Контрольная работа: по Информатике 15

Название: по Информатике 15
Раздел: Рефераты по информатике
Тип: контрольная работа

Министерство образования и науки РФ

Волжский государственный инженерно-педагогический университет

Кафедра математики и информатики

Контрольная работа №1

Выполнила: Проверил:

студентка доцент Данилов В.И.

группы Д-10-1

Воскресенская Е.Н.

Н.Новгород

2010 г.

Содержание:

Информатика как наука……………………………………………………………3

Предмет и задачи информатики. Структура современной информатики …….4

Информация. Виды информации..………………………………………………..5

Свойства информации. Единицы измерения количества информации ................6

Общая характеристика процессов сбора, хранения, обработки и передачи информации…………………………………………………………………………...…...7

Системы счисления………………………………………………………………...9

Двоичная система счисления…………………………………………………….10

Данные……………………………………..……………………………………...11

Носители данных (информации). Кодирование данных ……………………..12

Структура данных. Единицы хранения данных ……..……………………….13

Понятие о файловой структуре………………………………………………….15

Архитектура ЭВМ………………………………………………………………..16

Базовые устройства Персонального Компьютера……………..……………...17

Внутреннее устройство системного блока……………………………………...18

Периферийные устройства персонального компьютера……………………....23

Устройства ввода знаковых данных……………………………………………….24

Устройства вывода данных………………………………………………………25

Устройства хранения данных……………………………………………………26

Локальные компьютерные сети………………………………………………….27

Правила техники безопасности при работе с ПК………………………..…….29

Литература……………………………………………………….……………….30

Информатика как наука

Термин "информатика" (франц. informatique ) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика".

Информатика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

В 1978 году международный научный конгресс официально закрепил за понятием "информатика" области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая компьютеры и их программное обеспечение, а также организационные, коммерческие, административные и социально-политические аспекты компьютеризации — массового внедрения компьютерной техники во все области жизни людей.

Таким образом, информатика базируется на компьютерной технике и немыслима без нее.

Информатика — научная дисциплина с широчайшим диапазоном применения. Её основные направления:

  • разработка вычислительных систем и пpогpаммного обеспечения;
  • теория информации, изучающая процессы, связанные с передачей, приёмом, преобразованием и хранением информации;
  • методы искусственного интеллекта, позволяющие создавать программы для решения задач, требующих определённых интеллектуальных усилий при выполнении их человеком (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);
  • системный анализ, заключающийся в анализе назначения проектируемой системы и в установлении требований, которым она должна отвечать;
  • методы машинной графики, анимации, средства мультимедиа;
  • средства телекоммуникации, в том числе, глобальные компьютерные сети, объединяющие всё человечество в единое информационное сообщество;
  • разнообразные приложения, охватывающие производство, науку, образование, медицину, торговлю, сельское хозяйство и все другие виды хозяйственной и общественной деятельности.

Термином информатика обозначают совокупность дисциплин, изучающих свойства информации, а также способы представления, накопления, обработки и передачи информации с помощью технических средств.

Теоретическую основу информатики образует группа фундаментальных наук, которую в равной степени можно отнести как к математике, так и к кибернетике: теория информации, теория алгоритмов, математическая логика, теория формальных языков и грамматик, комбинаторный анализ и т. д. Кроме них информатика включает такие разделы, как архитектура ЭВМ, операционные системы, теория баз данных, технология программирования и многие другие.

Предмет и задачи информатики

Предмет информатики составляют такие понятия:
• аппаратное обеспечение средств вычислительной техники;
• программное обеспечение средств вычислительной техники;
• средства обеспечения аппаратной и программной составляющих;
• средства взаимодействия человека с аппаратными и программными составляющими.
Как видно, в информатике большое внимание уделяется взаимодействию. Для этого используется специальное понятие – интерфейс. Согласно приведенным задач различают аппаратный, программный, программно-аппаратный интерфейсы и интерфейс пользователя.
Основной задачей информатики является систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники.

Задачи информатики:

·создание техники и технологий преобразования информации;

·решение проблем, возникающих при разработке и использовании информационных технологий и компьютерной техники;

·исследование информационных процессов

Структура современной информатики

Теоретическая информатика – часть информатики, включающая ряд математических разделов. Она опирается на математическую логику и включает такие разделы, как теория алгоритмов и автоматов, теория информации и теория кодирования, теория формальных языков и грамматик, исследование операций и другие. Этот раздел информатики использует математические методы для общего изучения процессов обработки информации.
Вычислительная техника – раздел, в котором разрабатываются общие принципы построения вычислительных систем. Речь идет не о технических деталях и электронных схемах (это лежит за пределами информатики как таковой), а о принципиальных решениях на уровне так называемой архитектуры вычислительных (компьютерных) систем, определяющей состав, назначение, функциональные возможности и принципы взаимодействия устройств. Примеры принципиальных, ставших классическими решений в этой области – неймановская архитектура компьютеров первых поколений, шинная архитектура ЭВМ старших поколений, архитектура параллельной (многопроцессорной) обработки информации.
Программирование – деятельность, связанная с разработкой систем программного обеспечения. Здесь отметим лишь основные разделы современного программирования: создание системного программного обеспечения и создание прикладного программного обеспечения. Среди системного – разработка новых языков программирования и компиляторов к ним, разработка интерфейсных систем (пример – общеизвестная операционная оболочка и система Windows). Среди прикладного программного обеспечения общего назначения самые популярные – системы обработки текстов, электронные таблицы (табличные процессоры), системы управления базами данных. В каждой области предметных приложений информатики существует множество специализированных прикладных программ более узкого назначения.
Информационные системы – раздел информатики, связанный с решением вопросов по анализу потоков информации в различных сложных системах, их оптимизации, структурировании, принципах хранения и поиска информации. Информационно-справочные системы, информационно-поисковые системы, гигантские современные глобальные системы хранения и поиска информации (включая широко известный Internet) привлекают внимание все большего круга пользователей. Без теоретического обоснования принципиальных решений в океане информации можно просто захлебнуться. Известным примером решения проблемы на глобальном уровне может служить гипертекстовая поисковая система WWW, а на значительно более низком уровне – справочная система, к услугам которой мы прибегаем, набрав телефонный номер 09.
Искусственный интеллект – область информатики, в которой решаются сложнейшие проблемы, находящиеся на пересечении с психологией, физиологией, лингвистикой и другими науками. Как научить компьютер мыслить подобно человеку? Поскольку мы далеко не все знаем о том, как мыслит человек, исследования по искусственному интеллекту, несмотря на полувековую историю, все еще не привели к решению ряда принципиальных проблем. Основные направления разработок, относящихся к этой области, – моделирование рассуждений, компьютерная лингвистика, машинный перевод, создание экспертных систем, распознавание образов и другие.

