуникационные (в зависимости от модели); - электрический заряд в емкостных контурах - Позволяющая сэкономить время функция автообнуления вычитает сопротивление выводов при измерениях (и сохраняет его в памяти даже после отключения электропитания); - Одновременное отображение полного сопротивления контура - Быстрое тестирование чередования фаз в трехфазных системах; - Измерения по 3-х проводной схеме для повышения точности - Тестирование УЗО, чувствительных к постоянному току, и УЗО с задержкой срабатывания (только модели Fluke 1652 и 1653); - Разрешение 0.01 Ом при измерении параметров контура заземления - Индикация качества соединения проводников; - Возможность измерения полного сопротивления контура без срабатывания УЗО, без необходимости в его отключении; - Автообнуление для вычитания из результатов измерения сопротивления тестовых выводов - Функция автоматической последовательной смены режимов для быстрого тестирования УЗО (только модели Fluke 1652 и 1653); - Измерение тока размыкания УЗО линейно-нарастающим током (только модели Fluke 1652 и 1653); - Соответствие стандартам: отвечает всем соответствующим стандартам, включая EN 61557 и VDE 0413 - Индикация проверки соединения проводников для дополнительной безопасности.
Профессиональные отчеты Тестер электроустановок Fluke 1653 позволяет сохранять до 500 результатов измерений. Данные, сохраняемые для каждого измерения, включают информацию о режиме тестирования, выбираемые пользователем условия тестирования и необходимые ссылки. В модели Fluke 1653 имеется ИК-порт и адаптер для загрузки результатов в компьютер для подготовки профессиональных отчетов с помощью программы FlukeView™ Forms. Программное обеспечение FlukeView™ Forms поставляется опционально. Отчеты можно настроить в соответствии с индивидуальными требованиями, в том числе в стандартном формате Windows-приложений. Таблица 3.3. Технические характеристики: Fluke 1651, Fluke 1652, Fluke 1653
Рис. 4 Fluke 1653 Тестер параметров электроустановок Заключение В ходе работы нами были рассмотрены основные положения испытаний электрооборудования. На примере электродвигателей переменного тока нами был подробно рассмотрен порядок, условия и нормы проведения испытаний электрооборудования. Следует отметить, что повышение эффективности контроля процесса проектирования и технологического процесса изготовления изделий приводит к снижению роли испытаний готовой продукции. Хорошо организованный автоматизированный контроль технологического процесса производства позволяет сократить объем испытаний готовых изделий. Учитывая необходимость оптимизации стоимости изделия, следует находить разумный компромисс между объемом испытаний и эффективностью контроля изготовления изделий. Список использованной литературы
1. ГОСТ 20 911-89. Техническая диагностика. – М.: Госиздат, 1990. 2. Ерошенко Г.П., Пястолов А.А. Курсовое и дипломное проектирование по эксплуатации электрооборудования, М.:Агропромиздат, 1988 3. Закон «Об энергосбережении» // «Энергоэффективность», №7-с.2-5. 4. Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий» - Минск: БелТЭИ, 2003 5. Москаленко В.В. Электрический привод. – М.: Высшая школа, 1991 – 430с. 6. Объём и нормы испытаний электрооборудования РД34.45-51.300-97. 7. Республиканская программа энергосбережения на 2006-2010гг.- Минск: 2005. 8. Русан В.И., Короткевич М.А.: Комплексное использование возобновляемых источников энергии. – Мн.: ИЭАПК НАН Б, 2004. 9. Сборник нормативно-технических материалов по энергосбережению» - Минск. ООФ «Экомир».2005 10. Саплин Л.А. и др. Энергоснабжение сельскохозяйственных потребителей с использованием ВИЭ, 2000 11. Таран В.П. Диагностирование электрооборудования. – К.: Техника, 1983с. 12. Теоретические основы электротехники: в 3 т./К.С.Демирчан [и др.].–СПб: Питер, 2004. 13. Фоменков А.Н. Электропривод с.х. машин, агрегатов и поточных линий. – М.: Колос, 1984 - 228 с. 14. Фираго Б.И., Павлячик Л.Б. Теория электропривода. – Мн.: ЗАО Техноперспектива, 2004 – 527 с. 15. «Энергоэффективность»,- Мн. ПРУП «Белэнергосбережение»,- Мн. Пясталов А.А., Ерошенко Г.П. Эксплуатация электрооборудования. М.:Агропромиздат, 1990, 360с 16. Электротехнология / В.А. Карасенко [и др.]. - М.: Колос, 1992. - 304 с. 17. Электротермическое оборудование сельскохозяйственного производства / Л.С. Герасимович [и др.].; под ред. Л.С. Герасимовича. - Мн.: Ураджай, 1995. -415 с. 18. http://referat.kulichki.net/files/page.php?id=40359 19. http://infoholod.ru/stat/3_stat.html 20. http://megommetr.ru/stati/megaommetr-megommetr-chto-eto-takoe.html 21. http://megommetr.ru/katalog/2862.html 22. http://megommetr.ru/katalog/2892.html [1] http://infoholod.ru/stat/3_stat.html [2] http://infoholod.ru/stat/3_stat.html [3] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С. 7-8 [4] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С. 4-5. [5] http://referat.kulichki.net/files/page.php?id=40359 [6] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С. 38. [7] Там же [8] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С. 39. [9] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С. 44 [10] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С. 46 [11] Объём и нормы испытаний электрооборудования РД34.45-51.300-97 – С.47 [12] Там же [13] http://megommetr.ru/stati/megaommetr-megommetr-chto-eto-takoe.html [14] http://megommetr.ru/katalog/2862.html [15] http://megommetr.ru/katalog/2892.html |