Информация

Информация – это сведения об окружающем мире (объекте, процессе, явлении, событии), которые являются объектом преобразования (включая хранение, передачу и т.д.) и используются для выработки поведения, для принятия решения, для управления или для обучения.

Виды информации

Виды информации по форме представления:

1. Числовая. Количественные характеристики объектов окружающего мира – возраст, вес, рост человека, численность населения, площади лесов ит.д.

2. Текстовая. Всё, что напечатано или написано на любом из существующих языков.

3. Графическая информация. Рисунки, картины, чертежи, схемы, карты, фотографии и т.д.

4. Звуковая. Всё, что мы слышим – человеческая речь, музыка, пение птиц, шелест листвы, сигналы машин и т.д.

5. Видеоинформация. Последовательность изображений – фильмы, мультфильмы.

Свойства информации

Свойства информации:

достоверность — информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений. Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел;
полнота — информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений, или может повлечь ошибки;
точность — точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.;
ценность — ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека;
своевременность — только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка;
понятность — информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация;
доступность — информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по-разному излагаются в школьных учебниках и научных изданиях;
краткость — информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях;

Единицы измерения количества информации

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически.

1 бит - минимальная единица измерения информации, при вероятностном подходе к измерению информации, принятом в теории информации, это количество информации, уменьшающее неопределенность знаний в 2 раза.

Связь между единицами измерения информации:

* 1 байт = 8 бит,

* 1 Кб (килобайт) = 210 (1024) байт = 213 бит;

* 1 Мб (мегабайт) = 210 (1024) Кб = = 2го (1048576) байт = 223 бит;

* 1 Гб (гигабайт) = 210Мб = 220 Кб = 230 байт = 233 бит;

* 1 Тб (терабайт) = 210 Гб = 220Мб = 230 Кб = = 240 байт = 243 бит.

Байт - единица хранения и обработки цифровой информации. В настольных вычислительных системах байт считается равным восьми битам.

Именно к байту (а не к биту) непосредственно приводятся все большие объёмы информации, исчисляемые в компьютерных технологиях.

Килобайт - единица измерения количества информации, равная в зависимости от контекста 1000 или 1024 (210 ) стандартным (8-битным) байтам. Применяется для указания объёма памяти в различных электронных устройствах.

Они служат для измерения больших количеств байтов.

Мегабайт- единица измерения количества информации, равная, в зависимости от контекста, 1 000 000 (106 ) или 1 048 576 (220 ) стандартным (8-битным) байтам.

Гигабайт - кратная единица измерения количества информации, равная 109 стандартным (8-битным) байтам или 1 000 000 000 байтам. Применяется для указания объёма памяти в различных электронных устройствах.

Общая характеристика процессов сбора, хранения, обработки и передачи информации

Сбор данных, информации, знаний – представляет собой процесс регистрации, фиксации, записи детальной информации (данных, знаний) о событиях, объектах (реальных и абстрактных), связях, признаках и соответствующих действиях. При этом иногда выделяют в отдельные операции “сбор данных и информации” и “сбор знаний”. Сбор данных и информации – процесс идентификации и получения данных от различных источников, группирование полученных данных и представление их в форме, необходимой для ввода в ЭВМ. Сбор знаний – получение информации о предметной области от специалистов – экспертов и представление в форме, необходимой для записи в базу знаний.

Хранение информации — это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга- библиотека, картина- музей, фотография- альбом). ЭВМ предназначен для компактного хранения информации с возможностью быстрого доступа к ней. Информационная система — это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем, отличающих их от простых скоплений информационных материалов. Например, личная библиотека, в которой может ориентироваться только ее владелец, информационной системой не является. В публичных же библиотеках порядок размещения книг всегда строго определенный. Благодаря ему поиск и выдача книг, а также размещение новых поступлений представляет собой стандартные, формализованные процедуры.

Обработка данных, информации, знаний . Обработка – понятие широкое и включает в себя несколько взаимосвязанных операций. К обработке можно отнести такие операции как: проведение расчетов, выборку, поиск, объединение, слияние, сортировка, фильтрацию и др. Следует помнить, что обработка – это систематическое выполнение операций над данными, процесс преобразования вычисления, анализа и синтеза любых форм данных, информации и знаний, посредством систематического выполнения операций над ними. При определении такой операции, как обработка выделяют: обработку данных, обработку информации, обработку знаний. Обработка данных представляет собой процесс управления данными (цифры, символы и буквы) и преобразование их в информацию. Обработка информации – переработка информации определенного типа (текстового, звукового, графического), преобразование ее в информацию другого типа.

В процессе передачи информации обязательно участвуют источник и приемник информации: первый передает информацию, второй ее получает. Между ними действует канал передачи информации - канал связи.
Канал связи - совокупность технических устройств, обеспечивающих передачу сигнала от источника к получателю.
Кодирующее устройство - устройство, предназначенное для преобразования исходного сообщения источника к виду, удобному для передачи.
Декодирующее устройство - устройство для преобразования кодированного сообщения в исходное.
Деятельность людей всегда связана с передачей информации.
В процессе передачи информация может теряться и искажаться: искажение звука в телефоне, атмосферные помехи в радио, искажение или затемнение изображения в телевидении, ошибки при передачи в телеграфе. Эти помехи, или, как их называют специалисты, шумы, искажают информацию. К счастью, существует наука, разрабатывающая способы защиты информации - криптология.

Системы счисления

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.

Позиционные системы счисления.

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

Шестнадцатеричная система счисления используется для кодирования дискретного сигнала, потребителем которого является хорошо подготовленный пользователь – специалист в области информатики. В такой форме представляется содержимое любого файла, затребованное через интегрированные оболочки операционной системы, например, средствами Norton Commander в случае MS DOS. Используемые знаки для представления числа – десятичные цифры от 0 до 9 и буквы латинского алфавита – A, B, C, D, E, F.

Десятичная система счисления используется для кодирования дискретного сигнала, потребителем которого является так называемый конечный пользователь – неспециалист в области информатики (очевидно, что и любой человек может выступать в роли такого потребителя). Используемые знаки для представления числа – цифры от 0 до 9.

Соответствие между первыми несколькими натуральными числами всех трех систем счисления представлено в таблице перевода:

Десятичная

система

Двоичная система

Шестнадцатеричная система

0

0

0

1

1

1

2

10

2

3

11

3

4

100

4

5

101

5

6

110

6

7

111

7

8

1000

8

9

1001

9

10

1010

A

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Двоичная система счисления

В двоичной системе счисления используются 2 цифры: 0 и 1. Именно поэтому двоичная система счисления лежит в основе работы компьютера, т.к. в компьютере существуют два устойчивых состояния: низкое или высокое напряжение, есть ток или нет тока, намагничено или не намагничено.
Одному состоянию соответствует значение равное 1, другому - 0.

Ниже приводится число в двоичной системе счисления, его развернутая форма, и найденный по ней десятичный эквивалент двоичного числа:

010011012 = 0*27 + 1*26 + 0*25 + 0*24 +1*23 +1*22 + 0*21 + 1*20 = 7710

Перевод из десятичной системы счисления в любую другую

Для перевода из десятичной системы счисления в двоичную существует правило, которое годится для всех систем счисления.

Для того, что бы перевести число из десятичной системы счисления в любую другую надо делить число на основание системы счисления до тех пор, пока частное от деления не будет меньше основания системы счисления, при этом необходимо фиксировать все остатки от деления. Затем надо записать частное от деления и все остатки, начиная с последнего в обратной последовательности. Т.о. получится: частное - старший разряд, а самый первый остаток - младший разряд.

Например, переведем число 5810 в двоичную систему счисления:


Запишем полученный результат: 1110102

Достоинства двоичной системы счисления

Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.

1. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

2. Представление информации посредством только двух состояний надежно и помехоустойчиво.

3. Возможность применения алгебры логики для выполнения логических преобразований.

4. Двоичная арифметика проще десятичной.

Недостатки двоичной системы счисления

Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.
Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

Данные

С точки зрения программиста данные — это часть программы, совокупность значений определённых ячеек памяти, преобразование которых осуществляет код. С точки зрения компилятора, процессора, операционной системы, это совокупность ячеек памяти, обладающих определёнными свойствами.

Контроль за доступом к данным в современных компьютерах осуществляется аппаратно.

В соответствии с принципом фон Неймана, одна и та же область памяти может выступать как в качестве данных, так и в качестве исполнимого кода.

Носители данных

Носитель информации (информационный носитель) — любой материальный объект или среда, содержащий (несущий) информацию , способный достаточно длительное время сохранять в своей структуре занесённую в/на него информацию.

Классификация носителей данных по виду записи:
– магнитные накопители (жесткий диск, гибкий диск, сменный диск);
– магнитно-оптические системы, называемые также МО;
– оптические, такие, как CD (Compact Disk, Read Only Memory) или DVD (Digital Versatile Disk).

По назначению носители информации различаются на три группы:

  • распространение информации: носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;
  • архивирование: носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);
  • резервирование (Backup) или передача данных: носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.

Кодирование данных

Информация передается в виде сигналов. Когда мы разговариваем с другими людьми, то улавливаем звуковые сигналы. Если мы смотрим в окно, наш глаз принимает световые потоки, отраженные от объектов окружающей природы. Световой поток - это тоже сигнал.

А как же информация хранится? Для того чтобы информацию сохранить, ее надо закодировать. Любая информация всегда хранится в виде кодов. Когда мы что-то пишем в тетради, мы на самом деле кодируем информацию с помощью специальных символов. Эти символы всем знакомы - они называются буквами. И система такого кодирования тоже хорошо известна - это обыкновенная азбука. Жители других стран те же самые слова запишут по-другому (другими буквами)- у них своя азбука. Можно сказать, что у них другая система кодирования. В некоторых странах вместо букв используют иероглифы - это еще более сложный способ кодирования информации.

Можно кодировать и звуки. С одной из таких систем кодирования вы тоже хорошо знакомы: мелодию можно записать с помощью нот. Это не единственная система кодирования музыки. В давние времена на Руси музыку записывали с помощью так называемых «крюков» - это особая форма записи.

Хранить можно не только текстовую и звуковую информацию. В виде кодов хранятся и изображения. Если посмотреть на рисунок с помощью увеличительного стекла, то видно, что он состоит из точек - это так называемый растр. Координаты каждой точки можно запомнить в виде чисел. Цвет каждой точки тоже можно запомнить в виде числа. Эти числа могут храниться в памяти компьютера и передаваться на любые расстояния. По ним компьютерные программы способны изобразить рисунок на экране или напечатать его на принтере. Изображение можно сделать больше или меньше, темнее или светлее, его можно повернуть, наклонить, растянуть. Мы говорим о том, что на компьютере обрабатывается изображение, но на самом деле компьютерные программы изменяют числа, которыми отдельные точки изображения представлены в памяти компьютера.

Структуры данных

Структура данных — программная единица, позволяющая хранить и обрабатывать множество однотипных и/или логически связанных данных в вычислительной технике. Для добавления, поиска, изменения и удаления данных структура данных предоставляет некоторый набор функций, составляющих её интерфейс. Структура данных часто является реализацией какого-либо абстрактного типа данных.

При разработке программного обеспечения большую роль играет проектирование хранилища данных и представление всех данных в виде множества связанных структур данных.

Хорошо спроектированное хранилище данных оптимизирует использование ресурсов (таких как время выполнения операций, используемый объём оперативной памяти, число обращений к дисковым накопителям), требуемых для выполнения наиболее критичных операций.

Структуры данных формируются с помощью типов данных, ссылок и операций над ними в выбранном языке программирования.

Различные виды структур данных подходят для различных приложений; некоторые из них имеют узкую специализацию для определённых задач. Например, B-деревья обычно подходят для создания баз данных, в то время как хеш-таблицы используются повсеместно для создания различного рода словарей, например, для отображения доменных имён в интернет-адреса компьютеров.

Единицы хранения данных

При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру. При этом образуются адресные данные. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.

Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т. п.), поскольку частичное заполнение одной единицы хранения приводит к неэффективности хранения.

В качестве единицы хранения данных принят объект переменной длины, называемый файлом.

Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем.

Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.

Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов.

В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией из-за отсутствия метода доступа к ним. Кроме функций, связанных с адресацией, имя файла может хранить и сведения о типе данных, заключенных в нем. Для автоматических средств работы с данными это важно, поскольку по имени файла они могут автоматически определить адекватный метод извлечения информации из файла.

Имя файла состоит из двух частей: собственно имени и расширения файла. Например:

Собственно имя файла может состоять из букв русского и английского алфавитов, цифр и специальных символов. При этом его длина не должна превышать 256 символов.

В зависимости от расширения все файлы делятся на две большие группы: исполняемые и неисполняемые.

Исполняемые файлы – это такие файлы, которые могут выполняться самостоятельно, т. е. не требуют каких-либо специальных программ для их запуска. Имеют следующие расширения:

– exe – готовый к исполнению файл (tetris.exe; winword.exe);

– com – файл операционной системы (command.com);

– sys – файл операционной системы (Io.sys);

– bat – командный файл операционной системы MS-DOS (autoexec.bat).

Неисполняемые файлы для запуска требуют установки специальных программ. Так, например, для того чтобы просмотреть текстовый документ, требуется наличие какого-либо текстового редактора. По расширению неисполняемого файла можно судить о типе данных, хранящихся в данном файле. Вот несколько примеров:

Понятие о файловой структуре

Требование уникальности имени файла очевидно – без этого невозможно гарантировать однозначность доступа к данным. В средствах вычислительной техники требование уникальности имени обеспечивается автоматически – создать файл с именем, тождественным уже имеющемуся, не могут ни пользователь, ни автоматика.

Хранение файлов организуется в иерархической структуре, которая в данном случае называется файловой структурой. В качестве вершины структуры служит имя носителя, на котором сохраняются файлы. Далее файлы группируются в каталоги (папки), внутри которых могут быть созданы вложенные каталоги (папки).

Каталоги (папки) – важные элементы иерархической структуры, необходимые для обеспечения удобного доступа к файлам, если файлов на носителе слишком много. Файлы объединяются в каталоги по любому общему признаку, заданному их создателем (по типу, по принадлежности, по назначению, по времени создания и т. п.). Каталоги низких уровней вкладываются в каталоги более высоких уровней и являются для них вложенными. Верхним уровнем вложенности иерархической структуры является корневой каталог диска.

Все современные операционные системы позволяют создавать каталоги. Правила присвоения имени каталогу ничем не отличаются от правил присвоения имени файлу, хотя негласно для каталогов не принято задавать расширения имен. Все промежуточные каталоги разделяются между собой обратной косой чертой (\).

Архитектура ЭВМ

Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, представленную на рисунке.

Положения фон Неймана:

· Компьютер состоит из нескольких основных устройств (арифметико-логическое устройство, управляющее устройство, память, внешняя память, устройства ввода и вывода)

· Арифметико-логическое устройство – выполняет логические и арифметические действия, необходимые для переработки информации, хранящейся в памяти

· Управляющее устройство – обеспечивает управление и контроль всех устройств компьютера (управляющие сигналы указаны пунктирными стрелками)

· Данные, которые хранятся в запоминающем устройстве, представлены в двоичной форме

· Программа, которая задает работу компьютера, и данные хранятся в одном и том же запоминающем устройстве

· Для ввода и вывода информации используются устройства ввода и вывода

Базовые устройства Персонального Компьютера

Для персонального компьютера существует понятие базовой конфигурации. Это минимально необходимый состав компьютерной системы, при котором она будет не только корректно, но и надежно работать. В базовую конфигурацию включают четыре устройства:

  • Системный блок . Представляет собой металлический корпус, внутри которого размещаются самые важные рабочие блоки компьютера. Состав системного блока будет рассмотрен ниже на этой странице.
  • Монитор . Основное устройство для вывода данных. Монитор отображает цифровую, символьную и графическую информацию, получаемую из компьютера.

Можно говорить, что существует два основных типа мониторов: жидкокристаллические (ЖК) и электронно-лучевые (ЭЛТ).

Характеристики монитора: размеры экрана, разрешающая способность, частота регенерации, яркость и контрастность.

  • Клавиатура . Устройство для ввода данных. Клавиатура имеет более 100 клавиш для ввода букв, символов и управляющих команд. Алфавитно-цифровые клавиши расположены "как на печатной машинке" соответствующего алфавита.
  • Мышь . Устройство ввода, предназначенное для управления операционной системой и программами. Перемещение небольшой мыши по плоской поверхности стола синхронизовано с перемещением графического объекта (указателя) на экране монитора. Кнопки (и колесико) мыши используются для ввода команд.

Устройства, подключаемые к компьютеру, и расположенные внутри системного блока, называются внутренними, а снаружи — внешними. Внешние устройства, предназначенные для ввода, вывода и хранения данных, также называют периферийными.

Внутреннее устройство системного блока

Системная (материнская) плата.

Системная плата обеспечивает три направления передачи информации: между микропроцессором и внутренней (основной) памятью, между микропроцессором и портами ввода-вывода внешних устройств, между внутренней (основной) памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти). Устройства, непосредственно осуществляющие процесс обработки информации (вычисления), в том числе микропроцессор, оперативная память и шина, размещаются на ней, кроме того, на ней же располагается и контроллер клавиатуры и мыши. Схемы, управляющие другими внешними устройствами компьютера, как правило, находятся на отдельных платах, вставляемых в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере – шине. Иногда эти контроллеры могут располагаться на системной плате.

В системном блоке располагается также блок питания, преобразующий переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и других устройств компьютера, размещенных в системном блоке. Блок питания Содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока, сетевого энергопитания ПК. Кроме сетевого, в компьютере имеется также автономный источник питания – аккумулятор. К аккумулятору подключается таймер – внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер продолжает работать и при отключении компьютера от электросети.

Основными ведущими производителями системных плат являются компании Asustek, Intel, Giga-Byte, Abit и др.

Накопитель на жестких магнитных дисках.

Накопитель на жестких магнитных дисках (от англ. HDD – Hard Disk Drive), или винчестер – это запоминающее устройство большой емкости, в котором носителями информации являются круглые жесткие пластины (иногда называемые также дисками), обе поверхности которых покрыты слоем магнитного материала. Винчестер используется для постоянного (длительного) хранения информации – программ и данных.

В принципе жесткие диски подобны дискетам. В них информация также записывается на магнитный слой диска. Однако этот диск, в отличие от дискет, сделан из жесткого материала, чаще всего алюминия (отсюда и название Hard Disk). В корпусе объединены такие элементы винчестера, как управляющий двигатель, носитель информации (диски), головки записи/считывания, позиционирующее устройство (позиционер) и микросхемы, обеспечивающие обработку данных, коррекцию возможных ошибок, управление механической частью, а также микросхемы кэш-памяти.

Если дискета физически состоит из одного диска, то винчестер состоит из нескольких одинаковых дисков, расположенных друг под другом.

НЖМД помещен в почти полностью герметизированный корпус. В отличие от НГМД, внутреннее устройство которого хорошо видно, НЖМД изолирован от внешней среды, что предотвращает попадание пыли и других частиц, которые могут повредить магнитный носитель или чувствительные головки чтения/записи, располагаемые над поверхностью быстро вращающегося диска на расстоянии нескольких десятимиллионных долей дюйма.

Магнитные диски являются элементами устройств чтения-записи информации – дисководов. Сам магнитный диск – это пластиковый (для гибких дисков) и алюминиевый либо керамический (для жестких дисков) круг с магниточувствительным покрытием. В случае жесткого диска таких кругов Может быть несколько, и все они в центре посажены на один стержень. Для гибкого диска такой круг один, при помещении в дисковод он фиксируется в центре. Во время работы диск раскручивается.

Постоянное запоминающее устройство (ПЗУ).

В момент включения компьютера в его оперативной памяти нет ничего – ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.

Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.

Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет. Он указывает на другой тип памяти – постоянное запоминающее устройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» – их записывают туда на этапе изготовления микросхемы.

Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS – Basic Input Output System). Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютера и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков. Программы, входящие в BIOS, позволяют нам наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами, входящими в BIOS, но такими средствами нельзя обеспечить работу со всеми возможными устройствами. Так, например, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы. Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры. По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.

Специально для этого на материнской плате есть микросхема «энергонезависимой памяти», по технологии изготовления называемая CMOS (complementary metaloxide semiconductor). От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав Системы. Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, Чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.

Накопители на оптических дисках.

Запись и считывание информации в оптических накопителях производится бесконтактно с помощью лазерного луча. К таким устройствам относятся, прежде всего, накопители CD-ROM, CD-R, CD-RW и DVD (ROM, R и RW).

Устройства CD-ROM. В устройствах CD-ROM (Compact Disk Read-Only Memory – компакт-диск только для чтения) носителем информации является оптический диск (компакт-диск), изготавливаемый на поточном производстве с помощью штамповочных машин и предназначенный только для чтения.

Компакт-диск представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

Информация на диске представляется в виде последовательности впадин и выступов (их уровень соответствует поверхности диска), расположенных на спиральной дорожке, выходящей из области вблизи оси диска (на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек). Емкость такого CD достигает 780 Мбайт, что позволяет создавать на его основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Считывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске.

Накопители CD-R (CD-Recordable). Они позволяют наряду с прочтением обычных компакт-дисков однократно записывать информацию на специальные оптические диски CD-R. Информационный объем таких дисков составляет 700 Мбайт.

Запись на такие диски осуществляется благодаря наличию на них особого светочувствительного слоя из органического материала, темнеющего при нагревании. В процессе записи лазерный луч нагревает выбранные точки слоя, которые темнеют и перестают пропускать свет к отражающему слою, образуя участки, аналогичные впадинам.

Запись информации на диски CD-R представляет собой дешевый и оперативный способ хранения больших объемов данных.

Накопители CD-RW (CD-ReWritable). Дают возможность делать многократную запись на диск. Информационный объем таких дисков составляет 700 Мбайт.

Для того чтобы прочитать или записать информацию на один из трех выше перечисленных CD-дисков, необходим соответствующий CD-дисковод.

Дисковод CD-ROM – позволяет только считывать информацию с любых CD-дисков. Соответственно между собой такие устройства будут различаться скоростью чтения и кэш-памятью. Дисковод CD-R – прочитать и записать, а дисковод CD-RW не только читает, но и перезаписывает (стирает информацию и записывает поверх нее новую). Такие дисководы различаются скоростью чтения/записи/перезаписи (последнее только для CD-RW) и размером кэш.

Накопители DVD (Digital Versatile Disc, цифровой диск общего назначения). Первые DVD-диски появились на рынке где-то в 96–97 годах прошлого века. DVD является прекрасным носителем для данных любого типа и используется как обыкновенный компьютерный носитель информации.

Снаружи DVD выглядит как обычный CD, и даже при ближайшем рассмотрении тяжело заметить разницу. Однако возможностей у DVD гораздо больше. Диски DVD могут хранить в 26 раз больше данных по сравнению CD-ROM.

Технология DVD стала огромным скачком в области носителей информации. Стандартный односторонний однослойный диск может хранить 4,7 Gb данных. Но DVD могут изготавливаться по двухслойному стандарту, который позволяет увеличить количество хранимых на одной стороне данных до 8,5 Gb.

Кроме этого, диски DVD бывают двухсторонними, что увеличивает емкость диска до 17 Gb. Правда, чтобы считать DVD-диск, необходимо новое устройство (DVD-ROM), но технология DVD совместима с технологией CD, и привод DVD-ROM читает и диски CD-диск, причем разных форматов.

В продаже можно встретить различные комбинированные дисководы для оптических дисков. Например, DVD-CD R/RW позволяет читать DVD и CD – диски и производить запись/перезапись на CD-диски. Другой вариант – DVD-RW – CD-RW. Позволяет читать, записывать и перезаписывать DVD и CD-диски.

Звуковая карта

Звуковая карта явилась одним из наиболее поздних усовершенствований персонального компьютера. Она подключается к одному из слотов материнской платы – PCI (может быть интегрировано в нее) – в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звуковая карта может быть сразу интегрирована в системную плату. Звук воспроизводится через внешние звуковые колонки (наушники), подключаемые к выходу звуковой карты.

На типичной звуковой карте могут находиться следующие разъемы.

Внешние: MIDI-порт, линейный вход, микрофонный вход, линейный выход, аудиовыход, цифровой вход и выход.

MIDI-порт. Самый большой и заметный 15-контактный разъем. К нему подключаются такие устройства, как джойстик, MIDI-клавиатура или, например, синтезатор.

Линейный выход. Предназначен для подключения активных колонок или усилителя. Линейных выходов может быть несколько.

Аудиовыход. На него подается прошедший через маломощный усилитель сигнал. Этот усилитель не отличается высоким качеством, поэтому основным устройством для подключения к этому выходу являются, например, наушники.

Цифровой выход. Предназначен для подключения внешних цифровых устройств, например, цифрового ресивера. Встречается только на достаточно дорогих картах.

Внутренний вход. Обычно используется для подключения CD-ROM.

Видеокарта — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA, VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ).

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) поддерживают приложения OpenGL на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные способности графического процессора для решения неграфических задач.

Оперативная память — часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции и время доступа к которой не превышает одного его такта. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти. Передача данных в/из оперативную память процессором производится непосредственно, либо через сверхбыструю память.

Оперативное запоминающее устройство , ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.

Периферийные устройства персонального компьютера

Устройства управления:

Трекбол — указательное устройство ввода информации об относительном перемещении для компьютера. Аналогично мыши по принципу действия и по функциям. Трекбол функционально представляет собой перевернутую механическую (шариковую) мышь. Шар находится сверху или сбоку и пользователь может вращать его ладонью или пальцами, при этом не перемещая корпус устройства. Несмотря на внешние различия, трекбол и мышь конструктивно похожи — при движении шар приводит во вращение пару валиков или, в более современном варианте, его сканируют оптические датчики перемещения (как в оптической мыши).

Джойстик — устройство ввода информации, которое представляет собой манипулятор, посредством которого можно задавать экранные координаты графического объекта; также может выполнять функции клавиатуры.

Джойстик представляет собой ручку, наклоном которой, можно задавать направление в двумерной плоскости. На ручке, а также в платформе, на которой она крепится, обычно располагаются кнопки и переключатели различного назначения. Помимо координатных осей X и Y, возможно также изменение координаты Z, за счет вращения рукояти вокруг оси, наличия второй ручки, дополнительного колёсика и т. п.

Широкое применение джойстик получил в компьютерных играх, но также может использоваться в других целях. По аналогии с этим устройством, джойстиком шутливо называют ручку управления промышленными механизмами и транспортными средствами (самолётом и др.).

Устройства ввода знаковых данных

Манипуляторы. Манипуляторы (мышь, трекбол и др.) – специальные устройства ввода и управления, облегчающие взаимодействие пользователя и ПЭВМ.

Манипулятор мышь бывает трех видов: механическая, оптическая и оптическая беспроводная. Несмотря на большое разнообразие форм и размеров, мыши имеют единые принципы работы. При перемещении мыши по поверхности это перемещение преобразуется в последовательности импульсов, передаваемых в ПК. При нажатии кнопок мыши их код также передается в ПК, где специальная программа управления мышью (драйвер мыши) преобразует последовательности импульсов и коды нажатия кнопок в определенные действия. В зависимости от способа определения перемещения – механического, связанного с перемещением частей устройства, или оптического, основанного на фиксации перемещения с помощью оптических приборов, различают соответственно механические и оптические мыши.

Клавиатура. Клавиатура – клавишное устройство ввода в персональный компьютер алфавитно-цифровых (знаковых) данных и команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. Клавиатура имеет свой порт
на задней панели системного блока. Данная микросхема находится на основной плате компьютера внутри системного блока.

Устройства ввода графических данных:

Сканеры

Для ввода в ПЭВМ текстовой или графической информации наиболее часто используется устройство, называемое сканером. Он создает оцифрованное (переводит аналоговое изображение в цифровое) изображение документа и помещает его в память компьютера.

В настоящем существует два основных типа сканеров: ручной и настольный. Однако встречаются и комбинированные модели. С ручными сканерами сталкивался почти каждый. Например, сканеры штрих-кодов, используемые в супермаркетах. Но существуют модели и для домашнего применения.

Для того чтобы ввести в компьютер документ при помощи ручного сканера, надо без резких движений провести сканирующей головкой по изображению. Равномерность перемещения сканера существенно сказывается на качестве. В ряде моделей для подтверждения нормального ввода встроен индикатор. Большинство современных ручных моделей автоматически «склеивает» части вводимого изображения.

Наиболее распространенный тип – настольные сканеры, существующие в трех видах: планшетные, рулонные и проекционные.

Графический планшет — это устройство для ввода рисунков от руки непосредственно в компьютер. Состоит из пера и плоского планшета, чувствительного к нажатию или близости пера. Также может прилагаться специальная мышь.

Устройства вывода данных

Принтеры

Принтер – печатающее устройство для регистрации информации на твердый, как правило, бумажный носитель.

Существует огромное количество наименований принтеров. Но основных видов принтеров три: матричные (игольчатые), лазерные и струйные.

Матричные принтеры . Их печатающая головка содержит некоторое количество «иголок», которые под воздействием управляющих сигналов наносят удар по красящей ленте, благодаря чему на бумаге остается отпечаток символа. Каждый символ, печатаемый на таком принтере, образуется из набора 9 или 24 игл, сформированных в виде вертикальной колонки. Выводят на бумагу текст и графику в черно-белом изображении. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати. Основными параметрами, на которые следует обращать внимание при покупке, являются:

– максимальный формат листа бумаги – А3 – А4;

– количество игл (pin) в печатающей головке – 9 или 24;

– количество печатаемых знаков в минуту;

– интерфейс подключения – LPT или USB.

Струйные принтеры . Печатное устройство этого принтера представляет собой емкость со специальными чернилами, которые через крошечные сопла под большим давлением выбрызгиваются на бумагу. Диаметр полученной таким образом точки на бумаге в десятки раз меньше, чем диаметр точки от матричного принтера, что обеспечивает значительно лучшее качество печати. Цветные струйные принтеры, кроме черного картриджа, дополнительно имеют картридж с чернилами ярко-голубого, пурпурного и желтого цветов. Основные характеристики:

– способность выводить на печать различную цветовую палитру – черно-белые или цветные изображения;

– разрешающая способность (dpi) – количество точек на один дюйм бумаги. Чем это значение выше, тем отчетливее получается изображение;

– количество печатаемых страниц в минуту;

– интерфейс подключения – LPT, USB или IEEE 1394.

Лазерные принтеры. Основным печатающим устройством лазерного принтера, так же, как ксерокса, является валик-«барабан», имеющий светочувствительное покрытие, изменяющее свои электрические свойства в зависимости от освещенности. Принцип работы лазерного принтера заключается в следующем. Компьютер формирует в своей памяти «образ» страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан. После чего на барабан, находящийся под электрическим напряжением, наносится красящий порошок – тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и «вплавляется» в нее, оставляя стойкое высококачественное изображение. Из-за сложности технологии цветной лазерной печати цветные лазерные принтеры стоят значительно дороже черно-белых.

Устройства хранения данных

Флэш-память

Название этот тип памяти получил от одного из разработчиков технологии – компании. Слово – «вспышка» – относилось к типу записи информации и, вероятно, носило еще и рекламный характер.

Преимущества флэш-памяти заключаются в независимости от наличия или отсутствия электрического питания, в долговременности хранения информации (производители гарантируют сохранность данных в течение 10 лет, но на практике должно быть больше) и в высокой механической надежности (в накопителях на базе флэш-памяти нет никаких механических устройств, следовательно, нечему ломаться).

Недостатки – в высокой сложности устройства, в невысоком быстродействии и в относительно высокой стоимости микросхем.

Основная битва производителей флэш-карт развернулась на двух фронтах: уменьшение размеров и увеличение быстродействия. Уже сейчас скорость работы карт сравнима с накопителями на оптических дисках, но от современных винчестеров отстает весьма заметно.

Стример — запоминающее устройство на принципе магнитной записи на ленточном носителе, с последовательным доступом к данным, по принципу действия аналогичен бытовому магнитофону.

Основное назначение: запись и воспроизведение информации, архивация и резервное копирование данных.

Локальные компьютерные сети

При работе на персональном компьютере в автономном режиме пользователи могут обмениваться информацией (программами, документами и так далее), лишь копируя ее на дискеты. Однако перемещение дискеты между компьютерами не всегда возможно и может занимать достаточно продолжительное время.

Создание компьютерных сетей вызвано практической потребностью совместного использования информации пользователями, работающими на удаленных друг от друга компьютерах. Сети предоставляют пользователям возможность не только быстрого обмена информацией, но и совместного использования принтеров и других периферийных устройств и даже одновременной работы с документами.

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8-12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

Локальная сеть объединяет несколько компьютеров и дает возможность пользователям совместно использовать ресурсы компьютеров, а также подключенных к сети периферийных устройств (принтеров, плоттеров, дисков, модемов и др.).

В небольших локальных сетях все компьютеры обычно равноправны, то есть пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми .

Если к локальной сети подключено более 10 компьютеров, одноранговая сеть может оказаться недостаточно производительной. Для увеличения производительности, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов и программных приложений. Такие компьютеры называются серверами , а локальная сеть - сетью на основе сервера .

Аппаратное обеспечение сети. Каждый компьютер, подключенный к локальной сети, должен иметь специальную плату (сетевой адаптер - рис. 4.2).

Основной функцией сетевого адаптера является передача и прием информации из сети. В настоящее время наиболее часто используются сетевые адаптеры типа EtherNet, которые могут объединять в сеть компьютеры различных аппаратных и программных платформ (IBM-совместимые, Macintosh, Unix-компьютеры)

Соединение компьютеров (сетевых адаптеров) между собой производится с помощью кабелей различных типов (коаксиального, витой пары, оптоволоконного ). Для подключения к локальной сети портативных компьютеров часто используется беспроводное подключение, при котором передача данных осуществляется с помощью электромагнитных волн.

Важнейшей характеристикой локальных сетей, которая определяется типом используемых сетевых адаптеров и кабелей, является скорость передачи информации по сети. Скорость передачи информации по локальной сети обычно находится в диапазоне от 10 до 100 Мбит/с.

Аппаратные средства локальных сетей.

Локальные вычислительные сети (ЛВС) позволяют объединять компьютеры, расположенные в ограниченном пространстве. Для локальных сетей прокладывается специализированная кабельная система, и положение возможных точек подключения абонентов ограничено этой кабельной системой. Локальные сети – LAN (Local-Area Network) – являются элементами более крупномасштабных образований – CAN (Campus-Area Network – кампусная сеть, объединяющая локальные сети близко расположенных зданий), MAN (Metropolitan-Area Network – сеть городского масштаба), WAN (Wide-Area Network – широкомасштабная сеть), GAN (Global-Area Network – глобальная сеть). Наконец, «сетью сетей» называют глобальную сеть Интернет.

Конфигурация сети (локальной и глобальной ).

Возможно наиболее важным требованием к конфигурации NFS-сервера является обеспечение достаточной полосы пропускания и степени готовности сети. Это требование на практике трансформируется в необходимость создания конфигурации с соответствующим количеством и типом сетей и интерфейсов.

Правила техники безопасности при работе с ПК

1. Руководитель занятия (преподаватель) обязан:

  • в соответствии с пунктом 4 общих положений настоящего руководства, провести инструктаж по охране труда и технике безопасности (ТБ), мерам пожарной безопасности на рабочем месте с регистрацией в журналах по ТБ, ПБ;
  • находиться во время занятий в лаборатории (компьютерном классе), контролировать работу студентов, следить за соблюдением правил работы, не допускать порчи материального имущества и программного обеспечения ПЭВМ;
  • до и после занятия зарегистрировать техническое состояние класса в соответствующем журнале.

2. Специалист по работе на ПК (оператор) обязан:

  • поддерживать помещение КК в чистоте и порядке;
  • поддерживать ПЭВМ и средства оргтехники в чистоте и исправном состоянии, при невозможности устранить неполадки самостоятельно обратиться к программистам (инженерам) Центра;
  • помогать студентам, занимающимся самостоятельной работой в соответствии с установленным для этого КК графиком;
  • проводить техническое обслуживание ПЭВМ и средств оргтехники в соответствии с графиком и регламентом работ.

3. Студенты обязаны:

  • выполнять требования техники безопасности, пожарной безопасности, инструкций настоящего руководства;
  • беспрекословно выполнять требования руководителя занятия (преподавателя) и специалиста по работе на ПК (оператора) КК;
  • в случае обнаружения неисправности компьютера заявить об этом руководителю занятия (преподавателю) или специалисту по работе на ПК (оператору) КК.

Литература:

http://www.univer.omsk.su/omsk/Edu/infpro/1/infor/inf2.html

http://ru.wikipedia.org/wiki/%D0%95%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D1%8B_%D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BA%D0%BE%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%B0_%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B8

http://revolutionprogramming/00030677_0.html

http://www.klgtu.ru/ru/students/literature/inf_asu/1740.html

http://ru.wikipedia.org/wiki/%D0%A1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5#.D0.9D.D0.B5.D0.BF.D0.BE.D0.B7.D0.B8.D1.86.D0.B8.D0.BE.D0.BD.D0.BD.D1.8B.D0.B5_.D1.81.D0.B8.D1.81.D1.82.D0.B5.D0.BC.D1.8B_.D1.81.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F

http://www.ukr-print.net/catchword/page-759.htm

http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85

http://fictionbook.ru/author/vadim_vasilevich_liysenko/osnoviy_informatiki_uchebnik_dlya_vuzov/read_online.html?page=2

http://www.lessons-tva.info/edu/e-inf1/e-inf1-2-2.html

http://www.5byte.ru/11/0020.php

Аппаратные средства локальных сетей. Энциклопедия. Михаил Гук. Издано: 2000, СПб, Издательство «Питер»

Информатика. Учебник. Под общей редакцией А. Н. Данчула. Издано:2004,Издательство «РАГС»